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Abstract. In this paper we consider a special case of BVP for higher-order ODE, where,
the linear part consists of only even-order derivatives and depends on a set of real pa-
rameters. Among many questions related to this problem we are especially interested in
the specific one, namely to work out assumptions which provide existence of infinitely
many solutions. This task is dealt with by applying a combination of both topological
and variational methods, including Chang’s version of the Morse theory in particular.
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1 Introduction

In general, a problem which is composed of a differential equation of even order whose
nonlinear part depends on even derivatives and boundary value conditions of Dirichlet-type
is commonly known as Lidstone BVP. Due to some physical and mechanical applications
many authors have been studying diverse aspects of Lidstone BVP since the early 80s (see
[1, 2, 9–13] for instance). Most of these papers are connected with the existence, uniqueness
and multiplicity of solutions.

We begin by fixing a size parameter k ≥ 2 being an integer number and choosing i =

1, . . . , k − 1. The boundary value problem (BVP) which is considered here is composed of a
nonlinear equation

(−1)k x(2k) +
k

∑
j=1

λjx(2k−2j) = (−1)i−1 f
(

t, x(2i−2)
)

, (1.1)

together with Dirichlet-type boundary conditions

x(2j) (0) = x(2j) (1) = 0, j = 0, . . . , k− 1. (1.2)
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It is seen that the left-hand side of the equation (1.1) depends on the parameters λ1, . . . , λk.
This means that for different unions of these parameters the respective differential operators
can have various properties. For example, some of them may be invertible and some may not
have an inverse. It turns out that the latter case is especially troublesome, because then the
dimensions of the kernels varies from one to k. To be more specific, there exist some classes
of parameters for which the corresponding operators have respectively one-, two-, and so to
k- dimensional kernels. Therefore, (1.1)–(1.2) can be viewed as a generalization of Strum–
Liouville problem. This in turn, lead us to the notion of multidimensional-spectrum which
describes a set containing all these classes of parameters which cause invertibility of the linear
part of (1.1)–(1.2). The multidimensional-spectrum is put across in [10] and [11]. It is worth
mentioning that the former paper focuses on the case where lambdas belong to the spectrum
and the nonlinear part is even more general than in (1.1), namely is a Carathéodory’s function
of k variables. The answer to a question regarding existence of solutions which is raised there
is not obvious at all. It is because the non-invertibility of nonlinear part imposes a need to
add some sort of integral conditions which are of Landesman–Lazer type. This means in turn
that some nonstandard techniques have to be exploited to get desired results.

In this paper we point out assumptions which must be satisfied to provide existence of
infinitely many solutions to (1.1)–(1.2), if the linear part is invertible. For this purpose, some
methods of both infinite dimensional Morse theory (see [4,6,8,15]) and Leray–Schauder degree
are used (see [5]). Furthermore, since the underlying idea is based on variational methods, the
left-hand side of (1.1) must be in particular of class C1. It is because we have to provide the re-
spective differential operator with double-differentiability. In fact, consideration herein should
be viewed as a continuation of the research published in [13] and [12]. Both of them solve
multi-solutions problems but with this difference, that the former focuses on the existence of
at least three solutions, whereas the latter on the existence of infinitely many solutions. Since
the main result in [12] is based on the well known Rabinowitz’s theorem (see [14, Theorem
6.5]), it was necessary to strictly control both a growth and behavior around zero of a function
being on the right-hand side of the equation. It is a crucial difference between [12] and this
paper. Namely, in spite of the fact that we also prove the existence of infinitely many solutions
here, the combination of variational and topological methods let us to essentially weaken the
assumptions and obtain more interesting result.

2 Preliminaries

Before starting the main part of our discussion, we pause to remind the reader of some im-
portant facts and ideas which will be used to justify the crucial result of this paper.

Let us define an auxiliary real function Λ, by the formula

Λ (n) =
k

∑
j=1

(−1)k−j λj
(
n2π2)k−j

, for n ∈N. (2.1)

Here, recall, the number k ≥ 2 has been fixed in the previous section.

Definition 2.1 (see [10, 11]). A point λ=(λ1, . . . λk) ∈ Rk is called a k-dimensional eigenvalue
iff the homogeneous problem{

(−1)k x(2k) + λ1x(2k−2) + λ2x(2k−4) + · · ·+ λk−1x′′ + λkx = 0,

x(2j)(0) = x(2j)(1) = 0, for j = 0 . . . k− 1,
(2.2)
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has a nonzero solution. The set of all such n-tuples is denoted by σk.

It is proven in [10] and [11] that σk has the following form

σk =
⋃

n∈N

Ωn,

where a single Ωn :=
{

λ ∈ Rk |
(
n2π2)k

+ Λ (n) = 0
}

is a hyperplane in Rk.

Note that if we define the following set

∆+ :=
⋂

n∈N

{λ | Λ (n) ≥ 0} , (2.3)

then it is easy to see that ∆+ 6= ∅. Indeed, putting D+ :=
{

λ ∈ Rk | (−1)k+sλs ≥ 0
}

, we can

see that D+ ⊂ ∆+. Furthermore, due to the fact that the inequality
(
n2π2)k

+ Λ (n) > 0 holds
for all positive integers, we have ∆+ ∩ σk = ∅.

In [10,11], it is explained that if x is a solution to (1.1)–(1.2), then there exists a continuous
function P : [0, 1]× [0, 1]→ R, such that

x(2i−2) (t) =
∫ 1

0
P (t, s) f

(
s, x(2i−2) (s)

)
ds,

where

P (t, s) =
∞

∑
n=1

(nπ)2i−2

(n2π2)k + Λ (n)
· sin (nπs) sin (nπt) .

Substituting y = x(2i−2), we obtain

y (t) =
∫ 1

0
P (t, s) f (s, y (s)) ds.

Consider the operator T, mapping C [0, 1] into itself and defined by

(Ty) (t) =
∫ 1

0
P (t, s) f (s, y (s)) ds.

It is easy to notice that T is a composition of respectively linear and nonlinear operators. To
be more specific T = P ◦ f, where (Pz) (t) =

∫ 1
0 P (t, s) z (s) ds and (fy) (s) = f (s, y (s)). The

operator P is semicontinuos and self-adjoint, furthermore σ (P) = σp (P) ∪ σc (P) , where

σp (P) =
{
(pπ)2i−2 ·

[(
p2π2)k

+ Λ (p)
]−1 ∣∣∣ p = 1, 2, . . .

}
and σc (P) = {0} (see [12] for details). In addition to that, if λ ∈ ∆+ then σ (P) ⊂ [0,+∞) and
this follows that P is a positive operator. A consequence is that there exists a unique positive
and self-adjoint S such that S2 = P (see [3, Theorem 2.2.10]). From spectral theory in Hilbert
spaces we know that S is an endomorphism of L2(0, 1) which is defined by

(Sz) (t) =
∫ 1

0
S (t, s) z (s) ds.

Here S is the kernel of S and it is of the form
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S (t, s) =
∞

∑
n=1

(nπ)i−1√
(nπ)2k + Λ (n)

sin (nπs) sin (nπt) ,

(comp. [10–12]).

As we noticed earlier, the challenge here is to prove existence of infinitely many solutions
to the problem (1.1)–(1.2). In [12], it is explained that to show that the problem has a solution
it is enough to substantiate that T = P ◦ f has a fixed point. Furthermore, whenever λ ∈ ∆+

and the operator S ◦ f ◦ S has infinitely many fixed points in L2(0, 1), T has infinitely many
fixed points in C [0, 1].

Let ϕ : L2(0, 1)→ R, be a functional given by the formula

ϕ (y) =
1
2
‖y‖2 −

∫ 1

0
F (t, (Sy) (t)) dt.

Then ϕ is twice continuously differentiable and its first derivative is given by the formula
(comp. [12])

ϕ′ (y) = y− (S ◦ f ◦ S) y.

It turns out that there is an equivalence between critical points of ϕ and fixed points of T. This
in turn means that there is a relation between existence of solutions to the considered problem
and critical points of the above functional. This relation is described by the following lemma.

Lemma 2.2 (see [12]). To show that (1.1)–(1.2) has infinitely many solutions it is enough to prove
that the functional ϕ has infinitely many critical points.

Now we outline some preliminary knowledge about the infinite dimensional Morse theory,
which will be used in the proofs of the main theorem.

Let X be a real separable Hilbert space, ϕ ∈ C1 (X, R) be a functional and Hq be the q-th
singular relative homology group. A point p ∈ X is called a critical point of ϕ if ϕ′ (p) = 0.
The set K (ϕ) = {p ∈ X | ϕ′ (p) = 0} is called the critical set. A real number c is called a critical
value if ϕ−1 (c) ∩ K (ϕ) 6= ∅. Furthermore, define K (ϕ)c = {p ∈ X | ϕ′ (p) = 0 and ϕ (p) = c}
and let ϕa := ϕ−1 ((−∞, a]) . A real number is called a regular value iff it is not a critical value
of ϕ.

Definition 2.3 (see [4]). Let p be an isolated critical point of ϕ, and let c = ϕ (p), We call

Cq (ϕ, p) = Hq
(

ϕc ∩Up, (ϕc\ {p}) ∩Up
)

the q-th critical group of ϕ at p, where Up is a neighborhood of p such that K (ϕ)∩(
ϕc ∩Up

)
= {p} .

Below, we will introduce the definition of Morse type numbers.

Definition 2.4 (see [4]). Assume that a < b are two regular values of ϕ, ϕ has at most finitely
many critical points on ϕ−1 ([a, b]) and the rank of the critical group for every critical point is
finite. Let c1 < c2 < · · · < cm be all critical values of ϕ in [a, b] and

K (ϕ)ci
=
{

pi
1, pi

2, . . . , pi
ni

}
, i = 1, 2, . . . , m.
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Choose 0 < ε < min {c1 − a, c2 − c1, . . . , cm − cm−1, b− cm} . We call

Mq = Mq (a, b) =
m

∑
i=1

rank Hq (ϕci+ε, ϕci−ε) , q = 0, 1, 2, . . .

the q-th Morse type number of the functional ϕ with respect to (a, b) .

Definition 2.5 (see [14]). A sequence {yn} ⊂ X is a Palais–Smale sequence for ϕ ∈ C1 (X, R),
if {ϕ (yn)} is bounded while ϕ′ (yn)→ 0 as n→ ∞.

Definition 2.6 (see [14]). We say that ϕ ∈ C1 (X, R) satisfies (P.S.) condition if any Palais–Smale
sequence has a (strongly) convergent subsequence.

For those functionals which satisfy the (P.S.) condition, Morse type numbers are well-
defined, i.e., they are independent of the special choice of ε.

Corollary 2.7 (see [4]).

Mq (a, b) =
m

∑
i=1

ni

∑
j=1

rank Cq

(
ϕ, pi

j

)
,

for q = 0, 1, 2, . . .

Definition 2.8 (see [4]). Let a < b be regular values of ϕ. We call

βq = βq (a, b) = rank Hq (ϕb, ϕa) , q = 0, 1, 2, . . . ,

the q-dimensional Betti number.

The following two theorems indicate relation between the Morse-type numbers and the
Betti numbers and relation between critical points and the Leray–Schauder degree, respec-
tively.

Theorem 2.9 (see [4]). Assume that a < b are two regular values of ϕ ∈ C1 (X, R), ϕ satisfies
the (P.S.) condition and it has at most finitely many critical points on ϕ−1 ([a, b]) and the rank of the
critical group for every critical point is finite. Then the following inequality holds

q

∑
j=0

(−1)q−j Mj ≥
q

∑
j=0

(−1)q−j β j, q = 0, 1, 2, . . . ,

and
∞

∑
q=0

(−1)q Mq =
∞

∑
q=0

(−1)q βq,

if all Mq, βq, q = 0, 1, 2, . . . , are finite and the series converge.

Theorem 2.10 (see [4]). Let ϕ ∈ C2 (X, R) be a functional satisfying the (P.S.) condition. Assume
that

ϕ′ (y) = y− Fy,

where F : H → H is completely continuous and that p0 is an isolated critical point of ϕ. Then there
exists a neighborhood U of p0 such that p0 is the unique critical point of ϕ in U and

degLS (I − F, U, 0) =
∞

∑
q=0

(−1)q rank Cq (ϕ, p0) .

At the end of this section, we recall Borsuk’s antipodal theorem (comp. [5, 7]).

Theorem 2.11. Let Ω be an open bounded and symmetric set in an infinite dimensional Hilbert space
X, let 0 ∈ Ω, F : Ω→ X be compact, G = I− F and 0 /∈ G (∂Ω) . If for all λ ≥ 1 and for all x ∈ ∂Ω,
G (−x) 6= λG (x) then degLS (I − F, Ω, 0) is odd. In particular, this is true if F|∂Ω is odd.
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3 Main results

Before we formulate the main result and pass to the proof, we focus on the question of how
the nonlinear part of (1.1) has to behave to provide ϕ with meeting the Palais–Smale condition.

Lemma 3.1. Assume that there are k ∈ (0, 1/2) and N > 0, such that for |w| ≥ N, we have∫ w

0
f (t, u) du ≤ kw f (t, w) . (3.1)

Then the functional ϕ satisfies the (P.S.) condition.

Proof. Let {yn} be a Palais–Smale sequence for ϕ. Firstly, we will show that {yn} is bounded.
Suppose that it is unbounded. Then without loss of generality we can assume that ‖yn‖ →
∞, as n → ∞. If this condition holds, then due to continuity of the function (t, w) 7→∫ w

0 f (t, u) du − kw f (t, w) in [0, 1] × [−N.N] , there exists L > 0 such that
∫ w

0 f (t, u) du ≤
kw f (t, w) + L in [0, 1]×R. This implies that

M > ϕ (yn) =
1
2
‖yn‖2 −

∫ 1

0

∫ (Sy)(t)

0
f (t, u) dudt

≥
(

1
2
− k
)
‖yn‖2 + k

(
‖yn‖2 −

∫ 1

0
f (t, (Sy) (t)) S (y) (t) dt

)
− tL

≥
(

1
2
− k
)
‖yn‖2 + k

〈
ϕ′ (yn) , yn

〉
L2 − L

≥
(

1
2
− k
)
‖yn‖2 − k

∥∥ϕ′ (yn)
∥∥ ‖yn‖ − L.

We divide both sides of the above series of inequalities by ‖yn‖ to obtain

M
‖yn‖

>

(
1
2
− k
)
‖yn‖ − k

∥∥ϕ′ (yn)
∥∥− L
‖yn‖

.

Now, we get contradiction after passing to the limit as n → ∞. Clearly, {yn} is a bounded
sequence. This fact together with complete continuity of S and the condition that yn −
(S ◦ f ◦ S) yn → 0 imply that {yn} has a convergent subsequence.

Remark 3.2. If f is odd then functions R 3 w 7→
∫ w

0 f (t, u) du and R 3 w 7→ w · f (t, w) are
even uniformly with respect to t ∈ [0, 1] . Therefore, to verify assumption of Lemma 3.1 it
suffices to check the inequality (3.1) for w ≥ N > 0.

Corollary 3.3. If f : [0, 1]×R→R is odd with respect to the second variable and there exists p > 1
such that

lim
u→+∞

f (t, u)
up = γ, uniformly for t ∈ [0, 1] .

then f satisfies the condition (3.1).

Indeed, let k ∈ (1/ (p + 1) , 1/2). By using L’Hôpital’s rule, we have

lim
w→+∞

∫ w
0 f (t, u) du− kw f (t, w)

wp+1 = lim
w→+∞

(
f (t, w)

(p + 1)wp − k · f (t, w)

wp

)
= lim

w→+∞

f (t, w)

wp

(
1

p + 1
− k
)

= γ

(
1

p + 1
− k
)
< 0.
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So, there exists N > 0 such that
∫ w

0 f (t, u) du ≤ kw f (t, w) for w ≥ N and t ∈ [0, 1] .

Now, we are ready to formulate and prove the main result of this paper.

Theorem 3.4. Let λ = (λ1, . . . , λk) ∈ ∆+ and f : [0, 1]×R→ R be both of class C1 and odd with
respect to the second variable. If there exist k ∈ (0, 1/2) and M > 0 such that

0 <
∫ w

0
f (t, u) du ≤ kw f (t, w) , for w > M, (3.2)

then the BVP (1.1)–(1.2) has infinitely many solutions.

Proof. By virtue of Lemma 3.1 and Remark 3.2, the functional ϕ satisfies the (P.S.) condition.
Let us denote

F (t, w) =
∫ w

0
f (t, u) du.

It is easily seen that oddness of the function u 7→ f (t, u) implies evenness of w 7→ F (t, w)
uniformly with respect to t ∈ [0, 1]. Due to the assumptions, there exist k ∈ (0, 1/2) and
M > 0, such that

qF (t, w) ≤ w f (t, w) , for |w| > M,

where q := k−1. Moreover, continuity of f implies that the function F (t, w)− kw f (t, w) is con-
tinuous as well. In particular, it is uniformly continuous on the compact set [0, 1]× [−M, M].
This, in turn, means that there exists C1 > 0 which fulfills the following condition

F (t, w)− kw f (t, w) ≤ C1, for (t, w) ∈ [0, 1]× [−M, M] .

Therefore, we have

F (t, w) ≤ kw f (t, w) + C1, for (t, w) ∈ [0, 1]×R. (3.3)

Next, there exist C2 > 0 and C3 > 0 such that

F (t, w) ≥ C2 |w|q − C3, for (t, w) ∈ [0, 1]×R. (3.4)

Indeed, we have for w > M and t ∈ [0, 1]

∂

∂w

(
F (t, w)

wq

)
=

wq f (t, w)− qwq−1F (t, w)

w2q =
wq f (t, w)− qwq−1F (t, w)

w2q

= wq−1 w f (t, w)− qF (t, w)

wq−1wq+1 =
w f (t, w)− qF (t, w)

wq+1 ≥ 0.

The above condition means that w 7→ F (t, w) /wq is an increasing function for w > M. This
implies that for w > M, we get

F (t, w)

wq ≥ F (t, M)

Mq ≥ M−1 · min
t∈[0,1]

F (t, M) =: C2 > 0,

hence
F (t, w) ≥ C2wq, for w > M, t ∈ [0, 1] .

Both w 7→ F (t, w) and w 7→ C2 |wq| are even functions, therefore the last inequality may be
transformed to the following one

F (t, w) ≥ C2 |w|q , for |w| > M, t ∈ [0, 1] . (3.5)
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Since F (t, w)− C2 |wq| is continuous on the compact set [0, 1]× [−M, M], there exists a con-
stant C3 > 0, such that

F (t, w)− C2 |w|q ≥ −C3 for t ∈ [0, 1] , w ∈ [−M, M] .

Finally, this condition together with (3.5) imply that

F (t, w) ≥ C2 |w|q − C3, for w ∈ R, t ∈ [0, 1] .

Recall that the challenge here is to show that ϕ has infinitely many critical points. Assume
conversely that it has finitely many critical points {y1,−y1, . . . yn,−yn} and choose numbers
θ1 < 0, θ2 > 0 such that

θ1 < min {ϕ (y1) , . . . ϕ (yn) ,−C1} ,

θ2 > max {ϕ (y1) , . . . ϕ (yn)} .
(3.6)

Let y ∈ L2(0, 1), then using (3.4) we get the following estimation

ϕ (y) =
1
2
‖y‖2 −

∫ 1

0
F (t, (Sy) (t)) dt ≤ 1

2
‖y‖2 − C2

∫ 1

0
|(Sy) (t)|q dt + C3.

If, in addition, y ∈ S∞ and α ≥ 0, then applying the above estimation, we obtain that

ϕ (αy) ≤ 1
2
‖αy‖2 − C2

∫ 1

0
|[S (αy)] (t)|q dt + C3 =

1
2

α2 − C2αq
∫ 1

0
|(Sy) (t)|q dt + C3.

Since the operator S maps L2(0, 1) onto C [0, 1], the last integral is finite. This fact together
with the assumption that q > 2, imply the following condition

lim
α→∞

ϕ (αy) = −∞, for y ∈ S∞. (3.7)

Note that since ϕ is continuous, the real function ϕy : R+ 3 α 7→ ϕ (αy), is also continuous for
every y ∈ S∞. This implies that for each y ∈ S∞ there exists αy > 0, such that

ϕ
(
αyy
)
= θ1. (3.8)

Further, we show that there exists δ > 0, such that for every y ∈ S∞ we have αy ≥ δ. To do
this, suppose that there exists a sequence (yn) ⊂ S∞, such that αyn → 0, as n → ∞. Then the
condition ‖yn‖ = 1 implies that αyn yn → 0, as n→ ∞. Putting everything together, we have

0 > θ1 = lim
n→∞

ϕ
(
αyn yn

)
= ϕ

(
lim
n→∞

αyn yn

)
= ϕ (0) = 0.

This is a contradiction.
We next verify that for every y ∈ S∞ there exists exactly one αy ≥ δ, satisfying (3.8). Let

y ∈ S∞ and α > 0, then we obtain

d
dα

ϕy (α) =
〈

ϕ′ (αy) , y
〉
= 〈αy− (S ◦ f ◦ S) (αy) , y〉

= 〈αy, y〉 − 〈(S ◦ f ◦ S) (αy) , y〉 = α− 〈(f ◦ S) (αy) , Sy〉

= α−
∫ 1

0
f (t, [S (αy)] (t)) · (Sy) (t) dt

= α− 1
α

∫ 1

0
f (t, α (Sy) (t)) · α (Sy) (t) dt.
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Applying estimation (3.3), we have

α− 1
α

∫ 1

0
f (t, α (Sy) (t)) · α (Sy) (t) dt

≤ α− 1
α

q
∫ 1

0
F (t, α (Sy) (t)) dt +

qC1

α

=
q
α

(
α · α

q
−
∫ 1

0
F (t, [S (αy)] (t)) dt

)
+

qC1

α

=
q
α

(
1
q
‖αy‖2 −

∫ 1

0
F (t, [S (αy)] (t)) dt

)
+

qC1

α

<
q
α

(
1
2
‖αy‖2 −

∫ 1

0
F (t, [S (αy)] (t)) dt

)
+

qC1

α

=
q
α
(ϕ (αy) + C1) .

Now the formula (3.6)1 leads to the following conclusion

d
dα

ϕy (α)

∣∣∣∣
α=αy

<
q
α

(
ϕ
(
αyy
)
+ C1

)
=

q
α
(θ1 + C1) < 0. (3.9)

This means that the set Γy :=
{

αy | ϕy
(
αy
)
= θ1

}
contains only isolated points. Therefore,

we can choose αy, βy ∈ Γy, αy < βy such that
(
αy, βy

)
∩ Γy = ∅. Applying (3.9), we see that

there exist α0 > αy and β0 < βy, α0 < β0, such that ϕy (α0) < θ1 and ϕy (β0) > θ1. Since ϕy is
continuous it follows that there exists γy ∈ (α0, β0) such that ϕy

(
γy
)
= θ1 and finally γy ∈ Γy.

This is impossible.

Note that a function α : S∞ → [δ,+∞) , given by the formula α (y) = αy is continuous.
Indeed, if we take a sequence (yn) ⊂ S∞, such that yn → y0 ∈ S∞ and apply the formula (3.4),
we have

θ1 = ϕ
(
αyn yn

)
= ϕ (α (yn) yn) =

1
2
‖α (yn) yn‖2 −

∫ 1

0
F (t, [S (α (yn) yn)] (t))

≤ 1
2
(α (yn))

2 − C2

∫ 1

0
|[S (α (yn) yn)] (t)|q dt + C3 (3.10)

=
1
2
(α (yn))

2 − C2 (α (yn))
q
∫ 1

0
|(Syn) (t)|q dt + C3.

Next, we show that there exist N ∈N and C4 > 0 such that∫ 1

0
|(Syn) (t)|q dt > C4. (3.11)

In [12], it is explained that H = S2 in L2(0, 1) and that the kernel of S is continuous, therefore S
is a continuous operator. This implies that Syn ⇒ Sy0 and that |Syn|q is uniformly convergent
to |Sy0|q . Assume toward a contradiction that Sy0 = 0. Then due to the fact that 0 /∈ σp (S)
and that ker S is trivial, we get y0 = 0. It is impossible, because y0 ∈ S∞, so Sy0 6= 0 and∫ 1

0
|(Syn) (t)|q dt→

∫ 1

0
|(Sy0) (t)|q dt > 0.

The above inequality means that (3.11) is satisfied. The conditions (3.10) and (3.11) lead us to
the following conclusion

θ1 ≤
1
2
(α (yn))

2 − C2 · C4 · (α (yn))
q + C3, for n > N. (3.12)
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Further, since 1
2 x2 − C2 · C4 · xq + C3 → −∞ as x → +∞, the sequence (α (yn)) is bounded, so

there exists a subsequence (α (ynk)) such that α (ynk)→ a and we have

θ1 = lim
k→∞

ϕ (α (ynk) ynk) = ϕ (ay0) .

Then as an immediate consequence of uniqueness, we obtain that a = α (y0) . This means in
turn that each convergent subsequence of the sequence is convergent to the number α (y0) and
proofs that α is a continuous function.

Let us choose 0 < ε < δ such that ϕθ1 ∩ B (0, ε) = ∅ and consider the map R : [0, 1] ×
L2\B (0, ε)→ L2\B (0, ε) , given by the formula

R (t, y) =

(1− t) y + tα
(

y
‖y‖

)
y
‖y‖ for y ∈

(
L2\B (0, ε)

)
\ϕθ1 ,

y for y ∈ ϕθ1 .

It is easily seen that R is a homotopy and ϕθ1 is a strong deformation retract of L2\B (0, ε) .
By both (3.6)2 and the deformation lemma (see [14]), ϕθ2 is a strong deformation retract of
L2(0, 1), so we have

βq = βq (θ1, θ2) = rank Hq (ϕθ2 , ϕθ1) = rank Hq
(

L2, L2\B (0, ε)
)

.

It is well known that S∞ is contractible (see [7]), thus L2\B (0, ε) is contractible too. Further-
more, it is easily seen that B (0, ε) is homotopy equivalent to S∞. Therefore, we get

Hq
(

L2, L2\B (0, ε)
) ∼= 0 and βq = 0 for q = 0, 1, 2, . . .

It follows that
∞

∑
q=0

(−1)q βq = 0. (3.13)

Let us choose ρ > 0 such that the balls B (0, ρ) , B (yi, ρ) , B (−yi, ρ) , i = 1 . . . n are mutually
disjoint. According to Corollary 2.7, we obtain the following formula

Mq = Mq (θ1, θ2) = rank Cq (ϕ, 0) +
n

∑
i=1

[
rank Cq (ϕ, yi) +

n

∑
i=1

rank Cq (ϕ,−yi)

]
,

for q = 0, 1, 2, . . . Further, Borsuk’s Theorem (theorem 2.11) implies that

an odd number = degLS

(
I − S ◦ f ◦ S, B (0, ρ) ∪

n⋃
i=1

(B (yi, ρ) ∪ B (−yi, ρ)) , 0

)
= degLS (I − S ◦ f ◦ S, B (0, ρ) , 0)

+
n

∑
i=1

degLS (I − S ◦ f ◦ S, B (yi, ρ) , 0)

+
n

∑
i=1

degLS (I − S ◦ f ◦ S, B (−yi, ρ) , 0)
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If we apply Theorem 2.10, we get

an odd number =
∞

∑
q=0

(−1)q rank Cq (ϕ, 0)

+
n

∑
i=1

[
∞

∑
q=0

(−1)q rank Cq (ϕ, yi) +
∞

∑
q=0

(−1)q rank Cq (ϕ,−yi)

]
(3.14)

=
∞

∑
q=0

(−1)q

[
n

∑
i=1

(
rank Cq (ϕ, yi) + rank Cq (ϕ,−yi)

)
+ rank Cq (ϕ, 0)

]

=
∞

∑
q=0

(−1)q Mq.

To summarize, conditions (3.13) and (3.14) imply that the series ∑∞
q=0 (−1)q βq and

∑∞
q=0 (−1)q Mq are summable. On the other hand, we have

∞

∑
q=0

(−1)q βq 6=
∞

∑
q=0

(−1)q Mq.

This contradicts Theorem 2.9 and means that the functional ϕ has infinitely many critical
points in L2(0, 1). According to the conclusion of Lemma 2.2 we obtain the existence of
infinitely many solutions to the considered BVP (1.1)–(1.2).

Example 3.5. Let us consider the following problemx(100) (t)− x(9) (t) + π2x′′ (t) = −
(

x(6) (t)
)2
· arctan

(
x(6) (t) + t

)
,

x(2j) (0) = x(2j) (1) = 0, j = 0, . . . , 49.

It easy to verify that the above BVP satisfies the assumptions of the theorem, thus it has infinitely many
solutions.
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