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Abstract. It is shown that a class of symmetric solutions of the scalar nonlinear func-
tional differential equations at resonance with deviations from R → R can be investi-
gated by using the theory of boundary-value problems. Conditions on a solvability and
unique solvability are established. Examples are presented to illustrate given results.
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1 Introduction

The periodic solutions for differential equations or symmetric periodic equations are dissemi-
nated widely and could be found in the numerous publications (see, for example, [1,3,6,9–12]
and [2, 4, 5, 8]). The main goals of this paper are to show that solvability of a problem con-
cerning a class of symmetric solutions to scalar nonlinear functional differential equations
at resonance with perturbations from R → R can be investigated by using the theory of
boundary-value problems. Furthermore, we establish conditions on (unique) solvability of
scalar nonlinear functional differential equations with symmetries in general form. Several
examples illustrate our theory.
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2 N. Dilna, M. Fečkan, M. Solovyov and J. R. Wang

2 Problem formulation

A class of symmetric solutions of the scalar nonlinear functional differential equations is con-
sidered here:

x′(t) = ε

( m

∑
i=1

(
pi(t)x(µi(t))− gi(t)x(νi(t))

)
+ f (x(τ1(t)), x(τ2(t)), . . . , x(τm(t)), x(t), t)

)
, t ∈ R, (2.1)

where t ∈ R, ε 6= 0, f : Rm+2 → R is continuous, m ≥ 0, µi, νi, τi : R → R, are measurable
functions, pi, gi ∈ L(R, R), i = 1, 2, . . . , m.

Definition 2.1. By a solution of the equation (2.1) we understand an absolutely continuous
function x : R→ R on every compact intervals which satisfies (2.1) almost everywhere.

The goal of this investigation is to find solutions x : R → R of the equation (2.1) with a
symmetric property

x(t) = x(ψ(t)), t ∈ (−∞,+∞), (2.2)

where ψ is a monotonously increasing C1-function. The condition (2.2) can describe not only
periodic type of solutions, but rather more properties of solutions.

Example 2.2. Property (2.2) holds for the following choices of x and ψ.

x(t) = (t + τ)2m, ψ(t) = −t− 2τ, τ ∈ R, m ∈N;

x(t) = (t + a)2m(t + b)2m, ψ(t) = −t− a− b, {a, b} ∈ R, m ∈N;

x(t) =
m

∑
i=1

(
(t + a)2i + (t + b)2i

)
, ψ(t) = −t− a− b, {a, b} ∈ R, m ∈N;

x(t) = (t + a)2m(t− a)2m, ψ(t) = −t, m ∈N;

x(t) = (t + a)2m + (t− a)2m, ψ(t) = −t, m ∈N;

x(t) = cos t, ψ(t) = t + 2π;

x(t) = exp(t + a)2m, ψ(t) = −t− 2a, a ∈ R, m ∈N;

x(t) = ln(t + a)2m, ψ(t) = −t− 2a, a ∈ R, m ∈N.

3 Symmetric properties

We consider a special case, where deviations of the arguments µi, νi, τi, i = 1, 2, . . . , m, and
function f : Rm+2 → R in equation (2.1) are described in the next lemma.

Lemma 3.1. If there exist such integers ji, ri, ki, i = 1, 2, . . . , m, m ∈ N, that deviations of the
argument µi, νi and τi, i = 1, 2, . . . , m have the next properties

µi ◦ ψ = ψji ◦ µi, i = 1, 2, . . . , m, (3.1)

νi ◦ ψ = ψri ◦ νi, i = 1, 2, . . . , m, (3.2)

τi ◦ ψ = ψki ◦ τi, i = 1, 2, . . . , m, (3.3)
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then

ψ′(t)
[ m

∑
i=1

(
pi(ψ(t))x(µi(ψ(t)))− gi(ψ(t))x(νi(ψ(t)))

)
+ f (x(τ1(ψ(t))), x(τ2(ψ(t))), . . . , x(τm(ψ(t))), x(ψ(t)), ψ(t))

]
=

m

∑
i=1

(
pi(t)x(ψ(µi(t)))− gi(t)x(ψ(νi(t)))

)
+ f (x(ψ(τ1(t))), x(ψ(τ2(t))), . . . , x(ψ(τm(t))), x(ψ(t)), t) (3.4)

for all x : R→ R, i = 1, . . . , m, with property (2.2) and every t ∈ R.

Proof. The property (3.4) is a symmetric property on operators p, g, f appearing in (2.1).
Assume that x(t) = x(ψ(t)) is the solution of the equation (2.1). Let us consider the

deviation of arguments τi, i = 1, 2, . . . , m, then from (2.2)

x(τi(t)) = x(ψ(τi(t)))

and
x(ψki(τi(t))) = x(ψ(τi(t))).

If (2.2) is a solution of the equation (2.1) then

x′(ψ(t))ψ′(t) = ε

( m

∑
i=1

(
pi(t)x(ψ(µi(t)))− gi(t)x(ψ(νi(t)))

)
+ f

(
x(ψ(τ1(t))), x(ψ(τ2(t))), . . . , x(ψ(τm(t))), x(ψ(t)), t

))
. (3.5)

From the other hand

x′(ψ(t))ψ′(t) = ε

(
ψ′(t)

[ m

∑
i=1

(
pi(ψ(t))x(µi(ψ(t)))− gi(ψ(t))x(νi(ψ(t)))

)
+ f

(
x(τ1(ψ(t))), . . . , x(τm(ψ(t))), x(ψ(t)), ψ(t)

)])
. (3.6)

Obviously, (3.5) and (3.6) ensure the validity of the property (3.4).
Obtained results show that (3.4) is the natural symmetric property for equation (2.1) with

symmetric deviation of the arguments (3.1)–(3.3) and symmetric solution (2.2).

Remark 3.2. The proposition means that right side of the differential equation (2.1) has a
property of symmetry which is in a sense natural by seeing on character of problem. For
example, if µi, νi, τi, i = 1, . . . , m, are linear delays µi(t) := µit, where µi are constants,
i = 1, . . . , m, then conditions (3.1), (3.2), (3.3) are carried out obviously with j1 = · · · = jm =

k1 = · · · = km = r1 = · · · = rm = 1. Equations with properties similar to (3.4) was considered
in [5, 9, 10].

Let us fix some value t0 ∈ R. From the formulation of problem it is clear that a restriction
y = x

∣∣
Iψ

of every solution x on interval Iψ := [t0, ψ(t0)] satisfies a two-point boundary-value
condition

y(t0) = y(ψ(t0)). (3.7)

For further investigations we need the following notations and propositions:
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a) The increasing function ψ generates increasing numerical sequence

· · · < ψ−2(t0) < ψ−1(t0) < t0 ≤ ψ(t0) < ψ2(t0) < · · · (3.8)

b) Every points of the sequence from (3.8) divides R on a counted quantity of intervals

[ψj(t0), ψj+1(t0)], j ∈ Z. (3.9)

c) Assume that the number j is a number of the interval [ψj(t0), ψj+1(t0)].

Definition 3.3. For every t ∈ R we define number l(t) by a number of such interval (3.9),
which contains the point t.

Taking into account definition of the function l : R→ Z, we get that the next lemma is true.

Lemma 3.4. If function y : Iψ → R satisfy two-point boundary-value condition (3.7), then function

x(t) := y
(

ψ−l(t)(t)
)

, t ∈ R (3.10)

has the property (2.2).

Let us consider operators {ξi, κi, σi} : C(Iψ, R)→ L1(Iψ, R) for i = 1, 2, . . . , m,

(ξix)(t) :=

x(µi(t)), if µi(t) ∈ Iψ,

x
(

ψ−l(µi(t))(µi(t))
)

, if µi(t) 6∈ Iψ,
(3.11)

(κix)(t) :=

x(νi(t)), if νi(t) ∈ Iψ,

x
(

ψ−l(νi(t))(νi(t))
)

, if νi(t) 6∈ Iψ,
(3.12)

(σix)(t) :=

x(τi(t)), if τi(t) ∈ Iψ,

x
(

ψ−l(τi(t))(τi(t))
)

, if τi(t) 6∈ Iψ,
(3.13)

where l(t) is the number of such interval which contains a point t ∈ R (see Definition 3.3).

Lemma 3.5. Assume that function y : Iψ → R is a solution of the equation

y′(t) = ε

(
m

∑
i=1

(
pi(t)(ξiy)(t)− gi(t)(κiy)(t)

)
+ f

(
(σ1y)(t), (σ2y)(t), . . . , (σmy)(t), y(t), t

))
, t ∈ Iψ, (3.14)

and has the property (3.7).
Then the function x : R→ R defined by (3.10) is a solution of the problem (2.1), (2.2).

Proof. Let us start by assuming that equation (3.14) is correct. Really, expression in right
side is correctly defined for arbitrary absolutely continuous function y : Iψ → R, such as,
taking into account (3.11)–(3.13), in role of corresponding initial-value function on set Λ1 :=⋃m

i=1 µi(Iψ) \ Iψ, Λ2 :=
⋃m

i=1 νi(Iψ) \ Iψ, and Λ3 :=
⋃m

i=1 τi(Iψ) \ Iψ we can use values obtained
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by “movement” or “broadcast” of the corresponding values on base interval Iψ with saving of
the symmetric property.

Suppose that function y : Iψ → R is a solution of the problem (3.7), (3.14) and function x is
corresponding function (3.10). From lemma 3.4 it is evident that function (3.10) has a property
(2.2). Note that on the set Λ1

⋃
Λ2
⋃

Λ3 the values of the function x coincide with values of the
initial-value function using in construction of the equation (3.14). So it follows that x satisfy
(2.1) on the interval Iψ.

It is necessary to be convinced that for almost every t 6∈ Iψ for all x the equation (2.1) is
true. It is proved directly by using (3.1)–(3.4).

Remark 3.6. If µi(Iψ) ⊂ Iψ, νi(Iψ) ⊂ Iψ and τi(Iψ) ⊂ Iψ, i = 1, 2, . . . , n, then equation (3.14)
does not need the definition of the initial-value function and can be recorded by (2.1) for
t ∈ Iψ.

It follows from Lemma 3.5 that problem of investigation of the solutions of the equation
(2.1) with symmetric property (2.2) defined on (−∞,+∞) can be changed by the investigations
of solvability of two-point boundary value problem (3.7), (3.14) on the interval [t0, ψ(t0)].
However, introducing the properties (3.1)–(3.4) are necessary.

The possibility of study the scalar nonlinear functional differential equations with sym-
metric property only on the interval without any loss of general properties of solutions are
illustrated by the following examples.

Example 3.7. Periodic type of solutions.
Let us consider at linear scalar functional-differential equation

x′(t) = ε
m

∑
i=1

αi cos(θit)x(sin(t− bi)), t ∈ R, m ∈N (3.15)

and find solution x : R→ R with symmetric property

x(t) = x(t + 2π). (3.16)

Then the equation (3.15) is the equation (2.1) with

pi(t) := αi cos(θit), µi = sin(t− bi), gi := 0, {αi, θi, bi} ∈ R, i = 1, 2, . . . , n, f ≡ 0,

and equation (3.16) is the equation (2.2) with ψ(t) := t + 2π.
Here obviously that (3.1) and (3.4) are true with ji = 1, i = 1, 2, . . . , m. Let us consider

interval Iψ = [t0, t0 + 2π] and study the two-point boundary value problem

y(t0) = y(t0 + 2π) (3.17)

for scalar functional-differential equation

y′(t) = ε
m

∑
i=1

ξi cos(θit) sin y(sin(t− bi)), t ∈ Iψ, m ∈N. (3.18)

Taking into account Lemma 3.5, equation (3.15) with symmetric property (3.16) on the in-
terval t∈R is equivalent to the two-point boundary value problem (3.18), (3.17), t∈ [t0, t0+2π],
without any loss of general properties of solutions.
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Example 3.8. Let us review linear scalar functional-differential equation

x′(t) = ε
m

∑
i=1

αi sin(γit)x(t + 2π)2, t ∈ R, m ∈N (3.19)

and find solution x : R→ R with symmetric property

x(t) = x(−t− 4π). (3.20)

Then the equation (3.19) is the equation (2.1) with

pi(t) := αi sin(αit), µi = (t + 2π)2, gi := 0, {αi, γi} ∈ R, i = 1, 2, . . . , m, f ≡ 0

and equation (3.20) is the equation (2.2) with ψ(t) := −t− 4π.
Here obviously that (3.1) and (3.4) are true with ji = 1, i = 1, 2, . . . , m. Let us consider

interval Iψ = [t0,−t0] and study the two-point boundary value problem

y(t0) = y(−t0 − 4π) (3.21)

for scalar functional-differential equation

y′(t) = ε
m

∑
i=1

αi sin(γit)x(t + 2π)2, t ∈ Iψ, m ∈N. (3.22)

Taking into account Lemma 3.5, equation (3.19) with symmetric property (3.20) on the
interval t ∈ R is equivalent to the two-point boundary value problem (3.22), (3.21), t ∈
[t0,−t0 − 4π], without any loss of general properties of solutions.

Example 3.9. Let us consider linear scalar functional-differential equation

x′(t) = ε
n

∑
i=1

βit2i+1x(t2i), t ∈ R (3.23)

and find solution x : R→ R with symmetric property

x(t) = x(−t). (3.24)

Then the equation (3.23) is the equation (2.1) with

pi(t) := βit2i+1, µi = t2i, gi := 0, βi ∈ R, i = 1, 2, . . . , n, f ≡ 0

and equation (3.24) is the equation (2.2) with ψ(t) := −t.
Here obviously that (3.1) and (3.4) are true with ji = 1, i = 1, 2, . . . , n. Let us assume

interval Iψ = [t0,−t0] and study the two-point boundary value problem

y(t0) = y(−t0) (3.25)

for scalar functional-differential equation

y′(t) = ε
m

∑
i=1

βit2i+1y(t2i), t ∈ Iψ, m ∈N. (3.26)

Taking into account Lemma 3.5, equation (3.23) with symmetric property (3.24) on the in-
terval t ∈ R is equivalent to the two-point boundary value problem (3.26), (3.25), t ∈ [t0,−t0],
without any loss of general properties of solutions.
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4 Two-point boundary-value problem on interval Iψ

The study of a nonlinear scalar functional-differential equation (3.14) with two point boundary
value problem (3.7) without any loss of general properties of solutions is presented follow.
Here pi, gi, f , i = 1, 2, . . . , m have the properties (3.1)–(3.4).

Let us put

h(t) := ε
( m

∑
i=1

(
pi(t)(ξiy)(t)− gi(t)(κiy)(t)

)
+ f

(
(σ1y)(t), (σ2y)(t), . . . , (σmy)(t), y(t), t

))
, t ∈ Iψ,

then from (3.14) we have that
y′(t) = h(t), t ∈ Iψ

and, taking into account (3.7), we get that∫ ψ(t0)

t0

h(s)ds = 0. (4.1)

Let us solve boundary-value problem (3.7) for equation

y′(t) = h(t)− a, a = const. (4.2)

Then

y(t) = y(t0) +
∫ t

t0

h(s)ds− a(t− t0).

and

y(ψ(t0)) = y(t0) +
∫ ψ(t0)

t0

h(s)ds− a(ψ(t0)− t0)

then

a =
1

ψ(t0)− t0

∫ ψ(t0)

t0

h(s)ds. (4.3)

So, one can write the solution of the equation (4.2), (3.7) by the next way

y(t) = y(t0) +
∫ t

t0

h(s)ds− t− t0

ψ(t0)− t0

∫ ψ(t0)

t0

h(s)ds. (4.4)

The obtained result is true.

Lemma 4.1. The equation (4.2) has a solution with property (3.7) if and only if (4.3) is true and all
solutions are given by (4.4).

5 About the solvability of the problem (2.1) on R

Let us consider the space C([t0, ψ(t0)], R) of all functions with property (3.7). For further
investigation we apply Lyapunov–Schmidt reduction method (see, for example, [7, 12]). Put

y(t) := c + z(t), t ∈ Iψ, (5.1)

where c is constant.
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Obviously, if

y(t0) = y(ψ(t0)) = c, (5.2)

then

z(t0) = z(ψ(t0)) = 0. (5.3)

Taking into account (3.11)–(3.13), we get that

(ξiy)(t) := c + (ξiz)(t), i = 1, 2, . . . , m,

(κiy)(t) := c + (κiz)(t), i = 1, 2, . . . , m,

and
(σiy)(t) := c + (σiz)(t), i = 1, 2, . . . , m.

Then one can write equation (4.4) by

z(t) = ε

(
m

∑
i=1

∫ t

t0

(
pi(s)

(
c + (ξiz)(s)

)
− gi(s)

(
c + (κiz)(s)

))
ds

+
∫ t

t0

f
(

c + (σ1z)(s), c + (σ2z)(s), . . . , c + (σmz)(s), c + z(s), s
)

ds

− t− t0

ψ(t0)− t0

∫ ψ(t0)

t0

( m

∑
i=1

(
pi(s)(c + (ξiz)(s))− gi(s)(c + (κiz)(s))

)
+ f

(
c + (σ1z)(s), c + (σ2z)(s), . . . , c + (σmz)(s), c + z(s), s

))
ds

)
(5.4)

and, what is very important, we study the functions with property (4.1). This means that∫ ψ(t0)

t0

( m

∑
i=1

(
pi(s)(c + (ξiz)(s))− gi(s)(c + (κiz)(s))

)
+ f

(
c + (σ1z)(s), c + (σ2z)(s), . . . , c + (σmz)(s), c + z(s), s

))
ds = 0. (5.5)

The next theorem about the unique solvability of the problem (5.4), (5.3) is true.

Theorem 5.1. Assume that there exist such constants Ki > 0, Li > 0, i = 1, 2, that for all z1, z2 ∈
C(Iψ, R), and t ∈ R the inequalities∣∣∣∣ m

∑
i=1

(
pi(t)(c1 + (ξiz1)(t)) + gi(t)(c1 + (κiz1)(t))

)
−

m

∑
i=1

(
pi(t)(c2 + (ξiz2)(t)) + gi(t)(c2 + (κiz2)(t))

)∣∣∣∣
≤ K1|c1 − c2|+ K2|z1(t)− z2(t)| (5.6)

and ∣∣∣ f(c1 + (σ1z1)(t), c1 + (σ2z1)(t), . . . , c1 + (σmz1)(t), c + z1(t), t
)

− f
(

c2 + (σ1z2)(t), c2 + (σ2z2)(t), . . . , c2 + (σmz2)(t), c + z2(t), t
)∣∣∣

≤ L1|c1 − c2|+ L2|z1(t)− z2(t)| (5.7)
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are true, and

|ε|(ψ(t0)− t0)(K2 + L2) <
1
2

. (5.8)

Then the auxiliary equation (5.4) has a unique solution z = z(ε, c, ·) ∈ C(Iψ, R) for any c ∈ R and
z(ε, c, t0) = 0, z(ε, c, ψ(t0)) = 0.

Moreover, it satisfies

‖z(ε, c1, ·)− z(ε, c2, ·)‖ ≤ 2|ε|(ψ(t0)− t0)(K1 + L1)|c1 − c2|
1− 2|ε|(ψ(t0)− t0)(K2 + L2)

, (5.9)

‖z(ε, c1, ·)‖ ≤
2|ε|(ψ(t0)− t0)

(
(K1 + L1)|c1|+ ‖ f (0, 0, . . . , ·)‖

)
1− 2|ε|(ψ(t0)− t0)(K2 + L2)

, (5.10)

where ‖z‖ = maxt∈Iψ |z(t)|.
Proof. Let us put Fε : [t0, ψ(t0)]→ R by

Fε(c, z)(t) := ε

( m

∑
i=1

∫ t

t0

(
pi(s)

(
c + (ξiz)(s)

)
− gi(s)

(
c + (κiz)(s)

))
ds

+
∫ t

t0

f
(

c + (σ1z)(s), c + (σ2z)(s), . . . , c + (σmz)(s), c + z(s), s
)

ds

− t− t0

ψ(t0)− t0

∫ ψ(t0)

t0

( m

∑
i=1

(
pi(s)(c + (ξiz)(s))− gi(s)(c + (κiz)(s))

)
+ f

(
c + (σ1z)(s), c + (σ2z)(s), . . . , c + (σmz)(s), c + z(s), s

))
ds
)

.

For any c1, c2 ∈ R and z1, z2 ∈ C(Iψ, R), using the conditions (5.6), (5.7), we get∣∣∣Fε(c1, z1)(t)− Fε(c2, z2)(t)
∣∣∣

≤ |ε|
∣∣∣∣∫ t

t0

( m

∑
i=1

(
pi(s)

(
c1 + (ξiz1)(s)− c2 − (ξiz2)(s)

)
+ gi(s)

(
c1 + (κiz1)(s)− c2 − (κiz2)(s)

))
+ f

(
c1 + (σ1z1)(s), c1 + (σ2z1)(s), . . . , c1 + (σmz1)(s), c1 + z1(s), s

)
− f

(
c2 + (σ1z2)(s), c2 + (σ2z2)(s), . . . , c2 + (σmz2)(s), c2 + z2(s), s

))
ds
∣∣∣∣

− |ε| t− t0

ψ(t0)− t0

∣∣∣∣∫ ψ(t0)

t0

( m

∑
i=1

(
pi(s)

(
c1 + (ξiz1)(s)− c2 − (ξiz2)(s)

)
+ gi(s)

(
c1 + (κiz1)(s)− c2 − (κiz2)(s)

))
+ f

(
c1 + (σ1z1)(s), c1 + (σ2z1)(s), . . . , c1 + (σmz1)(s), c1 + z1(s), s

)
− f

(
c2 + (σ1z2)(s), c2 + (σ2z2)(s), . . . , c2 + (σmz2)(s), c2 + z2(s), s

))
ds
∣∣∣∣

≤ 2|ε|(ψ(t0)− t0)
(

K1|c1 − c2|+ K2‖z1(t)− z2(t)‖
)

+ 2|ε|(ψ(t0)− t0)
(

L1|c1 − c2|+ L2‖z1(t)− z2(t)‖
)

≤ 2|ε|(ψ(t0)− t0)
(
(K1 + L1)|c1 − c2|+ (L2 + K2)‖z1(t)− z2(t)‖

)
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for any t ∈ Iψ. Taking into account (5.8) and applying the Banach Fixed Point Theorem we get
that problem (5.4) has a unique solution z = z(ε, c, ·) ∈ C(Iψ, R) satisfying (5.9).

Next, inequality (5.10) follows from

‖Fε(c1, z(ε, c1, ·))‖

≤ 2|ε|(ψ(t0)− t0)
(
(K1 + L1)c1 + (K2 + L2)‖z(ε, c1, ·)‖

)
+ ‖Fε(0, 0)‖

≤ 2|ε|(ψ(t0)− t0)
(
(K1 + L1)c1 + (K2 + L2)‖z(ε, c1, ·)‖+ ‖ f (0, 0, . . . , ·)‖

)
.

The proof is finished.

Now one can return to the variable (5.1) with properties (5.3) and (5.2). Plugging z(ε, c, ·)
into (5.4), one can obtain the bifurcation equation

B(ε, c) :=
∫ ψ(t0)

t0

( m

∑
i=1

(
pi(s)(c + (ξiz)(ε, c, s))− gi(s)(c + (κiz)(ε, c, s))

)
+ f

(
c + (σ1z)(ε, c, s), c + (σ2z)(ε, c, s), . . . ,

c + (σmz)(ε, c, s), c + z(ε, c, s), s
))

ds = 0. (5.11)

Let us put

M(c) := B(0, c) =
∫ ψ(t0)

t0

( m

∑
i=1

(
pi(s)− gi(s)

)
c + f

(
c, c, . . . , c, s

))
ds. (5.12)

5.1 Conditions on the solvability of the problem (2.1), (2.2)

The following global result is obtained.

Theorem 5.2. Assume, that inequalities (5.6) and (5.7) are fulfilled and there exist a < b such that

M(a)M(b) < 0. (5.13)

Then for any ε 6= 0 small, there exists a symmetric and periodic solution xε(t) of the equation (2.1)
located in (a, b).

Proof. Taking into account (5.11), (5.12) and (5.13), one can conclude that there is an ε0 > 0
small such that

B(ε, a)B(ε, b) < 0

for any ε ∈ (−ε0, ε0). It is known from the Bolzano Theorem or Mean Value Theorem that
there is an c(ε) ∈ (a, b) solving

B(ε, c(ε)) = 0.

This means that problems (5.4) and (5.5) have a solution z(ε, c(ε), t). Now, using (5.1) it is
clearly seen that (3.14), (3.7) has a solution

y(ε, t) = c(ε) + z(ε, c(ε), t).

So, in view of (3.10) we get that the nonlinear symmetric functional differential equation (2.1)
with argument’s symmetric property (3.1)–(3.3) has at least one symmetric solution on R with
property (2.2) located in (a, b).
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5.2 Conditions on the unique solvability of the problem (2.1), (2.2)

The following local result is obtained.

Theorem 5.3. Let f ∈ C1(R, R). Assume that there exists such c0 ∈ R that

M(c0) = 0 and M′(c0) 6= 0.

Then for any ε 6= 0 small, there exists a unique symmetric and periodic solution xε(t) of the equation
(2.1) near c0.

Proof. Obviously
B(ε, c) = M(c) + B̃(ε, c)

for B̃(ε, c) = B(ε, c)−M(c). Then we derive

B̃(ε, c1)− B̃(ε, c2)

=
∫ ψ(t0)

t0

( m

∑
i=1

pi(s)(c1 − c2 + (ξiz)(ε, c1, s)− (ξiz)(ε, c2, s))

−
m

∑
i=1

gi(s)(c1 − c2 + (κiz)(ε, c1, s)− (κiz)(ε, c2, s))

+ f (c1 + (σ1z)(ε, c1, s), . . . , c1 + z(ε, c1, s), s)

− f (c2 + (σ1z)(ε, c2, s), . . . , c2 + z(ε, c2, s), s)
)

ds

−
∫ ψ(t0)

t0

( m

∑
i=1

pi(s)(c1 − c2)−
m

∑
i=1

gi(s)(c1 − c2) + f (c1, c1, . . . , s)− f (c2, c2, . . . , s)
)

ds

=
∫ ψ(t0)

t0

( m

∑
i=1

pi(s)
(
(ξiz)(ε, c1, s)− (ξiz)(ε, c2, s)

)
−

m

∑
i=1

gi(s)
(
(κiz)(ε, c1, s)− (κiz)(ε, c2, s)

)
+
∫ 1

0

( m

∑
i=1

fzi

(
θc1 + (1− θ)c2 + θ(σ1z)(ε, c1, s) + (1− θ)(σ1z)(ε, c2, s),

θc1 + (1− θ)c2 + θ(σ2z)(ε, c1, s) + (1− θ)(σ2z)(ε, c2, s), . . . ,

z(ε, c1, s) + (1− θ)z(ε, c2, s), s
)(

c1 − c2 + σi(z)(ε, c1, s)− σi(z)(ε, c2, s)
)

+ fzm+1

(
θc1 + (1− θ)c2 + θ(σ1z)(ε, c1, s) + (1− θ)(σ1z)(ε, c2, s),

θc1 + (1− θ)c2 + θ(σ2z)(ε, c1, s) + (1− θ)(σ2z)(ε, c2, s), . . . ,

z(ε, c1, s) + (1− θ)z(ε, c2, s), s
)(

z(ε, c1, s)− z(ε, c2, s)
))

dθ

)
ds

−
∫ ψ(t0)

t0

∫ 1

0

( m

∑
i=1

fzi

(
θc1 + (1− θ)c2, θc1 + (1− θ)c2, . . . , s

)(
c1 − c2

))
dθds. (5.14)
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Now, using property ‖ξix‖ ≤ ‖x‖ and inequality (5.9), there is a constant K̃ ≥ 0 such that

‖(ξiz)(ε, c1, s)− (ξiz)(ε, c2, s)‖ ≤ ‖ξi

(
z(ε, c1, s)− z(ε, c2, s)

)
‖

≤ ‖z(ε, c1, s)− z(ε, c2, s)‖ ≤ K̃|ε||c1 − c2|.

Without loss of generality, we consider M′(c0) > 0. Then taking δ > 0 small, we obtain

M′(c) ≥ M′(c0)

2
> 0

for c ∈ (c0 − δ, c0 + δ). Then (5.14) implies that there exists an ε0 > 0 small such that

|B̃(ε, c1)− B̃(ε, c2)| ≤
M′(c0)

4
|c1 − c2|

for any c1, c2 ∈ (c0− δ, c0 + δ) and ε ∈ (−ε0, ε0). If c1 > c2, and using the Mean Value Theorem,
we get

B(ε, c1)− B(ε, c2) = M(c1)−M(c2) + B̃(ε, c1)− B̃(ε, c2)

≥ M′(c)(c1 − c2)−
M′(c0)

4
(c1 − c2) ≥

M′(c0)

4
(c1 − c2) > 0.

Now we apply the Bolzano Theorem to get a unique c(ε) ∈ (c0 − δ, c0 + δ) solving

B(ε, c(ε)) = 0.

We already know from the end of the proof of Theorem 5.2 that then (2.1) with the symmetric
property (3.1)–(3.3) has a unique symmetric solution on R with property (2.2).

Remark 5.4. It should be noted, that solutions of the equation (5.11) are anticipated by zeroes
of (5.12).

Remark 5.5. An alternative way in the proof of Theorem 5.3 is applying the Implicit Function
Theorem, but our approach is constructive by allowing to estimate the magnitude of ε0 for
concrete functions p, g and f .

6 Application

Example 6.1. Let us find conditions necessaries for the unique solvability of the equation

x′(t) = ε (p(t)x(t− 2π) + f (t)) , (6.1)

and find solution x : R→ R with symmetric property

x(t) = x
(

t +
1
2

sin t + 1
)

, (6.2)

where
ψ(t) = t +

1
2

sin t + 1. (6.3)

Here the equation (6.1) is the equation (2.1) with

m = 1, p1(t) := p(t), µ1(t) := µ(t) = t− 2π, g1 := 0, f (·, t) = f (t).



Symmetric nonlinear functional differential equations at resonance 13

The symmetric property (6.2) is the property (2.2) with ψ(t) defined by (6.3).
Easy to see, that

µ(ψ(t)) = ψ(µ(t)) = t− 2π +
1
2

sin t + 1.

So, (3.1) and (3.4) are fulfilled with ji = 1, i = 1. Let us consider the interval Iψ = [t0, t0 +
1
2 sin t0 + 1] with t0 = 0. Then ψ(t0) = 1 and Iψ = [0, 1]. Note, it is necessary to introduce such
functions p(t) and f (t), that

ψ′(t)p(ψ(t)) = p(t), ψ′(t) f (ψ(t)) = f (t), t ∈ R.

If t ∈ [ψ(0), ψ(ψ(0))] then

p(t) =
p(ψ−1(t))
ψ′(ψ−1(t))

and if t ∈ [0, ψ(0)] then

p(ψ2(t)) =
p(ψ(t))
ψ′(ψ(t))

=
p(t)

ψ′(t)ψ′(ψ(t))
, for ψ2(t) ∈ [ψ2(0), ψ3(0)]

and, generaly, if t ∈ [0, ψ(0)], then

p(ψn(t)) =
p(t)

ψ′(t)ψ′(ψ(t)) . . . ψ′(ψn−1(t))
for ψn(t) ∈ [ψn(0), ψn+1(0)].

Function p(t) in general case can be represented by the graph on Figure 6.1.

-1
(0) 0 (0) ( (0))

0.5

1

p

Figure 6.1: Function p(t) on the interval [ψ−1(0), 0] ∪ [0, ψ(0)] ∪ [ψ(0), ψ(ψ(0))].

Here

p(t) =
(

1−
t + 1

2 sin t + 1
3

)(
1 +

cos t
2

)
on [ψ−1(0), 0],

and

p(t) = 1− t
3

on [0, ψ(0)],

and

p(t) =
2
(
1− 1

3 α(t)
)

2 + cos(α(t))
on [ψ(0), ψ(ψ(0))],
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α(t) := ψ−1(t) =
2(t− 1)

3
+

4(t− 1)3

243
+

28(t− 1)5

32805
+

968(t− 1)7

18600435

+
14908(t− 1)9

4519905705
+

195704(t− 1)11

958865710275
+

81505976(t− 1)13

7067799150437025
+ O(t− 1)15 (6.4)

is the inverse Taylor series for function ψ(t) = t + 1
2 sin t + 1.

Remark 6.2. Note, that function p(t) cannot to be a constant function because p(t) = constant
does not fulfill the symmetric property (3.4).

Similar arguments are applied to f (t). So for instance we can take

f (t) =
1
2

√
1−

5
(
t + 1

2 sin t + 1
)

9

(
1 +

cos t
2

)
on [ψ−1(0), 0],

and

f (t) =
1
2

√
1− 5t

9
on [0, ψ(0)],

and

f (t) =

√
1− 5

9 α(t)

2 + cos(α(t))
on [ψ(0), ψ(ψ(0))],

where α is defined by (6.4). Function f (t) in general case can be represented by the next graph
(see Figure 6.2).

-1
(0) 0 (0) ( (0))

0.5

f

Figure 6.2: Function f (t) on the interval [ψ−1(0), 0] ∪ [0, ψ(0)] ∪ [ψ(0), ψ(ψ(0))].

Now we are ready to study the existence of the symmetric solutions of the problem (6.1),
(6.2).

Obviously, M(c) defined by (5.12) is equal to

M(c) =
∫ t0+

1
2 sin t0+1

t0

(
p(s)c + f (s)

)
ds = c

∫ 1

0
p(s) ds +

∫ 1

0
f (s) ds. (6.5)

Taking into account (6.5) the next corollary is obtained directly from Theorem 5.3.

Corollary 6.3. If
∫ 1

0 p(s) ds 6= 0, then the equation (6.1) with symmetric property (6.2) has a unique

symmetric solution of order −
∫ 1

0 f (s) ds∫ 1
0 p(s) ds

+ O(ε).
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In our concrete case, we have
∫ 1

0 f (s) ds∫ 1
0 p(s) ds

= 38
75 .
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