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Abstract. In this paper we investigate the regularity criterion for the local-in-time
smooth solution to the three-dimensional (3D) tropical climate model in the Morrey—
Campanato space. It is shown that if u satisfies

2
YVu(t)||".
7 | ()||M2'3/’ dt <co withO<r<1,

/()W

then the smooth solution (u,v,0) can be extended past time T.
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1 Introduction

In this paper, we consider the cauchy problem for the following 3D tropical climate model
introduced by Frierson, Majda and Panluis in [1]:

o+ u-Vu—Au+Vp+divio®o) =0,

v+ u-Vo—Av+VO0+v-Vu=0,

90 +u-VO0—A0+divo =0, (1.1)
V-u=0,

u(x,0) = up(x),v(x,0) = vo(x),0(x,0) = 6p(x),

where x € R3,t > 0and u = (u3(x,t),ua(x,t), uz(x,t)) is the barotropic mode, v = (v1(x, t),
va(x,t),v3(x, t)) is the first baroclinic mode of vector velocity, 8 = 6(x,t) is a scalar function
denoting the temperature and p = p(x, t) is the scalar pressure, respectively. ug, vy, 6y are the
prescribed initial data with V - ug = 0.

By performing a Galerkin truncation to the hydrostatic Boussinesq equations, the original
system derived in [1] has no viscous terms in (1.1);, (1.1), and (1.1)3, in other words, there

M Email: wufan0319@yeah.net


https://doi.org/10.14232/ejqtde.2019.1.48
https://www.math.u-szeged.hu/ejqtde/

without any Laplacian terms in system (1.1). Recently, for the 2D case, Li and Titi [2] obtained
the global well-posedness of strong solutions for the system (1.1) while without diffusivity in
the temperature equations. Later, inspired by [2], Wan [5] proved the global well-posedness
with the small data to the 2D tropical climate model without thermal diffusion. The global
well-posedness with the small data by using the spectral analysis for a viscous tropical climate
model with only a damp term have been proved by Wan and Ma [3]. In [4], Ye established the
global regularity of a tropical climate with the very weak dissipation barotropic by utilizing the
“weakly nonlinear” energy estimate approach and maximal L?L}’z regularity for heat kernel.
Subsequently, Yu and Yang [7] established a new blowup criterion for smooth solution to the
2D generalized tropical climate model. More global regularity for the tropical climate model
with fractional dissipation have been established (see, for example, [6,8-10] and references
therein). It should be pointed out that for the system (1.1), Wang et al. [11] first showed the
following regularity criteria involving Vu:

Vu € L9(0, T; LP(R?)), ;+§ <2, 2<p<3. (1.2)

Here it is worth particularly mentioning that system (1.1) and the magnetohydrodynamic
(MHD) equations are very similar in terms of the structure of the equation. Obviously, when
f = constant, the system (1.1) reduces to the 3D MHD-type equations (here we regard velocity
v as magnetic b). It is well known that the question of global regularity for 3D incompressible
MHD equations has been one of the most outstanding open problems in applied analysis,
as well as that for the 3D tropical climate model (1.1). It is an interesting topic of finding
sufficient conditions for local smooth solutions such that they can be extended smoothly past
T in mathematical fluid mechanics. For MHD equations, Zhou et al. [13] obtained some
known regularity criteria of weak solutions in the multiplier space X,, provided that one of
the following conditions hold:

ue L (0,T; X (R?) witho<r<1 (1.3)

or
Vu € L77 (0, T; X, (R?) with0 <r < 1. (1.4)

Chen et al. [12] established logarithmically improved regularity criteria in terms of the velocity
field or on the gradient of velocity field in terms of the critical Morrey-Campanato spaces.
More precisely, they proved the following regularity condition

dt <oco with0<r <1, (1.5)

2
/T lu(ly,,
o 14+In(e+ [|u(t)| =)
or

2
Ivu(3

T
/0 1+ In(e +[[u(t) =)
More regularity conditions of the incompressible fluid equations, see [14-19] and so forth.
The purpose of this paper is to improve and extend some known regularity criterion for
the 3D tropical climate model (1.1) in the Morrey—-Campanato space M3 3/, (see Definition 2.2
in Section 2). It is a natural way to extend the space widely and improve the previous results
[11]. Meanwhile, our results extend and generalize the recent works [12, 13] respectively on
the regularity criteria for the three-dimensional MHD equations.

dt <oo withO<r<1. (1.6)

Now we state our result as follows.
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Theorem 1.1. Assume that (ug,vo,00) € H>(R®) with V - ug = 0. Let (u,0,0) be a local smooth
solution to the system (1.1) on some interval [0, T). If additionally,

2
[ IVt .
o In([u(Dlz +¢)

for some 0 < r < 1, then the solution can be extended smoothly past T.

dt < oo (1.7)

2
. vuol,, .
Remark 1.2. Due tOW S ||vu(t)|‘M2,3/,

L7 (0, T, M3/, (IR%)).

, it is easy to get regularity condition Vu €

Remark 1.3. We are unable to obtain regularity condition Vu € L% (O, T,M2,3 /r(IR3 )), the
main difficulty comes from the term (withoutV -v =0) Iy = — 22 k=1 JRr3 ©j0kU;Ok0vidx.

Remark 1.4. Since the critical Morrey—Campanato space M,3,, is much wider than the
Lebesgue space L? hence our result extend the recent results given by Wang et al. [11]. More-
over, these can be regarded as an generalize of previous results [12,13] in some sense.

3 .
Note that B,’;’,oor(lR3 ) C Moy /»(IR3) for 0 < r < 3 with p < 2, we obtain a corresponding
regularity criterion. Here Bj , denote the homogenous Besov spaces.
Corollary 1.5. Assume that (ug,vo,00) € H*(R3) with V - ug = 0. Let (u,v,0) be a local smooth
solution to the system (1.1) on some interval [0, T). If additionally,
3
Vu e L7 (0,T, B~ (R?)) (1.8)

for some 0 < r < 3 with p < 2, then the solution can be extended smoothly past T.

2 Preliminaries

Now, we recall the definition and some properties of the spaces to be used later. These spaces
play an important role in studying the regularity of solutions to partial differential equations,
see e.g. [22,23] and the references therein.

Definition 2.1. For 0 < r < 3/2, the space X, (IR®) is defined as the space of functions f(x) €
L? (R3) such that

Ifllx, = sup ||Ifgll2 < co.

gl <1

where we denote by H"(R%) the completion of the space C3°(IR?) with respect to the norm
lull g = 1 (=2)"2ul| 2.

We have the following homogeneity properties: For all xo € R?,
¢+ x0)llx, = If1x,
IFOx, = 50l A>o0.
Also we have the imbedding
LY3(R3?) — X,(R?) for0<r< %

Now we recall the definition of the Morrey—Campanato spaces.
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Definition 2.2. For 1 < p < g < +o0, the Morrey—Campanato space M, ,(IR?) is defined by

My g(R?) = {f € L) < || fll v, = sup sup BT/ | oy < oo}. @)
x€R3 R>0

It is easy to check the equality

1
IF A aty, = 537l 4> 0.

For2 < p <3/rand 0 < r < 3/2 we have the following embeddings:
LY3(R%) = L¥"®(R3) <= M, 5, (R?) = X(R?) = Mg/, (R3).

The relation
L3/r,oo (1R3> SN Mp,3/r (]R3)

is shown as follows
r_1 1/p o
£l , < suplESH( [Iflray) " (F e L/~ (®)
Py E E
r 1/
= (sup |E[51 [ I ()I"ay)
E E

(supRI{x e RO : [f(y)" > Ry

R>0

= sup R|{x € R : [f(y)| > R}|"
R>0

£ e

For 0 < r < 1, we use the fact that

p

I

I

L*NH'C By, C H".

Thus we can replace the space X, by the pointwise multipliers from Besov space 35,1 to L2.
Then we have the following lemmas.

Lemma 2.3 ([21]). For 0 < r < 3/2, the space Z,(R3) is defined as the space of functions f(x) €
L2 (R3) such that

loc
1fllz, = sup |[Ifgllrz < oo.
g |\B£1§1
Then f € Mys,,(R3) if and only if f € Z,(R®) with equivalence of norms.
Additionally, for 2 < p < % and 0 <r < %, we have the following inclusions:

M3/ (R?) = X, (R?) = Mys,,(R%) = Z,(R3).

The relation
Xr (IRS) — M2,3/r (IRB)
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is shown as follows: Let f € X,(IR%),0 < R <1, xp € R®and ¢ € CP(R?), ¢ =1 on B(F,1).
We have

([ e =r (o)
<R ([ rRgtPa)

< RIFR) %, 1]l

< flix, lllar
< Cllfllx,-
Lemma 2.4 ([24]). For 0 < r < 1, we have
Ifllsg, < CIFILTIV Al 2)

where C only depends on r.

Lemma 2.5 ([20]). Fors >0and 1 < p < c0. If f,g € S(IR"), then we have a basic estimate

I, gl < CAIV Fllee 1 glee + 1 flles llgllers), (2.3)

with py, p3 € (1,00) such that % = % + é = % + i, where [* = (I—A)2, [J°, flg = J*(fg) —
fI7(8)-

3 Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. The proof is based on the establishment
of a priori estimates under condition (1.7).

Multiplying the first equation of system (1.1) by u, the second equation of system (1.1)
by v, and the third equation of system (1.1) by 6, respectively. Integrating over R?, then we
adding them together, it yields

1d
5 77 (llZz + 1olZ + 1161172) + [Vulll + [Vollf + | VeIl = 0. (3.1)

Applying Gronwall’s inequality to (3.1), we get the fundamental energy estimate

t
I10,0,6) (B2 +2 [ 11(Vat, Vo, 76)(5) [3ads = [ (0,0, 60) (62)

Next, we are going to derive the estimates for Vu, Vv and V6. Multiplying the first equation
of system (1.1) by —Au, after integration by parts and taking the divergence-free property into
account, we have

1d ,
5 2 IVl + | Aul, :/]Rsu-Vu-Audx%—/]RS div(v ® v) - Audx. (33)

Similarly, multiplying the second and third of system (1.1) by —Av and —A8, we obtain

1d

EEHVUH%Z+ |A0|2, = /R3u-VU-Avdx+/]R3 VO-Avdx—l—/lev-Vu-Avdx (3.4)



and
2dt||V9||L2+|\A9!I —/Rsu-VH-AdenL/RSdivv-Ade. (3.5)
Adding up (3.3)-(3.5), we have
1d
2dt<Hv”H2 + ([ Voll5 + 1Vel3) + [|aull3 + [ Av]l3 + [|A6]13

:/ u-Vu-Audx—i—/ div(v@v)-Audx—i—/ u-Vou- Avdx
R? R? R3

+/ v-Vu-Avdx+/ VG-Avdx+/ u‘VG-Ade—k/ divo - ABdx

= / Oxjoujou;dxdx — / 00;j0;v;du;dx — / 000 U0k V; (3.6)

1]k 1 i,jk=1 i,jk=1
3
/ Ot 000 — Y / O di00,0dx — Y. [ vdudd0dx
i,j,k=1 ik=1 i,jk=1 R?

6
= Elz‘,

i=1

where we use integration by parts, the fact that V - u = 0.
To estimate I;, we apply Holder’s inequality, Young’s inequality and (2.2), we get

I = / Okt 1j0;0xujdx
i,jk=1

< ClIVul[ 2|V - Vil 2
< ClIVull py, ,, IV ull 2l Vel

) (3.7)
< CHV“HM23/,HV”HLZHV“H "IV 2ul7s
:c(uwuzgﬁuvbtr|%z) V2l

1 o2 2 pa 2
< JIVulfs + CVul3y | IVulf,
Similarly, for the term I, I3 and I, we have
L+L+1; < CHVUHLZHVM . VUHLZ
< C|[Vully, [ Vol5 Vol
N 3.8
< C\Vul gy, V017 1V20) 2l V0 12 (3:8)
1 o2 12 P 2
< 4 IVl + CIvul3 Vel
For Is, we get
Is = / 9414;9,00;0dx
ik=1
< C|[Vullyy,,, V6121Vl 69

<CIIWIIMZS/rHWHp||V9|| "Iv20]17

2 2—r 2
< IV, +Clvulz el
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Finally, for I, by Holder’s inequality, Young’s inequality and (2.2), we get

3
16 = — Z /]R3 vjakujakéividx

ijk=1
< C||IV?0|2]lv - Vul| 2
< C||V”H/\'/12,3/,||V2U||L2||UHB;1

< C[|Vull g, , IVl iz loll L[ Vo

1 2(1—
< 2 IV%0l% + ClIVullyy, Il 3~ 1 VollE

1 2
< IV%0l% + S llol% + ClIVully, IVl

YIS,

Inserting the above estimates (3.7)—(3.10) into (3.6), we obtain

d

E(HW(ﬂH% + VoI5 + [VO)I3) + [aul3 + [[Av]3 + [|46]13
<1||v!|2+C(IIWII% +Vully, ) IValZ + 1Vol2 + [ V6]%)
- 2 M2,3/r M2,3/r L L2 L

<C(IVullfz + IVollfa + [ VOII72 + luoll 2 + 1 +e)

2 2
=5 ¥
(T, IV,
In[ullz <)

x In([|Vullf, + Vol + [ VO|F. + lluoll2 + 1 +e).
Due to Gronwall’s inequality, it follows from (3.11) that

In((|Vull2 + | Vol + [ V6]2 + ol 2 +1+¢)
< In(||Vuoll32 + [1Vo0]12 + V022 + lluollz +1 +¢)

2 2
T [|[Vulli o+ [Vl

X expC/ 23/ Maa/r ds,
0 In({[ul|;2 +e)

which implies that

T
sup [ Vulf+ | Vol + VOl + [ 8wl + vl + 1460t < C,

where we used the following Sobolev’s inequality:
Vu e L% (0, T, leg/r(]R?))) - L% (0, T, M2,3/7(R3)).
Thus, the above inequality (3.13) implies

u,v,0 € L*(0,T; H'(R®)) N L?(0, T; H*(R?)).

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

Applying A to the equations (1.1), (1.1), and (1.1);, multiplying the resulting equations
by Au, Av and A6 respectively, adding them up and using the incompressible conditions



V -u =0, it follows that

1d

5 77 1823 + (180 ]3 + [|86]13) + [|VAu|3 + [ VAo + | VA3

:/ A(u-Vu)‘Audx—i—/ A(u-Vv)-Avdx+/ A(u-V0) - Abdx
R3 R3 R3

3.15
—|—/ A(v-Vv)-Audx-l—/ A(V-v)v-Audx-l—/ A(v-Vu) - Avdxdx (3.15)
R3 R3 R3

6
=L
i=1

Now, by using the Kato—Ponce commutator estimate (i.e. (2.3) when p; = ps = 3, po = p3 = 6)
to estimate each term on the right hand side of (3.15) separately, we get

= / A(u-Vu) - Audx
—/ (u-Vu) —uVAu) - Audx

< Cl|A(u - Vu) — uNVAul|2||Aul| 2 (3.16)
< ClIVullpa || Al sl Aul] 2
< ClIVullps[[VAull 2| Aul 2

1
< §||VAuH§2 + ClIVullfs || Aullf,
Similarly, for the term J,, J3, we have

(IVAulRs + [V 80]2%) + CIVullss + [ Vol2)l|a0]3: (317)

OO\H

and
1
Js < S(IVAu][f2 + [IVAOIL) + C(IVullfs + [ VO1:) | A0]| - (3.18)
For the term J4, J5 and J¢ can be bounded as

]4—/ A(v- Vo) - Audx
R?
< ol | Ao 2l VAUl 2 + [ Vol s [ Vol [V Auf 2

) ) 1 ) (3.19)
< CllollZs [[Avllz + 72 VAL + Cllav]| 2 Vol [V Aul] 2
1
< C(llelEs + Vol 180E + g IV Au|
Similarly, the last two terms J5 and Js can be bounded by
< C(|[vll~ + VolIZ:) 180172 + ¢ HVMH%z (3.20)

and

1
< C(llolEs + VollL) 1Aull + g I VAV (3.21)
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Combining the above estimates (3.16)—(3.21) and (3.15), we deduce

d 1
Z([du)l3 + ao()[13+ [A0(6)[13) + 5 (I VAUl + [ VAo[3 + [[VA|3)

< C(lol}s + [Vullts + IVollfs + V013 (laul: + aclE + a0)E) O3
< C(|a0lE: + [IVullZs + [IVolEs + [VOllT) (1 aulZ: + 1av]E: + [40]).
Due to Gronwall’s inequality and (3.14), we conclude that
u,v,0 € L*(0, T; H*(R%)) N L2(0, T; H*(R?)).
This completes the proof of Theorem 1.1. O
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