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Abstract. — Let L : domL ⊂ L2(Ω; RN) → L2(Ω; RN) be a linear opera-
tor, Ω being open and bounded in R

M . The aim of this paper is to study the
Fuč́ık spectrum for vector problems of the form Lu = αAu+−βAu−, where A
is an N×N matrix, α, β are real numbers, u+ a vector defined componentwise
by (u+)i = max{ui, 0}, u− being defined similarly. With λ∗ an eigenvalue for
the problem Lu = λAu , we describe (locally) curves in the Fuč́ık spectrum
passing through the point (λ∗, λ∗), distinguishing different cases illustrated by
examples, for which Fuč́ık curves have been computed numerically.
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1 Introduction

Since the pioneering work of Dancer [5] and Fuč́ık [7, 8], problems with
asymmetric nonlinearities, also called jumping nonlinearities, have been the
subject of numerous studies. Most of these problems have the form

Lu = αu+ − βu− + g(·, u), (1)

where L is a differential operator acting on a space of real-valued functions,
u+ = max{u, 0}, u− = max{−u, 0}, and g is a supplementary nonlinear
term, which typically is assumed to have sublinear growth in u, for |u| → ∞.
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The first question with respect to such problems is to determine the set
of pairs (α, β) ∈ R

2 for which the homogeneous equation

Lu = αu+ − βu− (2)

has nontrivial solutions. These points form the so-called Fuč́ık or Dancer-
Fuč́ık spectrum.

The degree of difficulty of the full problem (1) depends on whether (α, β)
belongs or not to the Fuč́ık spectrum. If not, the existence of solutions for (1)
can be easily studied through the computation of a degree for the nonlinear
operator associated to equation (2) (see [1] for some recent results concerning
degree computations). The more difficult case, when (α, β) belongs to the
Fuč́ık spectrum, can be considered as a situation of resonance. Such problems
have been studied, for instance, by Gallouët and Kavian [9], Schechter [16],
Ben-Naoum, Fabry and Smets [2].

The aim of the present paper is to study Fuč́ık spectrum for vector equa-
tions, the formulation being as follows. Let L : domL ⊂ L2(Ω; RN ) →
L2(Ω; RN) be a linear operator, Ω being open and bounded in R

M and A a
real N × N matrix. We consider the equation

Lu = αAu+ − βAu− (3)

(we use the same notation for the matrix and the bounded operator on
L2(Ω; RN) associated to it). The notations u+, u− have to be understood
componentwise, i.e. (u+)i = max{ui, 0}, (u−)i = max{−ui, 0}. The points
(α, β) ∈ R

2 for which (3) has nontrivial solutions form the Fuč́ık spectrum,
which will be denoted by Σ(L, A). With η = (α + β)/2, ε = (α − β)/2,
equation (3) can be rewritten as

Lu = ηAu + εA|u|, (4)

where the absolute value |u| is again to be understood componentwise. Notice
that, although we will consider below problem (3) or, equivalently (4), the
discussion could easily be generalized by replacing (4) by

Lu = ηAu + εB|u| ,

B being another real N × N matrix.
Studying the Fuč́ık spectrum of a system like (3) requires some prelimi-

nary steps and also calls for a distinction between different cases. Section 2 is
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devoted to a reduction of (3) to a finite-dimensional problem, which is valid
for points (α, β) “not too far” from the diagonal in the (α, β)-plane. Using
implicit function theorems, we present in Sections 3 and 4, local existence
results for Fuč́ık curves (i.e. curves which are contained in the Fuč́ık spec-
trum) near the diagonal α = β, distinguishing the case of curves which are
transversal with respect to the diagonal, and the case of curves tangent to the
diagonal; both cases are illustrated by examples. In Section 5, we consider
hypotheses on L and A, under which a variational formulation can be given
for the problem, the points of the Fuč́ık spectrum being then associated to
critical values of some functional, whereas in Section 6, we introduce a condi-
tion under which the Fuč́ık spectrum, near an intersection with the diagonal
α = β, reduces locally to a single curve perpendicular to the diagonal at the
point of intersection.

The information obtained concerning the slopes of the Fuč́ık curves at
their crossing point with the diagonal, is used as a starting point for numer-
ical computations that have been performed to draw Fuč́ık curves for the
examples considered in the paper.

2 Reduction to an equivalent problem

The points of the form (α, α) clearly play a major role within the Fuč́ık
spectrum. They correspond to (generalized) eigenvalues λ for the equation

Lu = λAu . (5)

Let λ∗ be a particular solution of the eigenvalue problem (5). The following
hypotheses are assumed to hold throughout:

(H1) λ∗ is an eigenvalue for the pair (L, A) ; L − λ∗A is a Fred-
holm operator of index 0, which means that Im(L−λ∗A) is closed,
ker(L− λ∗A) and (Im(L− λ∗A))⊥ having the same finite dimen-
sion.

Let the adjoint of L be denoted by L∗ and the transpose of A by At ; the
orthogonal projections P, Q onto ker(L−λ∗A) and ker(L∗−λ∗At) = (Im(L−
λ∗A))⊥ respectively, will play an important role in the sequel. The scalar
product in R

N will be denoted by (·, ·), whereas 〈·, ·〉 and ‖ · ‖ will denote the
scalar product and the norm in L2(Ω; RN), respectively.
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Using a Lyapunov-Schmidt decomposition, we will reduce equation (3) to
a problem in a finite-dimensional space. Similar results can be found in [1]
and [14] for scalar equations. Since the operator

L̃λ∗A = (L − λ∗A)|(ker(L−λ∗A))⊥ : (ker(L − λ∗A))⊥ → Im(L − λ∗A)

admits a bounded inverse, we can prove the following lemma, where ‖(L̃λ∗A)−1‖
and ‖A‖ denote operator norms.

Lemma 1. Assume that (H1) holds and that α, β ∈ R satisfy the condition

(|β − λ∗| + |α − λ∗|)‖(L̃λ∗A)−1‖‖A‖ < 1 . (6)

Then, for any x ∈ ker(L − λ∗A), the problem

Lu = λ∗Au + (I − Q)[αAu+ − βAu− − λ∗Au], (7)

Pu = x (8)

has a unique solution ux = ux(α, β). Moreover, the solution ux(α, β) is locally
Lipschitzian with respect to x, α, β.

Proof. We see that the system (7), (8) is equivalent to

u = x + (L̃λ∗A)−1(I − Q)[αAu+ − βAu− − λ∗Au]

or
u = x + (L̃λ∗A)−1(I − Q)[(α − λ∗)Au+ − (β − λ∗)Au−] .

Condition (6) implies that, given x ∈ ker(L − λ∗A), the mapping appearing
on the right-hand side of the above equation is a contraction mapping. The
conclusion then follows from classical results concerning contraction map-
pings.

Let ux = ux(α, β) be the solution of (7), (8). Define :

c0(x, α, β) = −Q[αAu+
x − βAu−

x − λ∗Aux]

= − α − β

2
QA|ux| −

(

α + β

2
− λ∗

)

QAux,

so that ux verifies

Lux = αAu+
x − βAu−

x + c0(x, α, β). (9)
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For given α, β, equation (3) admits a nontrivial solution if and only if there
exists x ∈ ker(L − λ∗A), x 6= 0, such that c0(x, α, β) = 0. The problem is
therefore reduced to a problem in a finite-dimensional space.

Notice that

ux = x + O(|β − λ∗| + |α − λ∗|) for (α, β) → (λ∗, λ∗),

uniformly for x in a bounded set, and that c0(rx, α, β) = rc0(x, α, β) for all
r ≥ 0.

Determining the Fuč́ık spectrum in the neighborhood of (λ∗, λ∗) thus
consists in finding values of (α, β), close to (λ∗, λ∗), such that c0(x, α, β) = 0
for some x 6= 0. Using implicit function theorems, we treat that question in
Sections 3 and 4, distinguishing two different cases.

3 Fuč́ık curves transversal to the diagonal α =

β.

In order to determine curves in the neighborhood of (λ∗, λ∗), which belong
to the Fuč́ık spectrum Σ(L, A), we consider the system

Lu = αAu+ − βAu−, ‖u‖ = 1. (10)

As we are interested in values of (α, β) in the Fuč́ık spectrum, close to (λ∗, λ∗),
we let ε = (α − β)/2, (α + β)/2 = λ∗ + εη; ε will be a small parameter. The
system (10) can be written

Lu = λ∗Au + εA|u|+ εηAu, ‖u‖ = 1 ;

we aim at determining, for ε “small”, u, η as functions of ε satisfying the
above equations. For ε 6= 0, it is equivalent to

u = Pu + ε(L̃λ∗A)−1(I − Q)[A|u| + ηAu] + JQ[A|u| + ηAu] , (11)

‖u‖ = 1 ,

where J is an isomorphism between (Im(L−λ∗A))⊥ and ker(L−λ∗A). Using
the reduction of Section 2, it is also equivalent, for ε 6= 0, to the finite-
dimensional problem

QA|ux| + ηQAux = 0, ‖ux‖ = 1 (12)
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(in which ux depends of course on ε, η). Working as in [1], we will apply an
implicit function theorem to the problem (11), in order to solve it for u, η as
functions of ε, for ε close to 0 (a similar approach has been used by Pope [14];
implicit function theorems also appear in [4] for studying the Fuč́ık spectrum
of fourth order differential operators). For ε = 0, the equation (11) or (12)
reduces to

QA|x| + ηQAx = 0, x ∈ ker(L − λ∗A) , ‖x‖ = 1 . (13)

Notice that, if (x0, η0) ∈ ker(L − λ∗A) × R denotes a solution of (13), and if
QAx0 6= 0, the value η0 can be computed from

η0 = − 〈A|x0|, QAx0〉
‖QAx0‖2

. (14)

In the application of an implicit function theorem, a difficulty lies in the fact
that the set of points, at which the mapping u 7→ QA|u| is differentiable,
need not be open in L2(Ω; RN ). That difficulty can be overcome by using a
version of the implicit function theorem that only requires a (strong) Fréchet
differentiability at one point (see [1]). The only term that needs to be con-
sidered in (11) is the term JQA|u|. The required differentiability property
will be based on the fact, proved by adapting an argument of [17], that, with
Q̃ a projection onto a finite dimensional space X ⊂ L2(Ω; R), the mapping
L2(Ω; R) → X : U 7→ Q̃|U |, is strongly Fréchet-differentiable at the point
U0, provided that the real-valued function U0 does not vanish on a set of
non-zero measure. Since components of u that never contribute to QAu can
be ignored, we introduce the following hypothesis:

(H2) for each i = 1, · · · , N, the ith-component of x0 does not
vanish on a set of positive measure, unless, for any u ∈ L2(Ω; RN ),
the ith-component of u brings no contribution to QAu.

With (H2), the mapping u 7→ QA|u| is strongly differentiable at x = x0, as a
mapping from L2(Ω; RN) to (Im(L− λ∗A))⊥. The application of the implicit
function theorem yields the following result, in which (15) represents the
invertibility of the Fréchet derivative and implies QAx0 6= 0 ; sgn(x0)y is a
vector whose ith component is yi, multiplied by the (not necessarily constant)
sign of the ith component of x0. If a component (x0)i of x0 vanishes on a set
of positive measure, sgn((x0)i) is undefined, but this does not matter since,
by (H2), sgn((x0)i)yi then brings no contribution to Q(A sgn(x0)y).
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Theorem 1. Let L : domL ⊂ L2(Ω; RN) → L2(Ω; RN ), A and λ∗ satisfy
hypotheses (H1), (H2). Let (x0, η0) be a solution of (13), such that

y ∈ ker(L − λ∗A), 〈y, x0〉 = 0,
Q(A sgn(x0)y) + η0QAy + µQAx0 = 0

}

=⇒ y = 0, µ = 0. (15)

Then, there exist functions η(·), u(·) defined in a neighborhood E of 0, such
that

u(0) = x0, η(0) = η0 = − 〈A|x0|, QAx0〉
‖QAx0‖2

, (16)

Lu(ε) = (λ∗ + εη(ε))Au(ε) + εA|u(ε)|, ‖u(ε)‖ = 1, for ε ∈ E . (17)

Moreover, if

QAx 6= 0, ∀x ∈ ker(L − λ∗A), x 6= 0, (18)

and if (15) holds for all (η0, x0) satisfying (13), the Fuč́ık spectrum, within a
neighborhood U of (λ∗, λ∗), consists of a finite number of curves of the form
(λ∗+ε(η(ε)+1), λ∗+ε(η(ε)−1)), where η(0) is such that (13) has a solution
x0 for η = η(0).

Proof. As indicated above, the existence of functions η(·), u(·) verifying (16),
(17) follows from the application of an implicit function theorem to the sys-
tem (12). For details, we refer to an analogous proof in [1].

For the last part of the theorem, let (αn, βn) belong to the Fuč́ık spectrum,
with αn → λ∗, βn → λ∗ for n → ∞. Let εn = (αn −βn)/2. Because of (18), it
is easily shown that λ∗ is an isolated eigenvalue of (L, A); hence, for n large,
we must have εn 6= 0. Let then ηn be defined by (αn + βn)/2 = λ∗ + εnηn.
The point (αn, βn) being in the Fuč́ık spectrum, we must have

Q(A|uxn
|) + ηnQ(Auxn

) = 0,

for some xn in ker(L − λ∗A), ‖xn‖ = 1. Passing to a subsequence, we can
assume that {xn} converges to some x∗ ∈ ker(L − λ∗A), ‖x∗‖ = 1. It then
follows that {ηn} must converge to

η∗ = − 〈A|x∗|, QAx∗〉
‖QAx∗‖2

and that (η∗, x∗) must be a solution of (13). Because of (15), the solutions
of (13) are isolated and therefore the number of solutions is finite. The con-
clusion then follows from the local uniqueness of solutions of (12), following
from the implicit function theorem.
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When condition (15) is fulfilled, the above theorem asserts the existence
of a curve in the Fuč́ık spectrum, emanating from the point (λ∗, λ∗), with
slope

η0 − 1

η0 + 1
= − ‖QAx0‖2 + 〈A|x0|, QAx0〉

‖QAx0‖2 − 〈A|x0|, QAx0〉
. (19)

If (15) holds for all (η0, x0) satisfying (13), the number of Fuč́ık curves will be
the number of solutions of (13). Moreover, it is clear that, if the conditions
of Theorem 1 are satisfied, the same is true with η0, x0 replaced by −η0,−x0.
Consequently, the Fuč́ık curves can be grouped by pairs of curves of reciprocal
slopes at (λ∗, λ∗), if their slopes are different from −1. Examples with multiple
curves have been given in [1] for self-adjoint problems for scalar differential
equations.

On the other hand, under (18), it follows from the last part of the proof
((15) is not required here) that, given δ > 0, there is a neighborhood of
(λ∗, λ∗), such that, within that set, no point of the Fuč́ık spectrum, except
(λ∗, λ∗), is to be found in the sector |α− β| ≤ |α + β − 2λ∗|/(M0 + δ), where

M0 = max
x∈ ker(L−λ∗A), ‖x‖=1

|〈A|x|, QAx〉|
‖QAx‖2

In the case where dim ker(L−λ∗A) = dim(Im(L−λ∗A))⊥ = 1, let ker(L−
λ∗A) = Rx∗, (Im(L − λ∗A))⊥ = Ry∗. Condition (15) of Theorem 1 amounts
to

QAx∗ 6= 0 or 〈Ax∗, y∗〉 6= 0,

and the equation (13) then gives two possibilities for η0 :

η0 = ±〈A|x∗|, y∗〉
〈Ax∗, y∗〉 .

We thus have, in the neighborhood of (λ∗, λ∗), two curves (not necessarily
distinct) in the Fuč́ık spectrum Σ(L, A), whose slopes are given by

±〈A|x∗|, y∗〉 − 〈Ax∗, y∗〉
±〈A|x∗|, y∗〉 + 〈Ax∗, y∗〉 . (20)

Fuč́ık spectra for scalar self-adjoint problems have been the most widely
studied, starting from the classical periodic and Dirichlet boundary value
problems for 2nd-order ordinary differential equations [5, 7, 8]. Examples of
4th-order problems are considered in [4, 12]. The following example, taken
from Gaudenzi and Habets [10], illustrates the above results in the case of a
non self-adjoint scalar problem.
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Example 1. Consider the scalar boundary value problem

u′′′ + αu+ − βu− = 0, (21)

u(0) = u′(0) = u(1) = 0 . (22)

Let the operator L be defined by

L : domL ⊂ L2((0, 1); R) → L2((0, 1); R) : u 7→ −u′′′,

where domL is the set of functions in H3((0, 1); R) verifying the boundary
conditions; the matrix A is simply the number 1 here. The eigenvalues of L
are simple, the ith eigenvalue λi being equal to −τ 3

i , where τi is the ith zero
of the function

z(s) =
1

3

[

e−s + 2es/2 sin

(√
3

2
s − π

6

)]

;

the corresponding eigenfunction is ui(t) = z(λ
1/3
i t). There are two Fuč́ık

curves emanating from each eigenvalue; they have been computed numeri-
cally in [10]. According to (20), the slopes of the Fuč́ık curves starting from
(λi, λi) are given by

±〈|ui|, wi〉 − 〈ui, wi〉
±〈|ui|, wi〉 + 〈ui, wi〉

, (23)

where wi is an eigenfunction of the adjoint problem

−u′′′ − λiu = 0,

u(0) = u(1) = u′(1) = 0 .

For the first eigenvalue, the problem (21), (22) has solutions of constant sign;
hence, the Fuč́ık spectrum contains the lines α = λ1, β = λ1. For the second
eigenvalue, the numerical values obtained from (23) for the slopes at (λ2, λ2)
are −0.98411 and −1.01615 (the two curves are very close together, as shown
in [10]); for the third eigenvalue, the values are −0.46108 and −2.16882 .

4 Fuč́ık curves tangent to the diagonal α = β.

In the present section, we will establish the existence of Fuč́ık curves tangent
to the diagonal α = β, under the hypothesis
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(H3) dim[QA(ker(L − λ∗A))] = dim(Im(L − λ∗A))⊥ − 1 .

Taking into account the fact that dim ker(L − λ∗A) = dim(Im(L − λ∗A))⊥,
under (H3), there exists x∗ ∈ ker(L − λ∗A), ‖x∗‖ = 1, y∗ ∈ (Im(L − λ∗A))⊥,
‖y∗‖ = 1, such that

QAx∗ = 0 and 〈Ax, y∗〉 = 0, ∀x ∈ ker(L − λ∗A).

The definition of new variables will be slightly different from Section 3; we
will let now ε = (α + β)/2 − λ∗, εη = (α − β)/2, and again try to determine
u, η as functions of ε, for ε “small”. By analogy with (12), the equations to
solve can be written, for ε 6= 0, as

ηQA|ux| + QAux = 0, ‖ux‖ = 1. (24)

For ε = 0, that system reduces to

ηQA|x| + QAx = 0, x ∈ ker(L − λ∗A), ‖x‖ = 1 ;

it admits the solutions (x∗, 0) and (−x∗, 0). Under the assumption

(H4) 〈A|x∗|, y∗〉 6= 0,

we can apply an implicit function theorem and conclude that (24) can be
solved in η, x for ε “small”, leading to the following result.

Theorem 2. Let L : domL ⊂ L2(Ω; RN) → L2(Ω; RN) and λ∗ satisfy hy-
pothesis (H1), (H3) and (H4). Then, there exist functions η(·), u(·), v(·), de-
fined in a neighborhood E of 0, such that

(i) u(0) = x∗, v(0) = −x∗, η(0) = 0,

(ii) Lu(ε) = (λ∗ + ε)Au(ε) + εη(ε)A|u(ε)|,
Lv(ε) = (λ∗ + ε)Av(ε) + εη(ε)A|v(ε)|, for ε ∈ E .

Under the hypotheses of Theorem 2, there are locally (at least) two Fuč́ık
curves emanating from (λ∗, λ∗) and tangent to the line α = β, since η(0) = 0.
This is illustrated by the example below, inspired by an example of scalar
equation in [14]. Theorems 1 and 2 are complementary, in the sense that,
in some cases, the Fuč́ık curves whose existence is proved on the basis of
one of the theorems can coexist with the Fuč́ık curves obtained by the other.
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However, it is clear that no Fuč́ık curve transversal to the diagonal can exist
when

QAx = 0, QA|x| 6= 0, for all ∈ ker(L − λ∗A), x 6= 0 ,

whereas, as already pointed above, there is no Fuč́ık curve tangent to the
diagonal when

QAx 6= 0, ∀x ∈ ker(L − λ∗A), x 6= 0 .

Example 1. Consider the system

u′ = αv+ − βv− (25)

v′ = −αu+ + βu− , (26)

with the boundary conditions

u(0) + u(π) = 0, v(0) = 0 . (27)

For the operator L, we take

L : domL ⊂ L2((0, 1); R2) → L2((0, 1); R2) :

(

u
v

)

7→
(

u′

v′

)

,

domL being the set of functions in H1((0, 1); R2) verifying the boundary
conditions. With

A =

(

0 1
−1 0

)

,

the eigenvalues for the problem Lu = λAu are λn = (2n + 1), with n an
integer; they are simple, the corresponding eigenfunctions being given by

wn(t) =

(

cos(2n + 1)t
− sin(2n + 1)t

)

.

The same wn are also eigenfunctions for the adjoint problem. It is easy to
check that 〈Awn, wn〉 = 0, whereas

〈A|wn|, wn〉 =
∫ π

0
| sin(2n + 1)t| cos(2n + 1)t dt

+
∫ π

0
| cos(2n + 1)t| sin(2n + 1)t dt 6= 0.

Hence, Theorem 2 applies and, consequently, two Fuč́ık curves tangent to the
diagonal α = β pass through the points (λn, λn). Two pairs of such curves
have been computed and are represented in Figure 1 for n = 0 and n = 1.
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Figure 1: Fuč́ık curves for the problem (25), (26).

5 Problems with a variational structure

We will now discuss situations where the problem has a variational structure
and will study the Fuč́ık spectrum in a square I×I, where I is a closed interval
such that the contraction condition (6) of Lemma 1 is satisfied for any α, β
in I. We will assume that the operator L is self-adjoint, and the matrix
A diagonal. These hypotheses may seem very restrictive, but the required
structure may of course be obtained after a multiplication of equation (3) by
an invertible matrix T chosen to make TL self-adjoint and TA diagonal. We
define the functional

h0 : ker(L − λ∗A) × I × I → R : (x, α, β) 7→ 〈c0(x, α, β), x〉 .

Notice that, L − λ∗A being self-adjoint, the projectors P = Q coincide, so
that, using (9), we have

h0(x, α, β) = 〈c0(x, α, β), x〉 = 〈c0(x, α, β), ux〉,
= 〈Lux, ux〉 − α〈Au+

x , ux〉 + β〈Au−
x , ux〉 .

or, since A is assumed diagonal,

h0(x, α, β) = 〈Lux, ux〉 − α〈Au+
x , u+

x 〉 − β〈Au−
x , u−

x 〉 .
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The next lemma presents a few properties of the functions c0 and h0.

Lemma 2. Assume that the operator L : domL ⊂ L2(Ω; RN) → L2(Ω; RN )
is self-adjoint, the matrix A diagonal and that condition (6) of Lemma 1 is
satisfied for any α, β ∈ I. Then, the function h0 admits partial derivatives
with respect to α, β ∈ I, is differentiable with respect to x ∈ ker(L − λ∗A)
and

∂

∂α
h0(x, α, β) = −〈Au+

x , u+
x 〉, (28)

∂

∂β
h0(x, α, β) = −〈Au−

x , u−
x 〉, (29)

∇xh0(x, α, β) = 2c0(x, α, β). (30)

Proof. To prove (28), we consider the solutions ux, vx corresponding to two
different sets (α, β), (α′, β) of coefficients; we thus have

Lux = αAu+
x − βAu−

x + c0(x, α, β), (31)

Lvx = α′Av+
x − βAv−

x + c0(x, α′, β) . (32)

We will multiply the above equations respectively by vx and ux and subtract
them. Since L is self-adjoint and A diagonal, we obtain

(α − α′)〈Au+
x , v+

x 〉 − (α − β)〈Au+
x , v−

x 〉 + (α′ − β)〈Au−
x , v+

x 〉
+ 〈c0(x, α, β) − c0(x, α′, β), x〉 = 0. (33)

But, the matrix A being diagonal, the scalar product 〈Au+
x , v−

x 〉 is the sum
of multiples of terms of the form

∫

Ω
(u+

x )i(v
−
x )i .

For such a term, we have

0 ≤
∫

Ω
(u+

x )i(v
−
x )i = −

∫

(ux)i>0,(vx)i<0
(ux)i(vx)i

≤ 1

4

∫

(ux)i>0,(vx)i<0
[(ux)i − (vx)i]

2

≤ 1

4

∫

Ω
[(ux)i − (vx)i]

2 .
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Since ux = ux(α, β) is Lipschitzian with respect to α, it then follows that
there exists C > 0 such that

|〈Au+
x , v−

x 〉| ≤ C|α − α′|2.

A similar result holds for 〈Au−
x , v+

x 〉. Dividing (33) by α − α′ and letting α′

tend to α, we obtain

∂

∂α
〈c0(x, α, β), x〉 = −〈Au+

x , u+
x 〉.

The proof of (29) is similar.
For (30), let ux and uy be solutions given by Lemma 1 respectively for x

and for y in X. We thus have

Lux = αAu+
x − βAu−

x + c0(x, α, β),

Luy = αAu+
y − βAu−

y + c0(y, α, β).

Multiplying the above equations respectively by uy and by ux, and working
as above, it is easy to prove that

〈c0(x, α, β) + c0(y, α, β), (x− y)〉 = 〈c0(x, α, β), x〉
−〈c0(y, α, β), y〉 + O(‖x − y‖2).

or, since c0(x, α, β) is Lipschitzian with respect to x,

2〈c0(x, α, β), (x − y)〉 = 〈c0(x, α, β), x〉 − 〈c0(y, α, β), y〉+ O(‖x − y‖2).
(34)

This shows that the function h0(·, α, β) : x 7→ 〈c0(x, α, β), x〉 is differentiable
and that its gradient is given by (30).

In scalar problems, with L self-adjoint, A can be taken equal to 1. In that
case, the conclusions (28), (29), (30) write

∂

∂α
h0(x, α, β) = −‖u+

x ‖2,
∂

∂β
h0(x, α, β) = −‖u−

x ‖2,

and
∇xh0(x, α, β) = 2c0(x, α, β)

(see [1]).
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Since (α, β) belongs to the Fuč́ık spectrum if and only if c0(x, α, β) = 0
for some x 6= 0, the following theorem, which provides a variational charac-
terization of that spectrum within I × I, is an immediate consequence of the
previous lemma; it generalizes well-known results for scalar equations (see
[1], [13]).

Theorem 3. Let the operator L and the matrix A satisfy the hypotheses of
Lemma 2, let the closed interval I ⊂ R be such that condition (6) of Lemma
1 is satisfied for any α, β in I. Then the point (α, β) ∈ I × I belongs to
the Fuč́ık spectrum for problem (3) if and only if 0 is a critical value of the
functional

h0(·, α, β) : ker(L − λA) → R : x 7→ 〈c0(x, α, β), x〉,

that critical value being reached at some point x 6= 0.

Theorem 3 can be used directly to characterize parts of the Fuč́ık spec-
trum, which can be considered, under sign hypotheses on the matrix A, as the
outermost parts of that spectrum within the square I × I. Let us introduce
the sets

F− = {(α, β) ∈ I × I | min
x∈ ker(L−λ∗A), ‖x‖=1

〈c0(x, α, β), x〉 = 0}, (35)

F+ = {(α, β) ∈ I × I | max
x∈ ker(L−λ∗A), ‖x‖=1

〈c0(x, α, β), x〉 = 0}. (36)

It results from Lemma 2 and Theorem 3 that F−,F+ are contained in the
Fuč́ık spectrum of L.

More precise conclusions can be obtained when the diagonal matrix A
is positive (or negative) definite. In that case, since h0(x, λ∗, λ∗) = 0, ∀x ∈
ker(L− λ∗A), it follows from (28), (29) that, for all x ∈ ker(L−λ∗A), x 6= 0,

h0(x, α, α) > 0, for α ∈ I, α < λ∗, h0(x, α, α) < 0, for α ∈ I, α > λ∗ .

Hence, the sets F+,F− are non empty and separate the sets {(α, α) ∈ I×I |
α < λ∗} and {(α, α) ∈ I × I | α > λ∗}. Moreover, still under the assumption
that A is positive definite, we have by (28), under the hypotheses of Theorem
3,

(α, β) ∈ F− =⇒ (α′, β ′) /∈ Σ(L, A) ∩ (I × I) if α′ < α, β ′ < β ;
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A similar result holds for F+ or when A is negative definite, the roles of
F+,F− being then permuted. Under the above sign conditions for A, the sets
F− and F+ can thus be considered as the outermost parts of the Fuč́ık spec-
trum within I × I. Similar results have been described by Cac [3], Gonçalves
and Magalhães [11], Magalhães [13], Schechter [15], for semilinear (scalar)
elliptic boundary value problems. We collect the conclusions in the following
proposition.

Corollary 1. Let the operator L, the matrix A and the interval I satisfy
the hypotheses of Theorem 3. Moreover, assume that the matrix A is positive
(resp. negative) definite. Then, the Fuč́ık spectrum Σ(L, A) has an nonempty
intersection with I × I, containing the point (λ∗, λ∗) in its closure. That
intersection contains the sets F−,F+, defined by (35), (36), and no point of
Σ(L, A) ∩ (I × I) is on the left (resp. on the right) of F− or on the right
(resp. on the left) of F+.

Under the symmetry hypotheses made on L and A in this section and
assuming A positive definite, it is possible to give a characterization of the
Fuč́ık spectrum near (λ∗, λ∗), which is slightly different from that of Theorem
1.

We start with the observation made in Section 2 that

ux = x + O(|β − λ∗| + |α − λ∗|) for (α, β) → (λ∗, λ∗) . (37)

More precisely, we have, for some K > 0,

‖ux − x‖ ≤ (|β − λ∗| + |α − λ∗|)K‖x‖.

On the other hand, the matrix A being positive definite, we have 〈Ax, x〉 >
0, ∀x ∈ ker(L − λ∗A), x 6= 0 and, consequently, PAx 6= 0, ∀x ∈ ker(L −
λ∗A), x 6= 0. Adapting a remark following Theorem 1, we see that, for some
δ > 0, there is no point of the Fuč́ık spectrum, near (λ∗, λ∗), in a sector
|α − β| ≤ |α + β − 2λ∗|/(M0 + δ), where

M0 = max
x∈ ker(L−λ∗A), ‖x‖=1

|〈A|x|, x〉|
〈Ax, x〉.

Hence, we can let ε = (α− β)/2, (α + β)/2 = λ∗ + εη, in the definition of c0,
which gives, taking into account the fact that P = Q,

c0(x, α, β) = −ε P (A|x|) + εηPAx + O(ε2) for ε → 0,
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and

h0(x, α, β) = 〈c0(x, α, β), x〉 = −ε〈A|x|, x〉 + εη〈Ax, x〉 + O(ε2)

for ε → 0 ; (38)

the last term in the above estimations is actually bounded by ε2K ′‖x‖, for
some K ′ > 0, if η belongs to a given compact set. By Theorem 3, (α, β)
is a point of the Fuč́ık spectrum if h0(·, α, β) has a local maximum or local
minimum of value 0 at some point x∗, with x 6= 0. We will say that h0 has a
“true” (local) maximum on the set SA = {x ∈ ker(L − λ∗A) | 〈Ax, x〉 = 1},
at the point x∗, if there exist a neighborhood U ⊂ SA, of x∗, such that
max{h0(x) | x ∈ U} = h0(x

∗) and if h0(x) < h0(x
∗), for all x ∈ ∂U ; a true

minimum is defined similarly. The local extrema of h0(·, α, β) can be related
to the local extrema of the function

G : ker(L − λ∗A) → R : x 7→ 〈A|x|, x〉

on the set SA. More precisely, if G has a true maximum or minimum on the
set SA, at the point x∗, it is clear by a perturbation argument that, for η
in a given bounded set, if |ε| is sufficiently small, h0(·, α, β) will have a true
maximum or minimum on SA, of value close to

ε G(x∗) − εη .

Let us assume, for instance, that ε > 0 and that G has a true maximum at the
point x∗. By the definition of M0, for η = −M0 − δ, the value of ε G(x∗)− εη
is strictly negative; consequently, for ε sufficiently small, the function h0 will
have a true maximum of negative value near x∗. For η = M0 + δ, the sign
of the maximum will be positive. Hence, keeping ε fixed, but small enough,
we see that a value of η exists, close to G(x∗), such that h0(·, α, β) will have
a true maximum of value 0. The cases of a true minimum or of ε < 0 are
treated similarly. In that way, we obtain, for |ε| small enough, points (α, β)
of the Fuč́ık spectrum. As such points will depend continuously on ε > 0, a
curve contained in the Fuč́ık spectrum is derived locally, which is tangent to
the line of equation

−α − β

2
G(x∗) +

(

λ∗ − α + β

2

)

= 0.

In other words, we have obtained the following result.
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Theorem 4. Let the operator L and the matrix A satisfy the hypotheses of
Theorem 3, the matrix A being moreover positive definite. Assume that the
function

G : ker(L − λ∗A) → R : x 7→ 〈A|x|, x〉
has a true (local) maximum or minimum at x∗, subject to the constraint
〈Ax, x〉 = 1. Then, in a neighborhood of (λ∗, λ∗), there is a curve in the
Fuč́ık spectrum of equation (3), emanating from the point (λ∗, λ∗), with slope

G(x∗) + 1

G(x∗) − 1
. (39)

Notice that, G being odd, to each nonzero maximum of G, corresponds
a minimum (of opposite sign) and vice versa, so that the Fuč́ık curves of
Theorem 4 can be grouped by pairs if their slopes are different from −1.

Example 1. We consider the following system of 2nd-order ordinary differ-
ential equations:

u′′ + k(u − v) + αu+ − βu− = 0 , (40)

v′′ + k(v − u) + αv+ − βv− = 0 , (41)

with the Dirichlet boundary conditions

u(0) = u(π) = 0, v(0) = v(π) = 0 .

We take

L : domL ⊂ L2((0, π); R2) → L2((0, π); R2) :

(

u
v

)

7→ −
(

u′′ + k(u − v)
v′′ + k(v − u)

)

,

domL being the set of functions in H2((0, π); R) verifying the boundary con-
ditions; A will be the 2×2 identity matrix. It is easy to see that the numbers
λ = n2 (n ∈ N, n 6= 0), and λ = m2 − 2k (m ∈ N, m 6= 0) are the eigenvalues
of the problem Lu = λAu. If n2 6= m2 − 2k, for all m, n ∈ N, m, n 6= 0 all
eigenvalues are simple whereas, if n2 = m2 − 2k for some m, n ∈ N, m, n 6= 0,
this common value is an eigenvalue of multiplicity 2. In the latter case, the
eigenspace is spanned by the eigenfunctions

w(1)(t) =

(

sin nt
sin nt

)

, w(2)(t) =

(

sin mt
− sin mt

)

.
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We consider, for instance, the case k = −5/2, λ∗ = 9 (n = 3, m = 2). The
conditions of Theorem 4 are satisfied, so that Fuč́ık curves can be put in
relation with the critical points of the function

G : ker(L − λ∗A) → R : x 7→ 〈|x|, x〉 ,

on the sphere ‖x‖ = 1 in ker(L − λ∗A). With xθ = cos θ w(1) + sin θ w(2), we
have

G(xθ) =
∫ π

0
| cos θ sin 3t + sin θ sin 2t|(cos θ sin 3t + sin θ sin 2t) + · · ·
| cos θ sin 3t − sin θ sin 2t|(cos θ sin 3t − sin θ sin 2t) dt .

It is computed that, on the sphere ‖x‖ = 1, G has 6 extremal points, giv-
ing four extremal values. By Theorem 4, to these extremal values, cor-

2 4 6 8 10 12 14 16 18 20
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20

α

β

Figure 2: Fuč́ık curves for the problem (40), (41).

respond four Fuč́ık curves whose respective slopes, at the point (9, 9), are
−2.6045,−2,−1/2, −0.3839. The four Fuč́ık curves are represented in Fig-
ure 2. The curves of slopes −2,−1/2 come from solutions with u = v and
are thus Fuč́ık curves for the problem

u′′ + αu+ − βu− = 0,

u(0) = u(π) = 0 .
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Their (well-known) equations are

2√
α

+
1√
β

= 1 ,
1√
α

+
2√
β

= 1 .

6 Fuč́ık spectrum reduced to a curve in a

neighborhood of (λ∗, λ∗)

In this section, we discuss a situation where dim ker(L−λ∗A) > 1, where the
nondegeneracy condition (15) of Theorem 1 fails to be satisfied, and which is
nonetheless of practical interest. It concerns problems for which the following
hypothesis is satisfied:

(H5) For α, β close to λ∗, if c0(x
∗, α, β) = 0 for some x∗ ∈ ker(L−

λ∗A) \ {0} , then, for each x ∈ ker(L − λ∗A), c0(x, α, β) = 0.

Such a condition holds for many periodic boundary value problems for au-
tonomous differential equations. More precisely, the following result is pre-
sented in [6] for scalar equations of order 2N (here, A = I).

Lemma 3. Let L : dom L ⊂ L2((0, 2π); R) → L2((0, 2π); R) be a self-adjoint
linear ordinary differential operator of order 2N with constant coefficients,
where

dom L = {u ∈ H2N((0, 2π); R) |
u(0) = u(2π), . . . , u(2N−1)(0) = u(2N−1)(2π)}.

If dim ker(L − λ∗I) = 2, then (H4) holds.

When the operator L is self-adjoint, the matrix A diagonal and positive
definite, and if (H5) holds, it follows immediately from the discussion of the
previous section that the sets F−,F+, defined by (35), (36), coincide and
that no other point of the Fuč́ık spectrum is contained in the set I × I of
Corollary 1. Hence, we have the following local uniqueness result.

Corollary 2. Let the hypotheses of Corollary 1 hold, as well as hypothesis
(H5). Then, there is a unique Fuč́ık curve in the set I × I; it crosses the
diagonal α = β at the point (λ∗, λ∗) and its slope at that point is equal to −1.
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Example 1. The above corollary can be applied to the following system of
2nd-order ordinary differential equations:

u′′ + k(u − v) + αu+ − βu− = 0 , (42)

v′′ − k(u − v) + αv+ − βv− = 0 , (43)

considered with the periodic boundary conditions

u(0) = u(2π), u′(0) = u′(2π), v(0) = v(2π), v′(0) = v′(2π) .

We take

L : domL ⊂ L2((0, π); R2) → L2((0, π); R2) :

(

u
v

)

7→ −
(

u′′ + k(u − v)
v′′ − k(u − v)

)

,

domL being the set of functions in H2((0, π); R2) verifying the boundary
conditions; A will be the 2 × 2 identity matrix. The eigenvalues of L are of
the form m2, or n2 − 2k, m, n being integers. Provided that n2 − 2k 6= m2

for all m, n ∈ N, all eigenvalues, except 0 and −2k, are of multiplicity 2.
The first system of eigenvalues then corresponds to solutions with u = v, the
latter to solutions with u = −v. It is immediate that the nonlinear system
(42), (43) has solutions with u = v, for which the Fuč́ık curves are easily
computed; they intersect the diagonal at a point (m2, m2). The Fuč́ık curves
passing through the points (n2 − 2k, n2 − 2k) are more interesting. Using
arguments like the one used for the proof of Lemma 3, it can be shown that
(H5) holds for the function c0 associated to such an eigenvalue. Hence, if
a Fuč́ık curve passes through the point (n2 − 2k, n2 − 2k), its slope at that
point must be equal to −1. We have represented in Figure 3, for k = −1.4,
the Fuč́ık curves passing through the points (3.8, 3.8) and (4, 4) (obviously,
in that figure, they are not restricted to the set I × I of Corollary 2).

The situation is not so clear when L is not self-adjoint. Assuming that
(H1) holds, we can make however, the following observation.

Proposition 1. Let (H1) hold. Assume that QA(ker(L − λ∗A)) = (Im(L −
λ∗A))⊥, and that

c0(x, α, β) = 0 =⇒ c0(−x, α, β) = 0. (44)

If the sequence (αn, βn) ∈ Σ(L, A) is such that αn → λ∗, βn → λ∗, then
(βn − λ∗)/(αn − λ∗) → −1.

EJQTDE, 2000 No. 7, p. 21



0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

α

β

Figure 3: Fuč́ık curves for the problem (42), (43).

In other words, under (44), if a Fuč́ık curve passes through the point
(λ∗, λ∗), its slope at that point must be equal to −1. Notice that the above
proposition uses much weaker assumptions that Corollary 2.

Proof. Using arguments as in the last part of Theorem 1, we claim that there
must exist x∗ ∈ ker(L − λ∗A), x∗ 6= 0 and a number η∗ such that

QA(|x∗|) + η∗QA(x∗) = 0.

By (44), we can replace x∗ by −x∗ in the above equation, which implies
η∗QA(x∗) = 0. Since QA is a bijection between ker(L − λ∗A) and (Im(L −
λ∗A))⊥, η∗ = 0 and the conclusion follows.

References

[1] K. Ben-Naoum, C. Fabry, D. Smets, Structure of the Fuč́ık spectrum
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