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Abstract. In this paper, we study existence of nontrivial solutions for a fourth-order
semilinear ∆γ-Laplace equation in RN

∆2
γu− ∆γu + λb(x)u = f (x, u), x ∈ RN , u ∈ S2

γ(R
N),

where λ > 0 is a parameter and ∆γ is the subelliptic operator of the type

∆γ :=
N

∑
j=1

∂xj

(
γ2

j ∂xj

)
, ∂xj :=

∂

∂xj
, γ = (γ1, γ2, . . . , γN), ∆2

γ := ∆γ(∆γ).

Under some suitable assumptions on b(x) and f (x, ξ), we obtain the existence of non-
trivial solution for λ large enough.

Keywords: fourth-order semilinear degenerate elliptic equations, ∆γ-Laplace operator,
nontrivial solutions, Cerami sequences, mountain pass theorem.
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1 Introduction

In the last decades, the biharmonic elliptic equations

∆2u− ∆u + λb(x)u = f (x, u), x ∈ RN , u ∈ H2(RN), (1.1)

has been studied by many authors see [12, 19, 20, 26–30] and the references therein. The bi-
harmonic equations can be used to describe some phenomena appearing in physics and engi-
neering. For example, the problem of nonlinear oscillation in a suspension bridge [10, 14, 15]
and the problem of the static deflection of an elastic plate in a fluid [1]. In the last decades,
the existence and multiplicity of nontrivial solutions for biharmonic equations have begun to
receive much attention.
BEmail: duongtrongluyen@tdtu.edu.vn
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In this paper, we consider the biharmonic equation as follows:

∆2
γu− ∆γu + λb(x)u = f (x, u), x ∈ RN , u ∈ S2

γ(R
N), (1.2)

where ∆γ is a subelliptic operator of the form

∆γ :=
N

∑
j=1

∂xj

(
γ2

j ∂xj

)
, γ = (γ1, γ2, . . . , γN) : RN → RN , ∆2

γ := ∆γ(∆γ).

The ∆γ-operator was considered by B. Franchi and E. Lanconelli in [6], and recently reconsid-
ered in [9] under the additional assumption that the operator is homogeneous of degree two
with respect to a group dilation in RN . The ∆γ-operator contains many degenerate elliptic
operators such as the Grushin-type operator

Gα := ∆x + |x|2α∆y, α ≥ 0,

where (x, y) denotes the point of RN1 ×RN2 (see [7, 21, 23]), and the operator of the form

Pα,β := ∆x + ∆y + |x|2α|y|2β∆z, (x, y, z) ∈ RN1 ×RN2 ×RN3 ,

where α, β are nonnegative real numbers (see [22, 24]).
We assume that the potential b(x) satisfies the following conditions:

(B1) b : RN → R is a nonnegative continuous function on RN , there exists a constant C0 > 0
such that the set {b < C0} := {x ∈ RN : b(x) < C0} has finite positive Lebesgue measure
for Ñ > 4;

(B2) Ω = int{x ∈ RN : b(x) = 0} is nonempty and has smooth boundary with Ω̄ = {x ∈
RN : b(x) = 0}.

Under the hypotheses (B1), (B2), λb(x) is called the steep potential well whose depth is
controlled by the parameter λ. Such potential is first suggested by Bartsch–Wang [3] in the
scalar Schrödinger equations. Later, the steep potential well is introduced to the study of
some other types of nonlinear differential equations by some researchers, such as Kirchhoff
type equations [16], Schrödinger–Poisson systems [8, 18, 31] and also biharmonic equations
[13, 17, 25].

Next, we can state the main theorem of the paper.

Theorem 1.1. Suppose that Ñ > 4 and conditions (B1), (B2) hold. In addition, we assume that a
continuous function f (x, ξ) = α(x)g(ξ) satisfies:

(g1) g(ξ) = o(|ξ|) as ξ → 0;

(g2) g(ξ) = o(|ξ|) as ξ → ∞;

(α1) 0 < α(x) ∈ L1(RN) ∩ L∞(RN) and C1 := ‖α‖L∞(RN) maxξ 6=0
∣∣ g(ξ)

ξ

∣∣ < 1
1+C2

2
;

(B3) Vol{b < C0} <
(

1−C1(1+C2
2)

C2
3

) Ñ
4

,

where Vol(·) denotes the Lebesgue measure of a set in RN and where C2 is the best constant in (2.2)
below.

Then there exists a constant Λ0 > 0 such that the problem (1.2) has only the trivial solution for all
λ ≥ Λ0.
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Theorem 1.2. Suppose that Ñ > 4 and conditions (B1), (B2) hold. In addition, we assume that the
function f (x, ξ) satisfies:

(F1) f ∈ C(RN ×R, R), and there exist a constant p ∈ (2, 2γ
∗ ) and two functions f1(x), f2(x) ∈

L∞(RN) satisfying
∥∥ f+1

∥∥
L∞(RN)

< Θ−1
2 and f2(x) > 0 on Ω̄ such that

lim
ξ→0+

f (x, ξ)

|ξ|p−1 = f1(x) and lim
ξ→∞

f (x, ξ)

|ξ|p−1 = f2(x) uniformly in x ∈ RN ;

where f+1 := max{ f1, 0}, Θ2 is given in (2.5) below;

(F2) there exists are constants 1 < ` < 2, µ > 2 and a nonnegative function f3 ∈ L
2

2−` (RN) such
that

µF(x, ξ)− f (x, ξ) ≤ f3(x) |ξ|` for all x ∈ RN and ξ ∈ R,

where F(x, ξ) =
∫ ξ

0 f (x, τ)dτ.

Then there exists a constant Λ1 > 0 such that the problem (1.2) admits at least a nontrivial solution
for all λ ≥ Λ1.

The paper is organized as follows. In Section 2 for convenience of the readers, we recall
some function spaces, embedding theorems and associated functional settings. We prove our
main results by using Ekeland’s variational principle and Gagliardo–Nirenberg’s inequality in
Section 3.

2 Preliminary results

2.1 Function spaces and embedding theorems

We recall the functional setting in [9]. We consider the operator of the form

∆γ :=
N

∑
j=1

∂xj

(
γ2

j ∂xj

)
, ∂xj =

∂

∂xj
, j = 1, 2, . . . , N.

Here, the functions γj : RN → R are assumed to be continuous, different from zero and of
class C1 in RN\Π, where

Π :=

{
x = (x1, x2, . . . , xN) ∈ RN :

N

∏
j=1

xj = 0

}
.

Moreover, we assume the following properties:

i) There exists a group of dilations {δt}t>0 such that

δt : RN −→ RN

(x1, . . . , xN) 7−→ δt (x1, . . . , xN) = (tε1 x1, . . . , tεN xN) ,

where 1 = ε1 ≤ ε2 ≤ · · · ≤ εN , such that γj is δt-homogeneous of degree ε j − 1, i.e.,

γj (δt (x)) = tε j−1γj (x) , ∀x ∈ RN , ∀t > 0, j = 1, . . . , N.



4 D. T. Luyen

The number

Ñ :=
N

∑
j=1

ε j (2.1)

is called the homogeneous dimension of RN with respect to {δt}t>0.

ii)
γ1 = 1, γj (x) = γj

(
x1, x2, . . . , xj−1

)
, j = 2, . . . , N.

iii) There exists a constant ρ ≥ 0 such that

0 ≤ xk∂xk γj (x) ≤ ργj (x) , ∀k ∈ {1, 2, . . . , j− 1} , ∀j = 2, . . . , N,

and for every x ∈ R
N
+ :=

{
(x1, . . . , xN) ∈ RN : xj ≥ 0, ∀j = 1, 2, . . . , N

}
.

iv) Equalities γj (x) = γj (x∗) (j = 1, 2, . . . , N) are satisfied for every x ∈ RN , where

x∗ = (|x1| , . . . , |xN |) if x = (x1, x2, . . . , xN).

Definition 2.1. By S2
γ(R

N) we will denote the set of all functions u ∈ L2(RN) such that
γj∂xj u ∈ L2(RN) for all j = 1, . . . , N and ∆γu ∈ L2(RN). We define the norm in this space as
follows

‖u‖S2
γ(R

N) =

(∫
RN

(
|∆γu|2 + |∇γu|2 + |u|2

)
dx
) 1

2

,

where ∇γu = (γ1∂x1 u, γ2∂x2 u, . . . , γN∂xN u).

Let

Eλ =

{
u ∈ S2

γ(R
N) :

∫
RN

(
|∆γu|2 + λb(x)u2

)
dx < ∞

}
.

For λ > 0, the inner product and norm of Eλ are given by

(u, v)Eλ
=
∫

RN
(∆γu∆γv + λb(x)uv)dx, ‖u‖Eλ

= (u, u)
1
2
Eλ

.

Lemma 2.2. The following embeddings are continuous:

i) S2
γ(R

N) ↪→ Lp(RN) for all 2 ≤ p < 2γ
∗ := 2Ñ

Ñ−4
.

ii) Assume that (B1) and (B2) hold, for every λ ≥ Λ, the embedding Eλ ↪→ S2
γ(R

N) and Eλ ↪→
Lp(RN), p ∈ [2, 2γ

∗ ).

Proof. i) We follow the ideas in the case of bounded domains (see the proofs of Theorem 3.3,
Proposition 3.2 in [9] and Lemma 2.2 in [2]). More precisely, we first embed S2

γ(R
N) into an

anisotropic Sobolev-type space, and then use an embedding theorem for classical anisotropic
Sobolev-type spaces of fractional orders. Because the proof is very similar to the case of
bounded domains [2, 9], so we omit it here.

ii) For all u ∈ C∞
0 (RN), with slight modification, the proof is similar to the one of Theorems

12.85 and 12.87 in [11], there exists C2, C3 > 0 such that(∫
RN
|∇γu|2 dx

)
≤ C2

2

(∫
RN
|∆γu|2 dx

) 1
2
(∫

RN
u2dx

) 1
2

, (2.2)
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(∫
RN
|u|

2Ñ
Ñ−4 dx

) Ñ−4
Ñ
≤ C3

∫
RN
|∆γu|2 dx. (2.3)

This shows that∫
RN

(
|∆γu|2 + u2

)
dx ≤ ‖u‖2

S2
γ(R

N) ≤
(

1 +
C2

2
2

) ∫
RN

(
|∆γu|2 + u2

)
dx. (2.4)

From (B1), using Hölder’s inequality and (2.2), we obtain∫
RN

u2dx =
∫
{b≥C0}

u2dx +
∫
{b<C0}

u2dx

≤ 1
C0

∫
{b≥C0}

b(x)u2dx + (Vol({b < C0}))
4
Ñ

(∫
RN
|u|

2Ñ
Ñ−4 dx

) Ñ−4
Ñ

≤ 1
C0

∫
RN

b(x)u2dx + C2
3(Vol({b < C0}))

4
Ñ

∫
RN
|∆γu|2 dx,

where C3 is the best constant in (2.3). Combining the above inequality with (2.4) yields

‖u‖S2
γ(R

N) ≤
(

1 +
C2

2
2

)(
1 + C2

3(Vol({b < C0}))
4
Ñ

)∫
RN
|∆γu|2 dx +

1
C0

(
1 +

C2
2

2

)∫
RN

b(x)u2dx.

Then for λ ≥
(
1 + C2

3 Vol({b < C0})
)

C0, we have

‖u‖2
S2

γ(R
N) ≤

(
1 +

C2
2

2

)(
1 + C2

3 (Vol({b < C0}))
4
Ñ

)
‖u‖2

Eλ
.

This implies that the embedding Eλ ↪→ S2
γ(R

N) is continuous. By using Hölder’s inequality,
we obtain ∫

RN
|u|p dx ≤

(∫
RN
|u|2 dx

) 2Ñ−p(Ñ−4)
8

(∫
RN
|u|2

γ
∗ dx

) Ñ(p−2)
4

Ñ−4
2Ñ

≤ ‖u‖
2Ñ−p(Ñ−4)

8
L2(RN)

C
Ñ(p−2)

4
3 ‖∆γu‖

Ñ(p−2)
4

L2(RN)

≤ ‖u‖
2Ñ−p(Ñ−4)

8
S2

γ(R
N)

C
Ñ(p−2)

4
3 ‖u‖

Ñ(p−2)
4

S2
γ(R

N)

≤ C
Ñ(p−2)

4
3 ‖u‖p

S2
γ(R

N)

≤ C
Ñ(p−2)

4
3

(
1 +

C2
2

2

) p
2 (

1 + C2
3 (Vol({b < C0}))

4
Ñ

) p
2 ‖u‖p

Eλ
,

where p ∈ [2, 2γ
∗ ). We get

Θp = C
Ñ(p−2)

4
3

(
1 +

C2
2

2

) p
2 (

1 + C2
3 (Vol({b < C0}))

4
Ñ

) p
2

, (2.5)

and
Λ =

(
1 + C2

3 Vol({b < C0})
)

C0.

Thus, for any p ∈ [2, 2γ
∗ ) and λ ≥ Λ, there holds∫

RN
|u|p dx ≤ Θp ‖u‖p

Eλ
,

which implies that the embedding Eλ ↪→ Lp(RN) is continuous.
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Definition 2.3. A function u ∈ S2
γ(R

N) is called a weak solution of the problem (1.2) if u ∈ Eλ

and ∫
RN

(∆γu∆γ ϕ +∇γu · ∇γ ϕ + λb(x)uϕ)dx−
∫

RN
f (x, u(x)) ϕdx = 0, ∀ϕ ∈ Eλ.

2.2 Mountain Pass Theorem

Definition 2.4. Let X be a real Banach space with its dual space X∗ and Φ ∈ C1(X, R). For
c ∈ R we say that Φ satisfies the (C)c condition if for any sequence {xn}∞

n=1 ⊂ X with

Φ(xn)→ c and (1 + ‖xn‖X)
∥∥Φ′(xn)

∥∥
X∗ → 0,

then there exists a subsequence {xnk}∞
k=1 that converges strongly in X. If Φ satisfies the (C)c

condition for all c > 0 then we say that Φ satisfies the Cerami condition.

We will use the following version of the Mountain Pass Theorem.

Lemma 2.5 (see [4, 5]). Let X be an infinite dimensional Banach space and let Φ ∈ C1(X, R) satisfy
the (C)c condition for all c ∈ R, Φ(0) = 0, and

(i) There are constants ρ, α > 0 such that Φ(u) ≥ α for all u ∈ X such that ‖u‖X = ρ;

(ii) There is an e ∈ X, ‖u‖X > ρ such that Φ(e) ≤ 0.

Then β = infθ∈Γ max0≤t≤1 Φ(θ(t)) ≥ α is a critical value of Φ, where

Γ = {θ ∈ C([0, 1], X) : θ(0) = 0, θ(1) = e}.

3 Proofs of the main results

Define the Euler–Lagrange functional associated with the problem (1.2) as follows

Φ (u) =
1
2

∫
Ω

(
|∆γu|2 + |∇γu|2 + λb(x)u2

)
dx−

∫
Ω

F (x, u)dx.

By f satisfies ( f1), ( f2), (α1) or (F1), hence its not difficult to prove that the functional Φ is
of class C1 in Eλ, and that

Φ′(u)(v) =
∫

Ω
(∆γu∆γv +∇γu · ∇γv + λb(x)uv)dx−

∫
Ω

f (x, u) vdx

for all v ∈ Eλ. One can also check that the critical points of Φ are weak solutions of the
problem (1.2).

3.1 Proof of Theorem 1.1

By condition (g1), for all ε > 0, there exists δ(ε) > 0, we have

|g(u)| ≤ ε |u| for all |u| < δ(ε).

By condition (g2), there exists M > 0, we obtain

|g(u)| ≤ |u| for all |u| > M.



Existence of solutions for fourth-order degenerate elliptic equation 7

Since is a continuous function, g achieves its maximum and minimum on [δ(ε), M], so there
exists a positive number C(ε), we have that

|g(u)| ≤ C(ε) ≤ C(ε)
|u|

δ(ε)
for all δ(ε) ≤ |u| ≤ M.

Then we obtain that

|g(u)| ≤
(

1 + ε +
C(ε)
δ(ε)

)
|u| for all u ∈ R.

Hence maxξ 6=0
∣∣ g(ξ)

ξ

∣∣ is well defined.
Let u is a nontrivial solution of the problem (1.2), we get

‖u‖2
Eλ

=
∫

RN
α(x)g(u)udx,

hence

‖u‖2
Eλ
≤ ‖α‖L∞(RN)

∫
RN

∣∣∣∣ g(u)u

∣∣∣∣ u2dx ≤ C1

∫
RN

u2dx.

By Lemma 2.2 and condition (B3), we have

‖u‖2
Eλ

< ‖u‖2
Eλ

,

which is a contradiction, thus u ≡ 0. The proof of Theorem 1.1 is therefore complete.

3.2 Proof of Theorem 1.2

Lemma 3.1. Assume that conditions (B1), (B2) and (F1) hold. Then for each λ ≥ Λ, there exists
ρ, β > 0 such that

inf{Φ(u) : u ∈ Eλ, ‖u‖Eλ
= ρ} > α.

Proof. For any ε > 0, it follows from the condition (F1) that there exists Cε > 0 and p ∈ (2, 2γ
∗ )

such that

f (x, ξ) ≤
(∥∥ f+1

∥∥
L∞(RN)

+ ε
)

ξ + Cεξ
p−1 for all ξ ∈ R (3.1)

and

F(x, ξ) ≤

∥∥ f+1
∥∥

L∞(RN)
+ ε

2
ξ2 +

Cε

p
ξ p for all ξ ∈ R.

From Lemma 2.2, we have for all u ∈ Eλ,

∫
RN

F(x, u)dx ≤

∥∥ f+1
∥∥

L∞(RN)
+ ε

2

∫
RN

u2dx +
Cε

p

∫
RN

updx

≤

(∥∥ f+1
∥∥

L∞(RN)
+ ε
)

Θ2

2
‖u‖2

Eλ
+

CεΘp

p
‖u‖p

Eλ
. (3.2)



8 D. T. Luyen

Hence

Φ(u) =
1
2
‖u‖2

Eλ
+

1
2

∫
RN
|∇γu|2 dx−

∫
RN

F(x, u)dx

≥ 1
2
‖u‖2

Eλ
−
∫

RN
F(x, u)dx

≥ 1
2
‖u‖2

Eλ
−

(∥∥ f+1
∥∥

L∞(RN)
+ ε
)

Θ2

2
‖u‖2

Eλ
−

CεΘp

p
‖u‖p

Eλ

=
1
2

[
1−

(∥∥ f+1
∥∥

L∞(RN)
+ ε
)

Θ2

]
‖u‖2

Eλ
−

CεΘp

p
‖u‖p

Eλ
.

So, fixing ε ∈ (0, Θ−1
2 −

∥∥ f+1
∥∥

L∞(RN)
) and letting ‖u‖Eλ

= ρ > 0 small enough, it is easy to see
that there exists α > 0 such that this lemma holds.

Lemma 3.2. Assume that conditions (B1), (B2) and (F1) hold. Let ρ > 0 be as in Lemma 3.1. Then
there exists e ∈ Eλ with ‖e‖Eλ

> ρ such that Φ(e) < 0 for λ > 0.

Proof. Since f2 > 0 on Ω, we can choose a nonnegative function φ ∈ Eλ such that∫
RN

f2(x)φp(x)dx > 0. (3.3)

From (3.3), the condition (F1) and Fatou’s lemma, we get

lim
t→∞

Φ(tφ)
tp = lim

t→∞

(
1

2tp−2 ‖φ‖
2
Eλ

+
1

2tp−2

∫
RN
|∇γφ|2 dx−

∫
RN

F(x, tφ)
(tφ)p φpdx

)
= −

∫
RN

F(x, tφ)
(tφ)p φpdx

≤ − 1
p

∫
RN

f2(x)φp(x)dx < 0.

Let t→ +∞ we have Φ(tφ)→ −∞. The proof of Lemma 3.2 is therefore complete.

Lemma 3.3. Assume that the assumptions of Theorem 1.2 hold. Then there exists a constant Λ1 > 0
such that Φ satisfies the (C)c-condition in Eλ for all c ∈ R, λ ≥ Λ1.

Proof. Let {un} be a sequence in Eλ such that

Φ(un)→ c and
(

1 + ‖un‖Eλ

) ∥∥Φ′(un)
∥∥

E∗λ
→ 0.

We first show that {un} is bounded in Eλ. Indeed, for n large enough, by the condition (F2),
we have

c + 1 ≥ Φ(un)−
1
µ

Φ′(un)(un)

=
µ− 2

2µ
‖un‖2

Eλ
+

µ− 2
2µ

∫
RN
|∇γun|2 dx +

∫
RN

(
1
µ

f (x, un)un − F(x, un)

)
dx

≥ µ− 2
2µ
‖un‖2

Eλ
−
‖ f3‖

L
2

2−` (RN)
Θ`

2

µ
‖un‖`Eλ

.

Since 1 < ` < 2, hence {un} is bounded in Eλ for every λ > Λ.
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Because of the above result, without loss of generality, we can suppose that

un ⇀ u0 in Eλ,

un → u0 strongly in Lp
loc(R

N), for 2 ≤ p < 2γ
∗ ,

un → u0 a.e. in RN ,

and Φ′(u0) = 0. Now we prove that un → u0 strongly in Eλ. Let vn = un − u0. Then vn ⇀ 0 in
Eλ hence {vn} is bounded in Eλ. By the condition (B2), we get∫

RN
v2

ndx =
∫
{b≥C0}

v2
ndx +

∫
{b<C0}

v2
ndx

≤ 1
λC0

∫
RN

λb(x)v2
ndx +

∫
{b<C0}

v2
ndx

≤ 1
λC0
‖vn‖2

Eλ
+ o(1). (3.4)

Using (3.4), together with Hölder’s inequality and Lemma 2.2, for any λ > Λ, we obtain

∫
RN
|u|p dx ≤

(∫
RN
|u|2 dx

) 2γ
∗−p

2γ
∗−2
(∫

RN
|u|2

γ
∗ dx

) p−2
2γ
∗−2

≤
(

1
λC0
‖vn‖2

Eλ

) 2γ
∗−p

2γ
∗−2

C2γ
∗

3

(∫
RN
|∆γv(n)|2

γ
∗ dx

) 2γ
∗
2


p−2

2γ
∗−2

+ o(1)

≤ C
2γ
∗ (p−2)
2γ
∗−2

3

(
1

λC0

) 2γ
∗−p

2γ
∗−2
‖vn‖p

Eλ
+ o(1). (3.5)

Set

Πλ = C
2γ
∗ (p−2)
2γ
∗−2

3

(
1

λC0

) 2γ
∗−p

2γ
∗−2

.

By the condition (F1) and (3.4) and (3.5), we get

o(1) = Φ′(vn)(vn) = ‖vn‖2
Eλ

+
∫

RN
|∇γvn|2 dx−

∫
RN

f (x, vn)vndx

≥ ‖vn‖2
Eλ
− ε

∫
RN

v2
ndx− Cε

∫
RN
|vn|p dx

≤ ‖vn‖2
Eλ
− ε

λC0
‖vn‖2

Eλ
− CεΠλ ‖vn‖p

Eλ
+ o(1). (3.6)

Since Πλ → 0 as λ→ ∞, by (3.6), there exists Λ1 ≥ Λ such that for λ > Λ1,

vn → 0 strongly in Eλ.

This completes the proof.

Proof of Theorem 1.2. Combining Lemmas 3.1–3.3, we deduce that the problem (1.2) has a non-
trivial weak solution.
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