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Abstract. Some real world models are described by means of impulse control of non-
linear BVPs, where time instants of impulse actions depend on intersection points of
solutions with given barriers. For i = 1, . . . , m, and [a, b] ⊂ R, continuous functions
γi : R → [a, b] determine barriers Γi = {(t, z) : t = γi(z), z ∈ R}. A solution (x, y) of
a planar BVP on [a, b] is searched such that the graph of its first component x(t) has
exactly one intersection point with each barrier, i.e. for each i ∈ {1, . . . , m} there exists
a unique root t = tix ∈ [a, b] of the equation t = γi(x(t)). The second component y(t)
of the solution has impulses (jumps) at the points t1x, . . . , tmx. Since a size of jumps and
especially the points t1x, . . . , tmx depend on x, impulses are called state-dependent.

Here we focus our attention on an antiperiodic solution (x, y) of the van der Pol
equation with a positive parameter µ and a Lebesgue integrable antiperiodic function f

x′(t) = y(t), y′(t) = µ

(
x(t)− x3(t)

3

)′
− x(t)+ f (t) for a.e. t ∈ R, t 6∈ {t1x, . . . . , tmx},

where y has impulses at the points from the set {t1x, . . . , tmx},

y(t+)− y(t−) = Ji(x), t = tix, i = 1, . . . , m,

and Ji are continuous functionals defining a size of jumps.
Previous results in the literature for this antiperiodic problem assume that impulse

points are values of given continuous functionals. Such formulation is certain handicap
for applications to real world problems where impulse instants depend on barriers. The
paper presents conditions which enable to find such functionals from given barriers.
Consequently the existence results for impulsive antiperiodic problem to the van der
Pol equation formulated in terms of barriers are reached.
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1 Introduction

Some models of real world problems are characterized by the occurrence of abrupt changes of
their behavior at certain time instants depending on the state and situation of a model. A nat-
ural assumption for differential models is that these instants (impulse points) are determined
by means of intersections of a solution of a model with given barriers. For periodic problems
see [1,2,8,9,14,16] and for boundary value problems with various linear boundary conditions
see [10] and [15]. Existence theorems in these papers are not applicable to equations of van
der Pol type. On the other hand we can find existence theorems for impulsive periodic or
antiperiodic solutions to equations of van der Pol type, but these results are proved under the
assumption that impulse points are values of given continuous functionals [3–6, 11–13]. This
brings difficulties in applications where impulse instants depend on barriers.

The aim of this paper is to overcome this handicap. In particular:

• For positive numbers K and L, an appropriate function set ΩKL (see (2.1)) is determined.

• Conditions for barriers Γi = {(t, z) : t = γi(z), z ∈ R}, i = 1, . . . , m, are found such that a
graph of each function x ∈ ΩKL has exactly one intersection point (tix, x(tix)) with each
of the barriers (see Lemma 2.2).

• The conditions imply in addition that points tix depend continuously on x (see Lemma
2.3).

• Conditions formulated in terms of barriers and guaranteeing the solvability of an im-
pulsive antiperiodic problem to the van der Pol equation are found (see Theorem 1.1).

More precisely, for T > 0 and given continuous functions γ1, . . . , γm, we prove the exis-
tence of a T-antiperiodic solution (x, y) of the van der Pol equation with a positive parameter
µ and a Lebesgue integrable T-antiperiodic function f

x′(t) = y(t),

y′(t) = µ

(
x(t)− x3(t)

3

)′
− x(t) + f (t)

for a.e. t ∈ [0, T], t 6∈ {t1x, . . . . , tmx}, (1.1)

where y has impulses at the points t1x, . . . , tmx ∈ (0, T) determined by the barriers Γ1, . . . , Γm

through the equalities
tix = γi(x(tix)), i = 1, . . . , m, (1.2)

and y is continuous anywhere else in [0, T]. The impulse conditions have the form

y(t+)− y(t−) = Ji(x), t = tix, i = 1, . . . , m, (1.3)

where Ji are continuous bounded functionals defining a size of jumps.

Notations

T-antiperiodic function x (satisfying (1.1), (1.2), (1.3)) will be found in the set of 2T-periodic
real-valued functions. To do it functional sets defined below are used.

• L1 consists of 2T-periodic Lebesgue integrable functions on [0, 2T] with the norm
‖x‖L1 := 1

2T

∫ 2T
0 |x(t)|dt,



Barriers in impulsive antiperiodic problems 3

• BV consists of 2T-periodic functions of bounded variation on [0, 2T],

• var(x) for x ∈ BV is the total variation of x on [0, 2T],

• ‖x‖∞ := sup{|x(t)| : t ∈ [0, 2T]} for x ∈ BV,

• NBV consists of normalized functions x ∈ BV in the sense that x(t) = 1
2 (x(t+)+ x(t−)),

• x̄ := 1
2T

∫ 2T
0 x(t)dt = 0 is the mean value of x ∈ BV,

• ÑBV consists from functions x ∈ NBV with x̄ = 0; ÑBV with the norm var(x) is the
Banach space,

• AC(J) consists of 2T-periodic absolutely continuous functions on J ⊂ [0, 2T] and if
J = [0, 2T] we write AC,

• ÃC := AC∩ ÑBV.

• A couple (x, y) ∈ ÃC × ÑBV satisfying (1.1), (1.2), (1.3) is a 2T-periodic solution of
problem (1.1)–(1.3). If in addition

x(0) = −x(T), y(0) = −y(T), (1.4)

then (x, y) is a T-antiperiodic solution of problem (1.1)–(1.3).

Figure 1.1: The first component x of T-antiperiodic solution (x, y) of a problem
with two barriers Γ1 and Γ2

The main existence result is contained in the next theorem.

Theorem 1.1 (Main result). Let T ∈ (0,
√

3), K, L ∈ (0, ∞), let Ji, i = 1, . . . , m, be contiuous
bounded functionals on ÑBV, and let f ∈ L1 be T-antiperiodic, i.e. f (t + T) = − f (t) for a.e. t ∈ R.
Assume that there exist a, b ∈ (0, T) such that functions γ1, . . . , γm satisfy

0 < a ≤ γ1(z) < γ2(z) < · · · < γm(z) ≤ b < T, z ∈ [−K, K]. (1.5)
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Further, assume that Li ∈ (0, 1/L), i = 1, . . . , m, are such that

|γi(z1)− γi(z2)| ≤ Li|z1 − z2|, z1, z2 ∈ [−K, K], i = 1, . . . , m. (1.6)

Then there exists µ0 > 0 such that for each µ ∈ (0, µ0] problem (1.1)–(1.3) has a T-antiperiodic
solution (x, y), where y has m jumps at the points t1x, . . . , tmx ∈ [a, b] and y is continuous anywhere
else in [0, T]. Moreover the estimate

|x(t)| ≤ var(x) ≤ K, |y(t)| ≤ L, t ∈ [0, T], (1.7)

is valid.

We can find the optimal (maximal) value µ0 as follows. Since Ji are bounded, it holds

Ji : ÑBV→ [−ai, ai], i = 1, . . . , m,

for some ai ∈ (0, ∞). Denote

c1 := T‖ f ‖L1 +
m

∑
i=1

ai, (1.8)

and define a function ϕ by

ϕ(µ) :=
1− µT − T2

3
3

√
1− µT − T2

3
µT

, µ ∈ (0, 1/T − T/3]. (1.9)

Then, according to the proof of Theorem 1.1, µ0 = ϕ−1(Tc1) ∈ (0, 1/T − T/3).

Auxiliary results

Denote

(x ∗ y)(t) :=
1

2T

∫ 2T

0
x(t− s)y(s)ds, t ∈ [0, 2T] for x, y ∈ L1,

and remind the inequalities

var(x ∗ y) ≤ var(x)‖y‖∞, x, y ∈ NBV, (1.10)

var(x ∗ f ) ≤ var(x)‖ f ‖L1 , x ∈ NBV, f ∈ L1, (1.11)

‖x‖L1 ≤ ‖x‖∞ ≤ var(x), x ∈ ÑBV. (1.12)

Further, using the function

E1(t) =

{
T − t for t ∈ (0, 2T),

0 for t = 0,

which fulfils
var(E1) = 4T, ‖E1‖∞ = T, (1.13)

we introduce antiderivative operators I and I2 by

Iu := E1 ∗ u ∈ ÃC, I2u := I(Iu) ∈ ÃC, u ∈ L1. (1.14)

For τ ∈ R we define a distribution ετ by the Fourier series

ετ := ∑
n∈Z

(1− (−1)n)e
inπ
T (t−τ), t ∈ R. (1.15)
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Then it holds
Iετ ∈ ÑBV, I2ετ ∈ ÃC, ‖Iετ‖∞ = T. (1.16)

See [11] for more details. Using this we investigated in [11] the van del Pol equation

x′(t) = y(t), y′(t) = µ

(
x(t)− x3(t)

3

)′
− x(t) + f (t) for a.e. t ∈ R, (1.17)

with a positive parameter µ, a Lebesgue integrable T-antiperiodic function f , and with the
state-dependent impulse conditions

lim
t→τi(x)+

y(t)− lim
t→τi(x)−

y(t) = Ji(x), i = 1, . . . , m, (1.18)

where Ji and also τi, i = 1, . . . , m, are given continuous and bounded real-valued functionals
on ÑBV. For such setting we proved the existence result contained in Theorem 1.2.

Theorem 1.2 ([11, Theorem 1.1]). Assume that T ∈ (0,
√

3), and the functionals τ1, . . . , τm have
values in (0, T). Further, let

i 6= j =⇒ τi(x) 6= τj(x), x ∈ ÃC, i, j = 1, . . . , m. (1.19)

Then there exists µ0 > 0 such that for each µ ∈ (0, µ0] the problem (1.17), (1.18) has a T-antiperiodic
solution (x, y).

2 Existence of continuous functionals

If we study an impulsive boundary value problem which is formulated by means of barriers
Γ1, . . . , Γm, then a number of impulse points for some solution (x, y) is equal to a number of
values of t satisfying the equations t− γi(x(t)) = 0, i = 1, . . . , m. In general, such equations
need not be solvable, or they can have finite or infinite number of roots. In Theorem 1.1 we
present conditions imposed on barriers which yield for each i ∈ {1, . . . , m} a unique solution
t = tix of the equation t = γi(x(t)) provided x belongs to some suitable set ΩKL.

For positive numbers K and L, we define a set ΩKL

ΩKL := {x ∈ ÃC : var(x) ≤ K, |x′(t)| ≤ L for a.e. t ∈ [0, 2T], x is T-antiperiodic}, (2.1)

and prove its properties.

Lemma 2.1. The set ΩKL is nonempty, bounded, convex and closed in ÑBV.

Proof. ΩKL is nonempty because the zero function belongs to ΩKL and if K ≤ LT, then x(t) =
K
4 sin(πt/T) ∈ ΩKL, if K > LT, then x(t) = LT

4 sin(πt/T) ∈ ΩKL. In addition, we see that
ΩKL is bounded and convex. It remains to prove that ΩKL is closed. Consider a sequence
{xn}∞

n=1 ⊂ ΩKL and let x ∈ ÑBV is such that

lim
n→∞

var(x− xn) = 0. (2.2)

We need to prove that x ∈ ΩKL. From var(xn) ≤ K, n ∈N, and (2.2) it follows that var(x) ≤ K.
Further, there exists a unique function xAC ∈ ÃC such that x = xAC + xS, where xS ∈ ÑBV
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is a singular part of x having zero derivative for a.e. t ∈ [0, 2T]. Moreover, since xn ∈ ÃC,
n ∈N, we have by [7, Theorem 3.3.5],

var(x− xn) = var(xAC − xn) + var(xS), n ∈N,

and letting n → ∞, we get xS ≡ 0 due to (2.2). Consequently x ∈ ÃC and there exists a set
M ⊂ (0, 2T) of a zero measure such that x′(t) is defined for all t ∈ (0, 2T) \ M. Choose an
arbitrary t ∈ (0, 2T) \M. We can find ε > 0 such that (t− ε, t + ε) ⊂ (0, 2T). Having in mind
that |x′n(t)| ≤ L for a.e. t ∈ [0, 2T] and all n ∈N, we get for h ∈ (−ε, ε)

|xn(t + h)− xn(t)| ≤
∣∣∣∣∫ t+h

t
|x′n(s)|ds

∣∣∣∣ ≤ L|h|.

This yields |x(t + h) − x(t)| ≤ L|h|, and after the limit h → 0 we get |x′(t)| ≤ L for a.e.
t ∈ [0, 2T]. Finally, for each n ∈ N, the function xn is T-antiperiodic which implies by (1.12)
and (2.2) that x is T-antiperiodic, as well. �

Lemma 2.2. Let K, L ∈ (0, ∞). Assume that there exist a, b ∈ (0, T) and Li ∈ (0, 1/L), i = 1, . . . , m,
such that (1.5) and (1.6) are fulfilled. Then for each x ∈ ΩKL and i ∈ {1, . . . , m} the equation

t = γi(x(t)) (2.3)

has a unique solution tix ∈ [a, b].

Proof. Choose x ∈ ΩKL, i ∈ {1, . . . , m}, and put σx(t) = t − γi(x(t)) for t ∈ [0, T]. Then
|x|∞ ≤ K, σx is continuous and by (1.5), σx(0) < 0, σx(T) > 0. This yields tx ∈ (0, T) such that
σx(tx) = 0. Let tx, sx ∈ (0, T) satisfy γi(x(tx)) = tx, γi(x(sx)) = sx. Then, by (1.6) and (2.1),

|sx − tx| = |γi(x(sx))− γi(x(tx))| ≤ Li|x(sx)− x(tx)|

= Li

∣∣∣∣∫ sx

tx

x′(ξ)dξ

∣∣∣∣ ≤ LiL|sx − tx| < |sx − tx|,

which gives tx = sx. �

Lemma 2.3. Let the assumptions of Lemma 2.2 be fulfilled. Then for i ∈ {1, . . . , m}, the functional

τi : ΩKL → [a, b], τi(x) = tix, (2.4)

where tix is a solution of (2.3), is continuous.

Proof. Choose x, v ∈ ΩKL and i ∈ {1, . . . , m}. Then

|τi(x)− τi(v)| = |tix − tiv| = |γi(x(tix))− γi(v(tiv))| ≤ Li

(
|x(tix)− v(tix)|+ |

∫ tix

tiv

v′(ξ)dξ|
)

,

and so

|τi(x)− τi(v)| ≤ Li var(x− v) + LiL|tx − tv|) = Li var(x− v) + LiL|τi(x)− τi(v)|.

Therefore

|τi(x)− τi(v)| ≤
Li var(x− v)

1− LiL
, x, v ∈ ΩKL,

which yields the continuity of τi on ΩKL. �
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3 Proof of Theorem 1.1

Proof. (i) Having continuous functionals τ1, . . . , τm from Lemma 2.3, we can argue similarly as
in [11] because (1.5) implies (1.19). Since Ji are bounded, there exist ai ∈ (0, ∞), i = 1, . . . , m,
such that

Ji : ÑBV→ [−ai, ai], i = 1, . . . , m. (3.1)

Choose
T ∈ (0,

√
3), µ ∈ (0, 1/T − T/3), (3.2)

introduce constants K, L by

K :=
1
2

√
1− µT − T2/3

µT
, (3.3)

L := µK +
2µ

3
K3 + TK + 2T‖ f ‖L1 +

1
2

m

∑
i=1

ai, (3.4)

and consider the set ΩKL from (2.1). Similarly as in [11] we define an operator F by

Fx = µI
(

x− x3

3

)
+ I2

(
−x + f +

1
2T

m

∑
i=1
Ji(x)ετi(x)

)
, x ∈ ΩKL, (3.5)

where τi is from (2.4), ετi(x) is from (1.15), I, I2 are from (1.14). It follows from [11, Lemma 4.2]
that F is compact on ΩKL.

(ii) Let us show that F maps ΩKL to ΩKL. Since the definition of the set ΩKL in (2.1) is
different from the definition of the corresponding set Ω in [11], we need to prove the estimate

|(Fx)′(t)| ≤ L for a.e. t ∈ [0, 2T], and all x ∈ ΩKL. (3.6)

Differentiating (3.5) we get

(Fx)′(t) = µ

(
x(t)− x3(t)

3
− x̄ +

x3

3

)
+ I ( f (t)− x(t)) +

1
2T

m

∑
i=1
Ji(x)

(
Iετi(x)

)
(t),

and, by

|(Fx)′(t)| ≤ µ|x(t)|+ µ

3
|x3(t)− x3|+ var (E1 ∗ ( f − x)) +

1
2T

m

∑
i=1
|Ji(x)|‖Iετi(x)‖∞

≤ µ‖x‖∞ +
2µ

3
‖x‖3

∞ + var(E1)‖ f ‖L1 + ‖E1‖∞ var(−x) +
1

2T

m

∑
i=1

ai‖Iετi(x)‖∞

≤ µK +
2µ

3
K3 + 2T‖ f ‖L1 + TK

1
2

m

∑
i=1

ai = L.

Now, consider c1 and ϕ from (1.8) and (1.9) and assume that

Tc1 ≤ ϕ(µ). (3.7)

Then, using the arguments from the proof in [11, Theorem 4.4], we get

var(Fx) ≤ K for all x ∈ ΩKL. (3.8)
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In addition, by (1.16) and (1.14), Fx ∈ ÃC and it is antiperiodic for x ∈ ΩKL. Therefore
F (ΩKL) ⊂ ΩKL.

(iii) Consequently, by the Schauder fixed point theorem there exists a fixed point x ∈ ΩKL

of the operator F . By [11, Lemma 4.1, Lemma 3.4], if we put y(t) = x′(t) for a.e. t ∈ R, then
(x, y) is a T-antiperiodic solution of problem (1.1)–(1.3). Having in mind that ϕ is continuous
and decreasing on (0, 1/T− T/3] and limµ→0+ ϕ(µ) = ∞, ϕ(1/T− T/3) = 0, we get a unique
µ0 ∈ (0, 1/T − T/3) satisfying Tc1 = ϕ(µ0). Clearly, if µ ≤ µ0, then (3.7) holds. Consequently
we get a T-antiperiodic solution of problem (1.1)–(1.3) for each µ ∈ (0, µ0]. �
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[16] J. Tomeček, Periodic solution of differential equation with φ-Laplacian and state-
dependent impulses, J. Math. Anal. Appl. 450(2017), 1029–1046. https://doi.org/10.
1016/j.jmaa.2017.01.046; MR3639087; Zbl 1377.34028

https://doi.org/10.14232/ejqtde.2018.1.2
https://www.ams.org/mathscinet-getitem?mr=3750145
https://zbmath.org/?q=an:1413.34156
https://doi.org/10.1007/s10986-018-9394-3
https://doi.org/10.1007/s10986-018-9394-3
https://www.ams.org/mathscinet-getitem?mr=3814714
https://zbmath.org/?q=an:1401.34024
https://doi.org/10.1142/9789812798664
https://www.ams.org/mathscinet-getitem?mr=1355787
https://zbmath.org/?q=an:0837.34003
https://doi.org/10.1515/ms-2016-0283
https://doi.org/10.1515/ms-2016-0283
https://www.ams.org/mathscinet-getitem?mr=3652284
https://zbmath.org/?q=an:1413.34121
https://doi.org/10.1016/j.jmaa.2017.01.046
https://doi.org/10.1016/j.jmaa.2017.01.046
https://www.ams.org/mathscinet-getitem?mr=3639087
https://zbmath.org/?q=an:1377.34028

	Introduction
	Existence of continuous functionals
	Proof of Theorem ??

