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Abstract. The main goal of this work is to conduct a rigorous study of a mathematical
model that was first proposed by Gałach (2003). The model itself is an adaptation of
an earlier model proposed by Kuznetsov et al. (1994), and attempts to describe the in-
teraction that exists between immunogenic tumour cells and the immune system. The
particular adaptation due to Gałach (2003) consists of replacing the Michaelis–Menten
function of Kuznetsov et al. (1994) by a Lotka–Volterra form instead, and incorporat-
ing a single discrete time delay in the latter to account for the biophysical fact that
the immune system takes finite, non-zero time to mount a response to the presence of
immunogenic tumour cells in the body. In this work, we perform a linear stability anal-
ysis of the model’s three equilibria, and formulate a local Hopf bifurcation theorem for
one of the two endemic equilibria. Furthermore, using centre manifold reduction and
normal form theory, we characterise the criticality of the Hopf bifurcation. Our theoret-
ical results are supported by some sample numerical plots of the Poincaré–Lyapunov
constant in an appropriate parameter space. In a sense, our work in this article comple-
ments and significantly extends the work initiated by Gałach (2003).

Keywords: delay differential equations, cancer, tumour, equilibria, Hopf bifurcation,
criticality.
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1 Introduction

It is well-known [1, 2, 10–15, 17, 18] that when immunogenic tumours and other foreign enti-
ties appear in the body, the body’s immune system mounts an appropriate response aimed
at eliminating them. The immune response to the appearance of an immunogenic tumour
is typically cell-mediated [1]. Cytotoxic T lymphocytes (CTL) and natural killer cells (NK)
are known to play a leading role in the immune response [1, 17, 18]. The interaction between
the immune system and tumour cells in vivo is presently poorly understood. Nonetheless,
a great number of mathematical models whose goal it is to emulate this interaction between
the immune system and immunogenic tumour cells have been developed over the years (see
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[1, 10–15, 17, 18] and references contained therein). In our view, the impact of the seminal
work of Kuznetsov et al. [1] partially lies in the fact that they were able to estimate some
biophysically important model parameters that could otherwise not be measured in vivo.
Consequently, their model shows a comparatively high degree of fidelity with existing ex-
perimental data. The model studied by [1] is premised on the idea of cell-mediated immune
response to a growing tumour cell population [1], and incorporates infiltration of tumour cells
by cytotoxic effector cells (e.g. CTL or NK cells) and the possibility of effector cell inactivation
[1]. Much of the analysis in [1] relies on mathematical machinery from numerical bifurcation
theory in classical dynamics, and the primary goal is to elucidate the why and the wherefore
of tumour dormancy and the paradoxical phenomenon of sneaking through [1,17,18]. It is impor-
tant to point out at the onset that Kuznetsov et al. [1] assume in their study that the immune
response elicited by the presence of immunogenic tumour cells is instantaneous, which, of
course, is contrary to biophysical reality. There is a vast body of mathematical models in the
literature (see [10–15] and references contained therein) that do make the same assumption
of instantaneous immune response, which, of course, is the metaphorical Achilles’ heel of
all such models. Ghosh and collaborators [12–15] study developments and refinements of
the cancer model posited by [1]. They employ ideas from optimal control theory to devise
strategies for eliminating the cancer [15] in the non-delayed model of [1]. In [14], the authors
investigate the effects of anti-cancer drugs used in tandem with chemotherapy on the dynam-
ics of a non-delayed mathematical model of cancer. Ghosh et al. [13] considered the question
of whether tumour growth is impacted by time delayed interactions between cancerous cells
and the microenvironment in which they are embedded. They incorporated two discrete time
delays in the cancer model studied, one describing the time-delayed interactions that occur
between tumour cells and immune cells [13], whilst the other one describes the time-delayed
immune response to the presence of tumour or non-self cells. It is important to note that
the stability of equilibria in models with two discrete time delays has been extensively, and
exhaustively, studied in the literature [23–26]. For instance, it is now well-known that the
presence of two time delays can destabilise equilibria, induce stability switching, and lead to
the emergence of codimension two bifurcation points [23, 26]. Khajanchi et al. [12] looked at
the effects of discrete time delay in a chaotic mathematical model of cancer, and studied the
ensuing Hopf bifurcation problem with the time delay used as the bifurcation parameter.

The Kuznetsov et al. [1] mathematical model is described by the following system of two
coupled nonlinear ordinary differential equations.{

dx
dτ = σ + F(x, y)− µxy− δx ,
dy
dτ = αy(1− βy)− xy ,

(1.1)

where x and y denote the rescaled dimensionless densities of effector cells (ECs) and tumour
cells (TCs), respectively; and τ in this case denotes rescaled time. The function F(x, y) is
given by F(x, y) := ρxy/(η + y), a Michaelis–Menten type function, and describes the rate at
which cytotoxic ECs congregate in the neighbourhood of an immunogenic TC [1]. The seven
dimensionless parameters σ, ρ, η, µ, δ, α, and β appearing in (1.1) are described and estimated
in [1] as adumbrated in Table 1.1.

The model due to Gałach [2] is an adaptation of (1.1), and is given by{
x′(t) = σ + Wx(t− τ)y(t− τ)− δx ,

y′(t) = αy(1− βy)− xy ,
(1.2)
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Parameter Estimated value
σ 0.1181
ρ 1.131
η 20.19
µ 0.00311
δ 0.3743
α 1.636
β 2.0× 10−3

Table 1.1: Estimates of the Kuznetsov et al. [1] model parameter values.

where τ > 0 is a discrete time delay representing the time it takes for the immune system
to respond to the presence of TCs, t is rescaled time (what is denoted by τ in (1.1)), and the
parameter W ∈ R describes the aggregation of ECs in the neighbourhood of an immunogenic
TC [2]. In fact, Gałach [2] defines the parameter W as

W :=
θ −m

n
, where θ, m ∈ R+, n = 1.101× 10−7. (1.3)

The definition of W given in (1.3) implies that sgn(W) = sgn(θ −m). It is also assumed that
x(θ) = x0 and y(θ) = y0 for θ ∈ [−τ, 0], where x0 and y0 are non-negative continuous initial
functions. It is important to note that Gałach [2] assumed the function F(x, y) of the form
F(x, y) := Wxy, instead of the Michaelis–Menten function adopted by Kuznetsov et al. [1].
In addition, Gałach [2] introduced a single discrete time delay τ > 0 in the function F(x, y),
to capture the fact that it takes non-zero time for ECs to congregate in the neighbourhood of
an immunogenic TC. The remaining parameters σ, δ, α, and β are positive and are as defined
in [1].

Let (x, y) denote a generic equilibrium of (1.2). The equilibria of (1.2) are obtained by
solving the system of algebraic equations{

0 = σ + Wx · y− δx ,

0 = αy(1− βy)− x · y .
(1.4)

The cancer-free equilibrium
(
σ/δ, 0

)
always exists [2]. If φ := α2(βδ −W)2 + 4αβWσ > 0,

then, additionally, two endemic (chronic) equilibria exist [2], namely: (x+, y+) and (x−, y−),
where x+ := −α(βδ−W)−√φ

2W ,

y+ := α(βδ+W)+
√

φ
2αβW ,

(1.5)

and x− := −α(βδ−W)+
√

φ
2W ,

y− := α(βδ+W)−√φ
2αβW .

(1.6)

The current paper will accomplish the following.

1. Give a complete characterisation of the linear stability of the three equilibria of (1.2). It
is worth noting that Gałach [2] attempted to study the linear stability of the cancer-free
equilibrium of (1.2), but the corresponding characteristic equation derived in the ensuing
analysis is erroneous, and so the results obtained are compromised (see [2, Lemma 9,
page 401]).
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2. Give a complete account of the local Hopf bifurcation of the endemic equilibria, in-
cluding characterisation of its criticality via centre manifold reduction and normal form
theory. This aspect of the problem was not visited by Gałach [2], save for the comment
that “. . . the analysis of stability for the remaining steady states is much more complicated. . . ” in
[2, page 402]. Furthermore, Gałach [2] did note that oscillations appear in the solutions
to (1.2), a phenomenon that is non-existent as far as solutions of (1.1) are concerned.
In fact, Gałach [2] was able to perform some numerical simulations of solutions of (1.2)
and (1.1), with some parameters fixed, and was able to exhibit oscillatory solutions of
the former, in particular. However, no mention of Hopf bifurcation is made, and there is
no discussion about the stability of bifurcated oscillatory solutions.

Thus, in a nutshell, the primary objective of the present work is to correct, extend, and com-
plement the analysis of the system (1.2) initiated by Gałach [2].

2 Linear stability of equilibria

This section focusses on the complete characterisation of the linear stability of the three equi-
libria of (1.2).

2.1 The cancer-free equilibrium (σ/δ, 0)

We begin our study by analysing the linear stability of the cancer-free equilibrium, (σ/δ, 0).
To facilitate the analysis to come, we perform the following change-of-variables. Let ỹ(t) =

y(t)− 0 and x̃(t) = x(t)− σ/δ. Thus, the system (1.2) transforms tox̃′(t) = Wx̃(t− τ) · ỹ(t− τ) + Wσ
δ

ỹ(t− τ)− δx̃(t) := H1 ,

ỹ′(t) =
(

α− σ
δ

)
ỹ(t)− αβỹ2(t)− x̃(t) · ỹ(t) := H2 .

(2.1)

It is important to note that the trivial equilibrium (0, 0) of the transformed system (2.1) is
equivalent to the cancer-free equilibrium of (1.2). This observation has critical implications on
the analysis to come. For mathematical convenience, we adopt the following notation from
[3]: x̃|τ := x̃(t− τ) and ỹ|τ := ỹ(t− τ). We obtain from (2.1) the matrices(

∂H1
∂ x̃|τ

∂H1
∂ ỹ|τ

∂H2
∂ x̃|τ

∂H2
∂ ỹ|τ

)∣∣∣∣∣
(0,0)

=

(
ωỹ(t− τ) ωx̃(t− τ) + ωσ

δ
0 0

)∣∣∣∣∣
(0,0)

=

(
0 Wσ

δ
0 0

)
, (2.2)

and (
∂H1
∂x̃

∂H1
∂ỹ

∂H2
∂x̃

∂H2
∂ỹ

)∣∣∣∣∣
(0,0)

=

(
−δ 0
−ỹ α− σ

δ
− 2αβỹ− x̃

)∣∣∣∣∣
(0,0)

=

(
−δ 0
0 α− σ

δ

)
. (2.3)

From (2.2) and (2.3), we have that the linearisation of (2.1) about (0, 0) isx̃′(t) = −δx̃(t) + Wσ
δ

ỹ(t− τ) ,

ỹ′(t) =
(

α− σ
δ

)
ỹ(t) .

(2.4)

We now assume the ansatz x̃(t) = c1eλt, ỹ(t) = c2eλt, where c1, c2 ∈ R and λ ∈ C. Substituting
this into (2.4) yields the matrix equation(

λ + δ −Wσ
δ

e−λτ

0 λ− α + σ
δ

)(
c1

c2

)
=

(
0
0

)
, (2.5)
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which admits non-trivial solutions c1, c2 6= 0 if, and only if,

det

(
λ + δ −ωσ

δ
e−λτ

0 λ− α + σ
δ

)
= 0 . (2.6)

Equation (2.6) leads to the characteristic equation

(λ + δ)

(
λ− α +

σ

δ

)
= 0 , (2.7)

which differs from the one erroneously obtained in [2], where a characteristic quasi-polynomial
was obtained instead. As has been shown here, the characteristic equation corresponding
to the cancer-free equilibrium is a quadratic polynomial, which is quite straightforward to
analyse. We arrive at our first delay-independent stability result.

Theorem 2.1. A necessary and sufficient condition for the local asymptotic stability of the cancer-free
equilibrium is that σ/δ > α. That is, the density of effector cells must surpass the threshold α.

Proof. The roots of the characteristic equation (2.7) are λ1 = −δ < 0 and λ2 = α− (σ/δ). It is
clear that λ2 < 0 if, and only if, σ/δ > α. The result follows.

Our Theorem 2.1 contradicts the results of [2, Lemma 9]. The stability of the cancer-free
equilibrium is independent of the immune response time delay, as we have established here.

2.2 The endemic equilibria (x+, y+) and (x−, y−)

Endemic equilibria represent a state of affairs in which the body always has a certain fixed
non-zero density of both effector cells and tumour cells. They are essentially chronic disease
steady states. Our analysis here will focus entirely on the endemic equilibrium (x+, y+).
Analysis of the equilibrium (x−, y−) is identical to that of (x+, y+). To begin, let x̃(t) = x(t)−
x+ and ỹ(t) = y(t)− y+. Thus, the nonlinear system (1.2) is transformed to the equivalent
system

x̃′(t) =
(
σ + Wx+ · y+ − δx+

)
+ Wy+ x̃(t− τ) + Wx+ỹ(t− τ)− δx̃(t) + Wx̃(t− τ)ỹ(t− τ)

=: G1,

ỹ′(t) =
[
α
(
1− 2βy+

)
− x+

]
ỹ(t)− y+ x̃(t)− αβỹ2(t)− x̃(t)ỹ(t)− αβy2

+(t) + (α− x+) y+
=: G2.

(2.8)
Consequently, the linearisation of (2.8) about the equilibrium (0, 0) is given by{

x̃′(t) = −δx̃(t) + Wy+ x̃(t− τ) + ωx+ỹ(t− τ) ,

ỹ′(t) = −y+ x̃(t) +
[
α
(
1− 2βy+

)
− x+

]
ỹ(t) .

(2.9)

The corresponding characteristic equation is the quasi-polynomial

∆(λ) := λ2 +
(
ψ1 + δ

)
λ + δψ1 + (ψ3 − λψ2 − ψ1ψ2) e−λτ = 0 , (2.10)

where 
ψ1 := −α + 2αβy+ + x+ ,

ψ2 := W
(
1 + y+

)
,

ψ3 := Wy+x+ .

(2.11)
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Lemma 2.2. If δψ1 + ψ3 − ψ1ψ2 = 0, then λ = 0 is always a root of (2.10), ∀τ ≥ 0.

Proof. The result follows by noting from (2.10) that ∆(0) = δψ1 + ψ3 − ψ1ψ2.

Theorem 2.3. If δψ1 + ψ3 − ψ1ψ2 < 0, then the endemic equilibrium (x+, y+) is unstable.

Proof. We note from (2.10) that ∆(0) = δψ1 + ψ3 − ψ1ψ2 < 0, by hypothesis. The continuity of
∆(λ) and the Intermediate Value Theorem yield limλ→+∞ ∆(λ) = +∞. Thus, the characteristic
equation (2.10) has at least one positive real root, and the endemic equilibrium (x+, y+) is
unstable. This completes the proof.

If τ = 0, then (2.10) reduces to the polynomial

∆(λ) = λ2 + (ψ1 − ψ2 + δ)λ + (δψ1 + ψ3 − ψ1ψ2) = 0 . (2.12)

Theorem 2.4. When τ = 0, the endemic equilibrium (x+, y+) is locally asymptotically stable if, and
only if, ψ1 − ψ2 + δ > 0 and δψ1 + ψ3 − ψ1ψ2 > 0.

Proof. The proof is a consequence of a direct application of the Routh–Hurwitz criterion.

Let λ = iω, ω ∈ R+. Then the characteristic equation (2.10) yields

∆(iω) = −ω2 + i(ψ1 + δ)ω + δψ1 + (ψ3 − ψ1ψ2) cos(ωτ)− i (ψ3 − ψ1ψ2) sin(ωτ)

− iωψ2 cos(ωτ)−ωψ2 sin(ωτ) = 0
(2.13)

if, and only if, {
ωψ2 sin(ωτ) + (ψ1ψ2 − ψ3) cos(ωτ) = δψ1 −ω2 ,

(ψ3 − ψ1ψ2) sin(ωτ) + ωψ2 cos(ωτ) =
(
ψ1 + δ

)
ω .

(2.14)

Solving the system (2.14) for cos(ωτ) and sin(ωτ) yields
sin(ωτ) =

ω(ψ1ψ3+δψ3−ψ2
1ψ2−ω2ψ2)

ω2ψ2
2+(ψ1ψ2−ψ3)

2 ,

cos(ωτ) =
δω2ψ2+δψ2

1ψ2−δψ1ψ2+ω2ψ3

ω2ψ2
2+(ψ1ψ2−ψ3)

2 .
(2.15)

Squaring and adding the expressions in (2.15) gives the polynomial in ω:

Φ(ω) := ξ6ω6 + ξ4ω4 + ξ2ω2 + ξ0 = 0 , (2.16)

where

ξ6 := ψ2
2 ,

ξ4 := δ
2
ψ2

2 + 2ψ2
1ψ2

2 − ψ4
2 − 2ψ1ψ2ψ3 + ψ2

3 ,

ξ2 := 2σ2ψ2
1ψ2

2 + ψ4
1ψ2

2 − 2ψ2
1ψ4

2 − 2δ
2
ψ1ψ2ψ3

− 2ψ3
1ψ2ψ3 + 4ψ1ψ3

2ψ3 + δ
2
ψ2

3 + ψ2
1ψ2

3 − 2ψ2
2ψ2

3 ,

ξ0 := δ
2
ψ4

1ψ2
2 − ψ4

1ψ4
2 − 2δ

2
ψ3

1ψ2ψ3 + 4ψ3
1ψ3

2ψ3

+ δ
2
ψ2

1ψ2
3 − 6ψ2

1ψ2
2ψ2

3 + 4ψ1ψ2ψ3
3 − ψ4

3 .

(2.17)

Theorem 2.5. If ξ0 < 0, then the polynomial (2.16) has at least one positive real root.
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Proof. It is evident from (2.16) that Φ(0) = ξ0, and that limω→+∞ Φ(ω) = +∞. Thus, there
exists an ω∗ ∈ (0,+∞) such that Φ(ω∗) = 0. The result follows.

Theorem 2.5 implies that the characteristic equation (2.10) possesses a pair of pure imagi-
nary roots λ = ±iω∗. For convenience, let us suppose that z := ω2 in the polynomial (2.16).
Then, (2.16) is expressible in the form

Φ(z) := ξ6z3 + ξ4z2 + ξ2z + ξ0 = 0 . (2.18)

Theorem 2.6. If ξ0 ≥ 0 and ξ2ξ6 > 0, then the polynomial (2.18) has no positive real roots.

Proof. We note from (2.18) that

Φ′(z) = 3ξ6z2 + 2ξ4z + ξ2 = 0 (2.19)

if, and only if,

z± =
−ξ4 ±

√
ξ2

4 − 3ξ2ξ6

3ξ6
. (2.20)

If ξ2ξ6 > 0, then ξ2
4 − 3ξ2ξ6 < ξ2

4. This implies that
√

ξ2
4 − 3ξ2ξ6 < ξ2

4, and so −ξ4 +√
ξ2

4 − 3ξ2ξ6 < 0. Consequently, it follows that z+ < 0 and z− < 0. We conclude that the
polynomial (2.18) has no positive real roots. Φ(0) = ξ0 > 0 =⇒ (2.16) has no positive real
roots. The result follows.

We now attempt to characterise the local asymptotic stability of the endemic equilibrium(
x+, y+

)
. We do so by recourse to Rouché’s Theorem [16, p. 247, Theorem 9.17.3].

Theorem 2.7. If ψ1 > 0 and |ψ1ψ2 − ψ3| < δψ1, then the characteristic equation (2.10) has no roots
with positive real part.

Proof. A complete proof is given in the Appendix.

Finally, a comment on the endemic equilibrium (x−, y−). It is straightforward to establish
that the characteristic equation associated with this equilibrium is of the form

∆(λ) := λ2 + (ψ1 + δ)λ + δψ1 + (ψ3 − λψ2 − ψ1 · ψ2)e
−λτ = 0 , (2.21)

where 
ψ1 := −α + 2αβy− + 2x− + 2βy− ,

ψ2 := ω(1 + y−) ,

ψ3 := 2ωx− · y− .

(2.22)

The similarity between (2.10) and (2.21) is clear. Thus, the stability analysis of the equilibrium
(x−, y−) carries through in a manner analogous to that of (x+, y+). The only difference is the
definition of the parameters given in (2.22) and in (2.11).
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3 Hopf bifurcation of (x+, y+)

We now formulate a local Hopf bifurcation theorem for the endemic equilibrium (x+, y+),
with τ as the bifurcation parameter. Let λ = λ(τ), and differentiate (2.10) with respect to τ to
get

dλ

dτ
=

λ (ψ3 − λψ2 − ψ1ψ2) e−λτ

2λ + ψ2 + δ− ψ2e−λτ − τ (ψ3 − λψ2 − ψ1ψ2) e−λτ
, (3.1)

which leads to

Re
(

dλ

dτ

∣∣∣∣
λ=iω

)
=

η1χ1 − η2χ2

χ2
1 + χ2

2
, (3.2)

where 
χ1 := δ + ψ2 − ψ2 cos(ωτ)− τ(ψ3 − ψ1ψ2) cos(ωτ) + τωψ2 sin(ωτ) ,

χ2 := 2ω + ψ2 sin(ωτ) + τ(ψ3 − ψ1ψ2) sin(ωτ) + τωψ2 cos(ωτ) ,

η1 := ω2ψ2 cos(ωτ) + ω(ψ3 − ψ1ψ2) sin(ωτ) ,

η2 := ω2ψ2 sin(ωτ)−ω(ψ3 − ψ1ψ2) cos(ωτ) .

(3.3)

Thus, we see from (3.2) that the usual transversality condition is satisfied if, and only if,

ω
(
δωψ2 − 2ωψ1ψ2 + ωψ2

2 + 2ωψ3
)

cos(ωτ)

6= ω
(
δψ1ψ2 + 2ω2ψ2 + ψ1ψ2

2 − δψ3 − ψ2ψ3
)

sin(ωτ) . (3.4)

Therefore, by continuity, Re (λ(τ)) becomes positive when τ>τ0 and the equilibrium (x+, y+)
becomes unstable. A simple root Hopf bifurcation occurs as the time delay τ passes through
the critical value τ0, with

τ0 :=
1

ω0
cos−1

[
δω2

0ψ2 + δψ2
1ψ2 − δψ1ψ3 + ω2

0ψ3

ω2
0ψ2

2 + (ψ1ψ2 − ψ3)
2

]
. (3.5)

Let λ(τ) = η(τ) + iω(τ) be the root of (2.10) such that η
(
τ0) = 0 and ω

(
τ0) = ω0. We obtain

from equation (2.15) that

τ j =
1

ω0
cos−1

[
δω2

0ψ2 + δψ2
1ψ2 − δψ1ψ3 + ω2

0ψ3

ω2
0ψ2

2 + (ψ1ψ2 − ψ3)
2

]
+

2jπ
ω0

, j = 0, 1, 2, . . . (3.6)

We arrive at the following result.

Theorem 3.1. Suppose that

(a) Theorem 2.4 and condition (3.4) hold, and that equation (2.16) has no positive real roots (at least
for 0 < τ ≤ τ̃, where τ̃ > τ0). If either

(b) ξ0 < 0, or

(c) ξ0 ≥ 0, ξ2ξ6 < 0, and 2(3− ξ2
4)
√

ξ2
4 − 3ξ2ξ6 ≤ 9ξ2ξ4ξ6 − 27ξ0ξ2

6 − 2ξ2
4

is satisfied, then the equilibrium (x+, y+) of (1.2) with characteristic equation (2.10) is locally asymp-
totically stable when τ < τ0 and unstable when τ0 < τ < min

{
τ̃, τ1}, where

τ0 :=
1

ω0
cos−1

[
δω2

0ψ2 + δψ2
1ψ2 − δψ1ψ3 + ω2

0ψ3

ω2
0ψ2

2 + (ψ1ψ2 − ψ3)
2

]
(3.7)
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and

τ1 :=
1

ω0
cos−1

[
δω2

0ψ2 + δψ2
1ψ2 − δψ1ψ3 + ω2

0ψ3

ω2
0ψ2

2 + (ψ1ψ2 − ψ3)
2

]
+

2π

ω0
. (3.8)

When τ = τ0, a simple root Hopf bifurcation occurs. That is, a family of periodic solutions bifurcates
from (x+, y+) as τ passes through the critical value τ0.

In order to adequately describe the criticality of the Hopf bifurcation characterised in
Theorem 3.1, we must first project the system (2.8) onto the centre manifold, which is tangent
to the centre space at the origin. An in-depth analytic algorithm for carrying out this task
is described in [7, 8], for instance. It is important to note that the centre manifold is locally
invariant, and is attractive to the flow of (2.8). The nonlinear system (2.8) is expressible as an
abstract functional differential equation in the form [21, 22]

dxt(θ)

dt
=

{
dxt(θ)

dθ , −τ ≤ θ < 0 ,

Lxt + f (xt) , θ = 0 ,
(3.9)

where xt(θ) := x(t + θ), −τ ≤ θ ≤ 0, C := C([−τ, 0], R2), L : C → R2 is a linear operator,
and f ∈ Cr(C, R2), r ≥ 1. By recourse to the Riesz representation theorem [20, Theorem 4.4-1,
p. 227], the linear operator L can be represented by a Riemann–Stieltjes integral [21, 22]

Lφ =
∫ 0

−τ
[dη(θ)]φ(θ) , (3.10)

where η : [−τ, 0]→ R is a function of bounded variation. Now, in relation to the system (2.8),
we have that

Lxt :=
(

σ + Wx+ · y+ − δx+ + Wy+ x̃(t− τ) + Wx+ỹ(t− τ)− δx(t)[
α
(
1− βy+

)
− αβy+ − x+

]
ỹ(t)− y+ x̃(t) + α

(
1− βy+

)
y+ − x+y+

)
, (3.11)

f(x(t), x(t− τ), α, β, W, σ, δ) :=
(

Wx̃t(−τ)ỹt(−τ)

−αβỹ2
t (0)− x̃t(0)ỹt(0)

)
, (3.12)

and

η(θ) :=
(

W
(
1 + y+

)
δ(θ + τ)− δδ(θ) Wx+δ(θ + τ)

−y+δ(θ)
(
α− 2αβy+ − x+

)
δ(θ)

)
, (3.13)

where δ(x) is the Dirac distribution centred at the point x = 0. In the case of a simple Hopf
bifurcation, the elements needed to write the finite-dimensional system of ordinary differential
equations on the centre manifold are given by [7]

Φ(θ) := (φ1(θ), φ2(θ)) , B :=
(

iω 0
0 −iω

)
, z :=

(
z1

z2

)
≡
(

z
z

)
, (3.14)

where

φ1(θ) :=
(

1
1

)
eiωθ and φ2(θ) :=

(
1
1

)
e−iωθ . (3.15)

The bilinear form associated with the linear part of (3.9) is given by [21]

〈ψ, φ〉 = ψ(0)φ(0)−
∫ 0

−τ

∫ θ

0
ψ(ξ − θ)[dη(θ)]φ(ξ)dξdθ . (3.16)



10 I. Ncube and K. M. Martin

Using the bilinear form (3.16) leads to the matrix

〈Φ∗, Φ〉 =
(
〈φ∗1 , φ1〉 〈φ∗1 , φ2〉
〈φ∗2 , φ1〉 〈φ∗2 , φ2〉

)

=


2 + i

ω

[
W
(
1 + x+ + y+

)
cos(ωτ) 2 + Wτ

(
1 + x+ + y+

)
cos(ωτ)

+
(
α− 2αβy+ − x+ − δ− y+

)]
+iWτ

(
1 + x+ + y+

)
sin(ωτ)

2 + Wτ
(
1 + x+ + y+

)
cos(ωτ) 2 + i

ω

[
W
(
1 + x+ + y+

)
cos(ωτ)

−iWτ
(
1 + x+ + y+

)
sin(ωτ) +

(
α− 2αβy+ − x+ − δ− y+

)]

 . (3.17)

The basis for the adjoint linear problem, Ψ(s), s ∈ [0, τ], is described by [7]

Ψ(s) = 〈Φ∗(s), Φ(θ)〉−1Φ∗(s) ,

and thus

Ψ(0) = 〈Φ∗(0), Φ(θ)〉−1
Φ∗(0) =

1
d2

R + d2
I

(
η11 η12

η21 η22

)
, (3.18)

where

η11 = η12 := 2dR + ξdI + dRχ1 − dIχ2 + i (ξdR − 2dI − dRχ2 − dIχ1) ,

η21 = η22 := dRχ1 + dIχ2 + 2dR + ξdI + i (dRχ2 − dIχ1 + ξdR − 2dI) ,

ξ :=
1
ω

[
W
(
1 + x+ + y+

)
cos(ωτ) + α− 2αβy+ − x+ − δ− y+

]
,

χ1 := − 2−Wτ
(
1 + x+ + y+

)
cos(ωτ) ,

χ2 := Wτ
(
1 + x+ + y+

)
sin(ωτ) ,

dI := − 1
ω2

[
−4ωα + 4ωx+ + 4ωy+ − 4δω− 4Wω cos(ωτ)

+8αβωy+ − 4Wωx+ cos(ωτ)− 4Wωy+ cos(ωτ)
]

,

(3.19)

and

dR :=− 1
ω2

[
4Wτω2 cos(ωτ)− 4α2βy+ + 4α2β2y2

+ + 4αβy2
+ + 2W2x+y+cos2(ωτ)

+ 2Wαx+ cos(ωτ) + 2Wαy+ cos(ωτ)− 2Wx+δ cos(ωτ)− 4Wx+y+

− 2Wy+δ cos(ωτ) + 2W2τ2ω2x+ + W2τ2ω2y2
+ + W2τ2ω2x2

+

+ 2W2τ2ω2y+ + W2τ2ω2 + δ
2
+ y2

+ + α2 + x2
+ − 2Wx2

+ cos(ωτ)

− 2Wy2
+ cos(ωτ)− 2αy+ − 2Wδ cos(ωτ) + 2x+y+ + 2δy+ − 2αx+

− 2αδ + 2W2y+ cos2(ωτ) + 2Wα cos(ωτ) + W2x2
+ cos2(ωτ)

+ W2y2
+ cos2(ωτ) + 2δx+ + 2W2x+ cos2(ωτ)− 2Wx+ cos(ωτ)

− 2Wy+ cos(ωτ) + 4Wτω2x+ cos(ωτ) + 4Wτω2y+ cos(ωτ)

− 4Wαβy+ cos(ωτ)− 4Wαβy2
+ cos(ωτ) + 4αβx+y+ + 4αβy+δ

+ W2 cos2(ωτ) + 2W2τ2ω2x+y+ − 4Wαβx+y+
]
.

(3.20)
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The centre manifold system of ordinary differential equations is given by [7, 8]

z′(t) = Bz(t) + Ψ(0)f
[
Φ(θ)z(t) + u2(θ)z2(t) + u3(θ)z3(t) + · · ·

]
, (3.21)

where z2(t) ≡ z(t)zT(t), z3(t) ≡ z(t)zT(t)z(t), and the matrices uj(θ), j = 2, 3, . . ., are coef-
ficients of the higher order terms in the expansion, and these higher order terms are needed
in order to carry out the local Hopf bifurcation analysis precisely because the lowest order
nonlinear terms in the right hand side of (2.8) are at most quadratic. We denote the matrices
as

u2(θ) :=
(

u211(θ) u212(θ) u213(θ)

u221(θ) u222(θ) u223(θ)

)
and u3(θ) :=

(
u311(θ) u312(θ)

u321(θ) u322(θ)

)
, (3.22)

and note further that

z2 :=

 z2
1

z1z2

z2
2

 and z3 :=
(

z3
1 + z1z2

2
z2

1z2 + z3
2

)
. (3.23)

Let us denote
xt(θ) = Φ(θ)z(t) + u2(θ)z2(t) + u3(θ)z3(t) + · · · , (3.24)

which can be expanded to the form

xt(θ) = φ1(θ)z1(t) + φ2(θ)z2(t) +
(

u211(θ)z2
1 + u212(θ)z1z2 + u213(θ)z2

2
u221(θ)z2

1 + u222(θ)z1z2 + u223(θ)z2
2

)
+

(
u311(θ)

(
z3

1 + z1z2
2
)
+ u312(θ)

(
z2

1z2 + z3
2
)

u321(θ)
(
z3

1 + z1z2
2
)
+ u322(θ)

(
z2

1z2 + z3
2
) )+ · · ·

(3.25)

Using the expansion (3.25) and the second part of (3.9) yields

φ1(0)z′1(t) + φ2(0)z′2(t)

+
(

2u211(0)z1(t)z′1(t)+u212(0)z′1(t)z2(t)+u212(0)z1(t)z′2(t)+2u213(0)z2(t)z′2(t)
2u221(0)z1(t)z′1(t)+u222(0)z′1(t)z2(t)+u222(0)z1(t)z′2(t)+2u223(0)z2(t)z′2(t)

)
+

(
u311(0)(3z2

1(t)z
′
1(t)+z′1(t)z

2
2(t)+2z1(t)z2(t)z′2(t))+u312(0)(2z1(t)z′1(t)z2(t)+z2

1(t)z
′
2(t)+3z2

2(t)z
′
2(t))

u321(0)(3z2
1(t)z

′
1(t)+z′1(t)z

2
2(t)+2z1(t)z2(t)z′2(t))+u322(0)(2z1(t)z′1(t)z2(t)+z2

1(t)z
′
2(t)+3z2

2(t)z
′
2(t))

)
=

(
−δx̃t(0)+Wy+ x̃t(−τ)+Wx+ ỹt(−τ)

−y+ x̃t(0)+[α(1−2βy+)−x+]ỹt(0)

)
+
(

Wx̃t(−τ)ỹt(−τ)

−αβỹ2
t (0)−x̃t(0)ỹt(0)

)
.

(3.26)

Equating coefficients of z′j(t), j = 1, 2, in (3.26) gives

φ1(0) +
(

2u211(0)z1(t) + u212(0)z2(t)
2u221(0)z1(t) + u222(0)z2(t)

)
+

(
u311(0)(3z2

1(t) + z2
2(t)) + 2u312(0)z1(t)z2(t)

u321(0)(3z2
1(t) + z2

2(t)) + 2u322(0)z1(t)z2(t)

)
=

(
0
0

)
(3.27)

and

φ2(0) +
(

u212(0)z1(t) + 2u213(0)z2(t)
u222(0)z1(t) + 2u223(0)z2(t)

)
+

(
2u311(0)z1(t)z2(t) + u312(0)(z2

1(t) + 3z2
2(t))

2u321(0)z1(t)z2(t) + u322(0)(z2
1(t) + 3z2

2(t))

)
=

(
0
0

)
. (3.28)
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Consequently, we obtain the following initial conditions from (3.27) and (3.28).


1 + 2u211(0)z1(t) + u212(0)z2(t) + u311(0)(3z2

1(t) + z2
2(t)) + 2u312(0)z1(t)z2(t)=0,

1 + 2u221(0)z1(t) + u222(0)z2(t) + u321(0)(3z2
1(t) + z2

2(t)) + 2u322(0)z1(t)z2(t)=0,

1 + 2u212(0)z1(t) + 2u213(0)z2(t) + 2u311(0)z1(t)z2(t) + u312(0)(z2
1(t) + 3z2

2(t))=0,

1 + 2u222(0)z1(t) + 2u223(0)z2(t) + 2u321(0)z1(t)z2(t) + u322(0)(z2
1(t) + 3z2

2(t))=0.

(3.29)

Next, when θ = 0, we note that

z′(t) = Bz(t) =⇒
(

z′1(t)
z′2(t)

)
=

(
iωz1(t)
−iωz2(t)

)
. (3.30)

From the first part of (3.9), we obtain the equation

φ1(θ)z′1(t) + φ2(θ)z′2(t)

+
(

2u211(θ)z1(t)z′1(t)+u212(θ)z′1(t)z2(t)+u212(θ)z1(t)z′2(t)+2u213(θ)z2(t)z′2(t)
2u221(θ)z1(t)z′1(t)+u222(θ)z′1(t)z2(t)+u222(θ)z1(t)z′2(t)+2u223(θ)z2(t)z′2(t)

)
+

(
u311(θ)(3z2

1(t)z
′
1(t)+z′1(t)z

2
2(t)+2z1(t)z2(t)z′2(t))+u312(θ)(2z1(t)z′1(t)z2(t)+z2

1(t)z
′
2(t)+3z2

2(t)z
′
2(t))

u321(θ)(3z2
1(t)z

′
1(t)+z′1(t)z

2
2(t)+2z1(t)z2(t)z′2(t))+u322(θ)(2z1(t)z′1(t)z2(t)+z2

1(t)z
′
2(t)+3z2

2(t)z
′
2(t))

)
= φ′1(θ)z1(t) + φ′2(θ)z2(t)

+
(

u′211(θ)z
2
1(t)+u′212(θ)z1(t)z2(t)+u′213(θ)z

2
2(t)

u′221(θ)z
2
1(t)+u′222(θ)z1(t)z2(t)+u′223(θ)z

2
2(t)

)
+

(
u′311(θ)(z3

1(t)+z1(t)z2
2(t))+u′312(θ)(z2

1(t)z2(t)+z3
2(t))

u′321(θ)(z3
1(t)+z1(t)z2

2(t))+u′322(θ)(z2
1(t)z2(t)+z3

2(t))

)
.

(3.31)

Substituting (3.30) into (3.31) gives the slightly simplified equation

iωφ1(θ)z1(t)− iωφ2(θ)z2(t)

+

(
2iωu211(θ)z2

1(t)− 2iωu213(θ)z2
2(t)

2iωu221(θ)z2
1(t)− 2iωu223(θ)z2

2(t)

)
+

(
u311(θ)

(
3iωz3

1(t)− iωz1(t)z2
2(t)

)
+ u312(θ)

(
iωz2

1(t)z2(t)− 3iωz3
2(t)

)
u321(θ)

(
3iωz3

1(t)− iωz1(t)z2
2(t)

)
+ u322(θ)

(
iωz2

1(t)z2(t)− 3iωz3
2(t)

) )
= iωφ1(θ)z1(t)− iωφ2(θ)z2(t)

+

(
u′211(θ)z

2
1(t) + u′212(θ)z1(t)z2(t) + u′213(θ)z

2
2(t)

u′221(θ)z
2
1(t) + u′222(θ)z1(t)z2(t) + u′223(θ)z

2
2(t)

)
+

(
u′311(θ)

(
z3

1(t) + z1(t)z2
2(t)

)
+ u′312(θ)

(
z2

1(t)z2(t) + z3
2(t)

)
u′321(θ)

(
z3

1(t) + z1(t)z2
2(t)

)
+ u′322(θ)

(
z2

1(t)z2(t) + z3
2(t)

) ) .

(3.32)

Equating coefficients of corresponding terms in (3.32) yields the following uncoupled system
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of ordinary differential equations

u′211(θ) = 2iωu211(θ) ,

u′212(θ) = 0 ,

u′213(θ) = −2iωu213(θ) ,

u′221(θ) = 2iωu221(θ) ,

u′222(θ) = 0 ,

u′223(θ) = −2iωu223(θ) ,

u′311(θ) = iωu311(θ) ,

u′312(θ) = −iωu312(θ) ,

u′321(θ) = iωu312(θ) ,

u′322(θ) = −iωu322(θ) ,

(3.33)

which is easily solved to give:

u211(θ) = c211e2iωθ ,

u212(θ) = c212 ,

u213(θ) = c213e−2iωθ ,

u221(θ) = c221e2iωθ ,

u222(θ) = c222 ,

u223(θ) = c223e−2iωθ ,

u311(θ) = c311eiωθ ,

u312(θ) = c312e−iωθ ,

u312(θ) = c312eiωθ ,

u322(θ) = c322e−iωθ ,

(3.34)

where c211, . . . , c322 are yet-to-be-determined constants of integration. We now express the set
of initial conditions (3.29) in terms of the constants of integration c211, . . . , c322 to get:

1 + 2c211z1(t) + c212(0)z2(t) + c311(3z2
1(t) + z2

2(t)) + 2c312z1(t)z2(t) = 0 ,

1 + 2c221z1(t) + c222z2(t) + c321(3z2
1(t) + z2

2(t)) + 2c322z1(t)z2(t) = 0 ,

1 + 2c212z1(t) + 2c213z2(t) + 2c311z1(t)z2(t) + c312(z2
1(t) + 3z2

2(t)) = 0 ,

1 + 2c222z1(t) + 2c223z2(t) + 2c321z1(t)z2(t) + c322(z2
1(t) + 3z2

2(t)) = 0 .

(3.35)

We solve the system (3.35) for the constants of integration c211, . . . , c322, thus:

c223 = c311 = c312 = c321 = c322 = c213 = 1 ,

c211 = c221 =
−3z3

1 + z1z2
2 − z2

1z2 + 3z3
2 + 2z2

2 − z1 + z2

2z2
1

,

c212 = c222 = −
(

2z1z2 + z2
2 + 3z2

1 + 2z2 + 1
z1

)
,

c221 = c211 =
−3z3

1 + z1z2
2 − z2

1z2 + 3z3
2 + 2z2

2 − z1 + z2

2z2
1

,

c222 = c212 = −
(

2z1z2 + z2
1 + 3z2

2 + 2z2 + 1
z1

)
,

(3.36)
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where c223, c311, c312, c321, c322, c213 are free variables all set to 1, without loss of generality. Now,
substituting (3.36) into (3.34) gives us

u211(θ) =

(−3z3
1 + z1z2

2 − z2
1z2 + 3z3

2 + 2z2
2 − z1 + z2

2z2
1

)
e2iωθ ,

u212(θ) = −
(

2z1z2 + z2
2 + 3z2

1 + 2z2 + 1
z1

)
,

u213(θ) = e−2iωθ ,

u221(θ) =

(−3z3
1 + z1z2

2 − z2
1z2 + 3z3

2 + 2z2
2 − z1 + z2

2z2
1

)
e2iωθ ,

u222(θ) = −
(

2z1z2 + z2
2 + 3z2

1 + 2z2 + 1
z1

)
,

u223(θ) = e−2iωθ ,

u311(θ) = eiωθ ,

u312(θ) = e−iωθ ,

u321(θ) = eiωθ ,

u322(θ) = e−iωθ .

(3.37)

We note from (3.14) that

Φ(θ)z(t) =
(

z1(t)eiωθ + z2(t)e−iωθ

z1(t)eiωθ + z2(t)e−iωθ

)
. (3.38)

From (3.22) and (3.23), we have that

u2(θ)z2(t) =
(

u211(θ)z2
1(t) + u212(θ)z1(t)z2(t) + u213(θ)z2

2(t)
u221(θ)z2

1(t) + u222(θ)z1(t)z2(t) + u223(θ)z2
2(t)

)

=


1
2

(
−3z3

1 + z1z2
2 − z2

1z2 + 3z3
2 + 2z2

2 − z1 + z2
)

e2iωθ

−
(
2z1z2 + z2

2 + 3z2
1 + 2z2 + 1

)
z2 + z2

2e−2iωθ

1
2

(
−3z3

1 + z1z2
2 − z2

1z2 + 3z3
2 + 2z2

2 − z1 + z2
)

e2iωθ

−
(
2z1z2 + z2

1 + 3z2
2 + 2z2 + 1

)
z2 + z2

2e−2iωθ

 ,

(3.39)

and

u3(θ)z3(t) =
(

u311(θ)
(
z3

1 + z1z2
2
)
+ u312(θ)

(
z2

1z2 + z3
2
)

u321(θ)
(
z3

1 + z1z2
2
)
+ u322(θ)

(
z2

1z2 + z3
2
) )

=

( (
z3

1 + z1z2
2
)

eiωθ +
(
z2

1z2 + z3
2
)

e−iωθ(
z3

1 + z1z2
2
)

eiωθ +
(
z2

1z2 + z3
2
)

e−iωθ

)
.

(3.40)

The expressions (3.12), (3.38), (3.39), and (3.40) lead to the following approximation of the
nonlinearity f:

f
(
Φ(θ)z + u2(θ)z2 + u3(θ)z3 + · · ·

)
=

(
f1

f2

)
+ · · · , (3.41)
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where

f1 := W
[

z1e−iωτ + z2eiωτ +
1
2
(
−3z3

1 + z1z2
2 − z2

1z2 + 3z3
2 + 2z2

2 − z1 + z2
)

e−2iωτ

−
(
2z1z2 + z2

2 + 3z2
1 + 2z2 + 1

)
z2 + z2

2e2iωτ

+
(
z3

1 + z1z2
2
)

e−iωτ +
(
z2

1z2 + z3
2
)

eiωτ

]
×
[

z1e−iωτ + z2eiωτ +
1
2
(
−3z3

1 + z1z2
2 − z2

1z2 + 3z3
2 + 2z2

2 − z1 + z2
)

e−2iωτ

−
(
2z1z2 + z2

1 + 3z2
2 + 2z2 + 1

)
z2 + z2

2e2iωτ

+
(
z3

1 + z1z2
2
)

e−iωτ +
(
z2

1z2 + z3
2
)

eiωτ

]
,

(3.42)

and

f2 := − αβ

[
z1 + z2 +

1
2
(
−3z2

1 + z1z2
2 − z2

1z2 + 3z3
2 + 2z2

2 − z1 + z2
)

−
(
2z1z2 + z2

1 + 3z2
2 + 2z2 + 1

)
z2 + z2

2

]2

−
[

z1 + z2 +
1
2
(
−3z2

1 + z1z2
2 − z2

1z2 + 3z3
2 + 2z2

2 − z1 + z2
)

−
(
2z1z2 + z2

2 + 3z2
1 + 2z2 + 1

)
z2 + z2

2

]
×
[

z1 + z2 +
1
2
(
−3z2

1 + z1z2
2 − z2

1z2 + 3z3
2 + 2z2

2 − z1 + z2
)

−
(
2z1z2 + z2

1 + 3z2
2 + 2z2 + 1

)
z2 + z2

2

]
.

(3.43)

Now, substituting (3.14), (3.38), (3.12), (3.42), and (3.43) into (3.21), and setting z1 := x + iy
and z2 = z1 := x− iy, gives us the dynamical system defined on the centre manifold:{

x′ = −ωy + F1111x3 + F1112x2y + F1122xy2 + F1222y3 ,

y′ = ωx + F2111x3 + F2112x2y + F2122xy2 + F2222y3 ,
(3.44)

where the real coefficients F1111, F1112, F1122, F1222, F2111, F2112, F2122, F2222 are extracted using the
symbolic computation algebra package MAPLE, and are too lengthy to include here. To
characterise the criticality of the Hopf bifurcation described in Theorem 3.1, we consider the
so-called Poincaré–Lyapunov constant given by the formula [9, 19]

a :=
3F1111 + F1122 + F2112 + 3F2222

8
. (3.45)

The MAPLE worksheet used to extract these coefficients, calculate, and sketch the Poincaré-
Lyapunov constant (3.45) as a function of the time delay τ is given in the Appendix. As
is well-known [7, 9], if a < 0, then the Hopf bifurcation is supercritical – giving rise to a
stable limit cycle. On the other hand, if a > 0, then the Hopf bifurcation is subcritical,
and generates an unstable limit cycle. Figure 3.1 gives a sketch of a graph of the Poincaré–
Lyapunov constant (3.45) parameterised by the immune response time delay τ, with the rest
of the model parameters held constant.
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Figure 3.1: Change in criticality of Hopf bifurcation of the endemic equilib-
rium (x+, y+) as depicted by a graph of the Poincaré-Lyapunov constant (3.45)
parametrised by the immune response time delay τ. The rest of the model
parameters are fixed as follows [1]: β = 0.002, δ = 0.3743, σ = 0.1181,
W = (θ − m)/n, θ = 3.422× 10−11, α = 2.636, m = 3.422× 10−5, ω = 2.25,
and n = 1.101× 10−7.

Appendix

We begin by giving a full proof of Theorem 2.7.

Proof. In (2.10), let h1(λ) := λ2 + (ψ2 + δ)λ + δψ1 and h2(λ) := (ψ3 − λψ2 − ψ1ψ2)e−λτ. Con-
sider the contour C in the complex plane given by C := C1 ∪ C2, where{

C1 : λ = Reiθ , −π
2 ≤ θ ≤ π

2

C2 : λ = iy , −R ≤ y ≤ R , R ∈ R+ .
(3.46)

On the segment C1, we have that

h2(λ) = h2

(
Reiθ

)
=
(

ψ3 − ψ2Reiθ − ψ1ψ2

)
e−τReiθ

= e−τR cos θ
[
(ψ3 − ψ2R cos θ − ψ1ψ2) cos(τR sin θ)− ψ2R sin θ sin(τR sin θ)

− i {ψ2R sin θ cos(τR sin θ) + (ψ3 − ψ2R cos θ − ψ1ψ2) sin(τR sin θ)}
]

.

(3.47)

Consequently, we obtain

|h2(λ)| = e−τR cos θ
√

ψ2
1ψ2

2 + ψ2
2R2 + ψ2

3 − 2ψ1ψ2ψ3 + 2(ψ1ψ2 − ψ3)ψ2R cos θ

≤
√
(|ψ1ψ2|+ |ψ3|)2 + |ψ1ψ2 − ψ3|2 .

(3.48)

Analogously, on the segment C1, we have that

h1(λ) = QR + iQI , (3.49)

where

QR := R2 cos(2θ) + R(ψ2 + δ) cos θ + δψ1 ,

QI := R2 sin(2θ) + R(ψ2 + δ) sin θ .
(3.50)
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Hence, we obtain

|h1(λ)| =
√

Q2
R + Q2

I

≥
√

2Rδ ·
√
(R + δψ2)(|ψ1|+ R) + |ψ1|(ψ2 + R)

(3.51)

From the inequalities (3.48) and (3.51), it is clear that for R sufficiently large, |h1(λ)| > |h2(λ)|
on the contour segment C1 of C.

We now turn our attention to the segment C2 of the contour C. We obtain

h1(λ) = h1(iy)

= (δψ1 − y2) + iy(ψ1 + δ) .
(3.52)

Thus, we have that

|h1(λ)| =
√

y4 + (δ
2
+ ψ2

1)y2 + δ
2
ψ2

1

≥ δψ1 .
(3.53)

Similarly, we see that

h2(λ) = h2(iy)

= [(ψ3 − ψ1ψ2) cos(yτ)− yψ2 sin(yτ)]− i [(ψ3 − ψ1ψ2) sin(yτ) + yψ2 cos(yτ)] ,
(3.54)

and

|h2(λ)| =
√

ψ2
1ψ2

2 + ψ2
2y2 − 2ψ1ψ2ψ3 + ψ2

3

=
√

ψ2
1ψ2

2 − (2ψ1ψ2ψ3 − ψ2
2y2) + ψ2

3

≤
√

ψ2
1ψ2

2 − 2ψ1ψ2ψ3 + ψ2
3

= |ψ1ψ2 − ψ3| .

(3.55)

Therefore, if follows from (3.53) and (3.55) that if |ψ1ψ2 − ψ3| < δψ1, then |h1(λ)| > |h2(λ)|
on the segment C2 of the contour C. In addition, we do see that if ψ1ψ2 6= ψ3 or ψ1 6= 0,
then neither h1(λ) nor h2(λ) vanishes anywhere on C. Thus, by Rouché’s Theorem [16, p. 247,
Theorem 9.17.3], if |ψ1ψ2 − ψ3| < δψ1 and R is sufficiently large, then h1(λ) and ∆(λ) =

h1(λ) + h2(λ) have the same number of zeroes inside C. In the limit R → +∞, h1(λ) and
∆(λ) have the same number of zeroes with Re(λ) > 0. But h1(λ) = λ2 + (ψ1 + δ)λ + δψ1 has

exactly two zeroes at λ+ := −(ψ1+δ)+|ψ1−δ|
2 < 0 and λ− := −(ψ1+δ)−|ψ1−δ|

2 < 0. This completes
the proof.

We now give a sample MAPLE worksheet that was employed in the calculation and plot-
ting of the Poincaré–Lyapunov constant shown in (3.45), and depicted in Figure 3.1.

>E11:=expand(evalc(W*(z1*exp(-I*omega*tau)+z2*exp(I*omega*tau)+(1/2*(-3*z1^3-z1^2*z2
+z1*z2^2+3*z2^3+2*z2^2-z1+z2))*exp(-(2*I)*omega*tau)-(3*z1^2+2*z1
*z2+z2^2+2*z2+1)*z2+z2^2*exp((2*I)*omega*tau)+(z1^3+z1*z2^2)
*exp(-I*omega*tau)+(z1^2*z2+z2^3)*exp(I*omega*tau))
*(z1*exp(-I*omega*tau)+z2*exp(I*omega*tau)+(1/2*(-3*z1^3-z1^2*z2
+z1*z2^2+3*z2^3+2*z2^2-z1+z2))*exp(-(2*I)*omega*tau)-(z1^2+2*z1*z2
+3*z2^2+2*z2+1)*z2+z2^2*exp((2*I)*omega*tau)+(z1^3+z1*z2^2)
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*exp(-I*omega*tau)+(z1^2*z2+z2^3)*exp(I*omega*tau)))):
> E12 := expand(-alpha*beta*(z1+z2+1/2*(-3*z1^3-z1^2*z2+z1*z2^2+3*z2^3+2*z2^2-z1+z2)

-(z1^2+2*z1*z2+3*z2^2+2*z2+1)*z2+z2^2)^2-(z1+z2+1/2*(-3*z1^3-z1^2*z2
+z1*z2^2+3*z2^3+2*z2^2-z1+z2)-(3*z1^2+2*z1*z2+z2^2+2*z2+1)*z2+z2^2)
*(z1+(1/2)*z2*(-3*z1^3-z1^2*z2+z1*z2^2+3*z2^3+2*z2^2-z1+z2)-(z1^2
+2*z1*z2+3*z2^2+2*z2+1)*z2+z2^2)):

>d_R := -(2*W^2*x*cos(omega*tau)^2+W^2*y^2*cos(omega*tau)^2-2*W*x*cos(omega*tau)
-2*W*y*cos(omega*tau)-2*alpha*y+4*W*tau*x*omega^2*cos(omega*tau)
+4*W*tau*y*omega^2*cos(omega*tau)-4*W*alpha*beta*y*cos(omega*tau)-4*W*y^2
*alpha*beta*cos(omega*tau)+2*x*y+2*delta*y-2*alpha*x-2*alpha*delta+2*x*delta
-4*W*x*alpha*beta*y*cos(omega*tau)+2*W*alpha*cos(omega*tau)+W^2*x^2
*cos(omega*tau)^2+2*W^2*y*cos(omega*tau)^2-2*W*x^2*cos(omega*tau)-2*W*y^2
*cos(omega*tau)+W^2*tau^2*omega^2-2*W*delta*cos(omega*tau)-4*alpha^2*beta*y
+4*alpha^2*beta^2*y^2+4*alpha*beta*y^2+delta^2+x^2+W^2*tau^2*y^2*omega^2
+W^2*tau^2*x^2*omega^2+2*W^2*tau^2*y*omega^2-2*W*x*delta*cos(omega*tau)
-4*W*x*y*cos(omega*tau)-2*W*y*delta*cos(omega*tau)+2*W^2*tau^2*x*omega^2
+4*W*tau*omega^2*cos(omega*tau)+2*W^2*x*y*cos(omega*tau)^2+2*W*x*alpha
*cos(omega*tau)+2*W*y*alpha*cos(omega*tau)+4*alpha*beta*y*delta+4*alpha
*beta*y*x+y^2+2*W^2*tau^2*x*y*omega^2+W^2*cos(omega*tau)^2+alpha^2)/omega^2:

>d_I := -(-4*alpha*omega+4*x*omega+4*y*omega+4*delta*omega-4*W*omega*cos(omega*tau)
+8*alpha*beta*y*omega-4*W*x*omega*cos(omega*tau)
-4*W*y*omega*cos(omega*tau))/omega^2:

>dd := simplify(d_I^2+d_R^2):
>xi := (W*(1+x+y)*cos(omega*tau)+alpha-2*alpha*beta*y-x-delta-y)/omega:
>chi_1 := -2-W*tau*(1+x+y)*cos(omega*tau):
>chi_2 := W*tau*(1+x+y)*sin(omega*tau):
>eta11 := 2*d_R+xi*d_I+d_R*chi_1-d_I*chi_2+I*(-chi_1*d_I-chi_2*d_R+d_R*xi-2*d_I):
>eta21 := 2*d_R+xi*d_I+d_R*chi_1+d_I*chi_2+I*(-chi_1*d_I+chi_2*d_R+d_R*xi-2*d_I):
>eta12 := eta11:
>eta22 := eta21:
>top := simplify(expand(E11*eta11+E12*eta12))/dd:
>z1 := p+I*q:
>z2 := p-I*q:
>realpart_top := coeff(top, I, 0):
>imagpart_top := coeff(top, I, 1):
>ppolyn_p := coeff(realpart_top, q, 0):
>ppolyn_q := coeff(imagpart_top, p, 0):
>Fp111 := coeff(coeff(realpart_top, q, 0), p^3):
>ppolyn_q := coeff(realpart_top, p, 0):
>Fp222 := coeff(ppolyn_q, q^3):
>Fp112 := coeff(coeff(realpart_top, p^2), q):
>Fp122 := coeff(coeff(realpart_top, p), q^2):
>Fq222 := coeff(ppolyn_q, q^3):
>Fq122 := coeff(coeff(imagpart_top, p), q^2):
>Fq112 := coeff(coeff(imagpart_top, p^2), q):
>Fq111 := coeff(coeff(imagpart_top, q, 0), p^3):
>m := 3.422*10^(-5):
>n := 1.101*10^(-7):
>theta := 3.422*10^(-11):
>W := (theta-m)/n:
>psi1 := 2*alpha*beta*y-alpha+x:
>psi2 := W*(1+y):
>psi3 := W*x*y:
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>sin(omega*tau) := omega*(-omega^2*psi2-psi1^2*psi2+delta*psi3+psi1*psi3)
/(omega^2*psi2^2+(psi1*psi2-psi3)^2):

>cos(omega*tau) := (delta*omega^2*psi2+delta*psi1^2*psi2-delta*psi1*psi2
+omega^2*psi3)/(omega^2*psi2^2+(psi1*psi2-psi3)^2):

>a := 1/8*(3*Fp111+Fp122+Fq112+3*Fq222):
>alpha := 2.636:
>beta := 0.2e-2:
>delta := .3743:
>sigma := .1181:
>omega:= 2.25:
>phi := (alpha*beta*delta-W*alpha)^2+4*alpha*beta*W*sigma:
>x := (W*alpha-alpha*beta*delta-sqrt(phi))/(2*W):
>y := (alpha*(beta*delta+W)+sqrt(phi))/(2*W*alpha*beta):
>aa(omega, tau) -> a:
>with(plots): plot(aa(omega, tau), tau = 0.1e-5 .. 0.6e-2,
axes = boxed, font = [C, bold, 14],thickness = 4,
labels = [tau, "a"], labelfont = ["HELVETICA", 14],
color = "Blue", gridlines);
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