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On S-shaped and reverseédshaped
bifurcation curves for singular problems

Eunkyung Kd, Eun Kyoung Leg R. Shivaiji

Abstract

We analyze the positive solutions to the singular boundahyevproblem

{—(\u’\p?u’)' =4 (o,1),
u(0) = 0 = u(1),

wherep > 1,8 € (0,1),A > 0andg : [0,00) — R is aC"! function. In
particular, we discuss examples whghf) > 0 and whery(0) < 0 that lead
to S-shaped and reversétishaped bifurcation curves, respectively.

1 Introduction

We consider the singular boundary value problem involvhegtLaplacian op-
erator of the form:

u(0) =0 = u(1), D

{—<|u'|p2u'>' =2 (0,1),
wherep > 1,5 € (0,1),A > 0 is a parameter angd : [0,1] — Ris a(C"
function. Problem(1.1) arises in the study of non-Newtonian fluids ([6]) and
nonlinear diffusion problems. The quantjbyis a characteristic of the medium,
and forp > 2 the fluids medium are called dilatant fluids, while those with 2
are called pseudoplastics. Whee= 2 they are Newtonian fluids ([5]).
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In this paper, we study the following two examples:
(A) g(u) = exri;a >0,
(B) g(u) =u*—au®+bu—c;a>0,b>0andec > 0.

Note that in Cas€A) lim,_ ., % = +oo (Infinite Positone Case) and in Case
(B)lim,_ ¢ % = —oo (Infinite Semipositone Case). When= 2 andj = 0,
Case(A) is generally referred as the one-dimensional perturbeth@eproblem
([1]).

In Case(A) we will prove that fora large, the bifurcation curve of positive
solution is at least-shaped, while in Casg?) for certain ranges of, b andc,
we will prove that the bifurcation curve of positive solutis at least reversed
S-shaped. Fop = 2 andj3 = 0, results onS-shaped bifurcation curves have been
studied by many authors ([3], [7], [8], [11] and [12]) anduls on a reversed-
shaped bifurcation curve have been studied by Castro andjshi([4]). We will
establish the results via the quadrature method which wedescribe in Section
2. In Section3, we will discuss CaséA), and in Sectionl we will discuss Case
(B). In Section5, we provide computational results describing the exaghaha
of the two bifurcation curves.

2 Preliminaries

In this section we give some preliminaries. Lfgt) = % and we rewritg1.1)

as.
{_(WP’ w) = Af(u); (0,1), (2.1)
u(0) = 0 = u(1).

It follows easily that ifu is a strictly positive solution of2.1), then necessarily
u must be symmetric about = 3.« > 0;(0,1) andu’ < 0;(3,1). To prove
our main results, we will first state some lemmas that folloonf the quadrature
method described in [2] and [10] for the one dimensignalaplacian problem
for p > 1. See als@3], [4] and[9] for the description of the quadrature method in
the case = 2. DefineF : R, — Rby F(u) := [, f(s)dsandG : D C R, —
R, be defined by

a1 1 P ds
(o) =221 / i . (2.2)

whereD = {p > 0|f(p) > 0and F(p) > F(s), V0 < s < p}.

Lemma 2.1. (See [10])(u, A\) is a positive solution of2.1) with A > 0 if and
only it A(p)» = G(p), wherep = [ul] = sup,c(o. uls) = u(3).

Now we also state an important lemma that can be easily ddduom the
results in [3] for thep—Laplacian problem.
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Lemma 2.2. G(p) is differentiable onD and

dG(p) H(p
)yt [ H= ), 29

whereH (s) = F(s) — %sf(s).

't)\_/
Q.
@

We will deduce information on the nature of the bifurcatiome by analyzing
the sign of G2 Itis clear that's2 has the same sign gs ()\(p)%> . From(2.3),

a sufficient condition fon‘%? to be positive is:

H(p) > H(s) Vse€l0,p) (2.4)
and a sufficient condition fo?% to be negative is:

H(p) < H(s) Vse€|[0,p). (2.5)

Hence, ifH’(s) > 0 for all s > 0, thenG(p) = ()\(p))% is a strictly increasing
function, i.e. the bifurcation curve is neith&rshaped nor reverseftshaped.

In Section3, for the CaseA, we will show that ifa > 1, then there exist
po > 0 andp; > po such thatd’(s) > 0;0 < s < py andH (p;) < 0 (see Figure

1).

n

Po

Figure 1. Functiorf for the Cased

Here,D = (0,00),lim, .o+ G(p) = 0 and sincdim, .., 24 = 0 we obtaln
lim, .. G(p) = co. (See [2], TheorenT ). Now, using(2.4) — (2.5), G'(p) >
for 0 < p < pp andG’(p;) < 0. Hence this will establish that the bifurcation

curve is at least-shaped (see Figugy.
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Figure 2:S—shaped bifurcaiton curve

In Section4, for the Case3, for certain ranges ai, b, c andp we will show
that f and I take the following shapes (see Figaeand f'(s) > 0;s > 0.

f

/ B | ﬁ | |

Figure 3: Functiong (u) and F'(u)

Here 3 and@ are the unique positive zeros ffand F', respectively. Further,
we will show thatH'(s) < 0;0 < s < # and there existg, > 6 such that
H(psy) > 0 (see Figurel).
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Figure 4: FunctiorH for the CaseB

HereD = (0, 00),lim, 4+ G(p) > 0 and sincdim,_. Sf;(f)l = 00, we obtain
thatlim, .., G(p) = 0. (See [2], Theoren ). Now using(2.4) —(2.5), G'(p) < 0
for p € (0,0 + ¢) fore = 0 andG’(p2) > 0. Hence this will establish that the

bifurcation curve is at least reversgeshaped (see Figurs.

o p

Figure 5: Reversed —shaped bifurcation curves

Finally, in Section5, we will use Mathematica computations to provide the
exact shape of the bifurcation curves for certain values®parameters involved.

3 Infinite Positone Cased

Here we study the Casé&, namely the boundary value problem :
o Hp—2,,1\ — e%,
u(0) =0 =wu(1),

wherep > 1,a > 0 and0 < 3 < 1. We prove:

Theorem 3.1.VA > 0, the problem(3.1) has a solution. Further, there exist
A1 > 0and)\, > 0 such that(3.1) has at least three solutions fare (A, A2) for
a> 1.
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Proof . To prove Theoren3.1, from our discussion in SectioRit is enough to
show that whemv > 1 H has the shape in Figuie: namely

o lim, o+ H'(s) > 0.

e there existg; > 0 such that(p;) < 0.

Heref(s) = e““ . Recall that" (u fo s)dsandH (s) = F(s)—sf(s).
Clearly H(0) = O. Slncef’( ) = eats {W —2+1}, we have

[(p=1)f(s) = sf'(s)]

as

eots as O[2 ﬁ
g — 1 — a+ts _
p [(p ) Sﬁ Se <SB(OZ + 8)2 Sﬁ-i—l)]

_ eas {(ﬁ+p—1)(a+s)2—a25}
- psP (a+s)? '

= ==

and hencdim;_,o+ H'(s) = +oo. Next, we show that there exisps > 0 such

that f(p1) < 0. Takep; = a. Then we have thatl (o) = [ f(s)ds — & f(a).
Since
dH () 1 a .,
— (1-= 2
el — (1-3) - 21t
(&

we obtain that2®) — o0 asa — oo. HenceH (a) < 0 for a > 1. Hence,
H (s) has the shape in Figusgfor o >> 1, and Theoren3.1 is proven.

4 Infinite Semipositone CaseB

Here we study the Cade, namely the boundary value problem :

_(|u/‘p—2u/)/ — )\ugfauu;rbu c. (0 1)
u(

0) =0 =u(1), 41

wherep > 1, a, b andc are positive real numbers afick 5 < 1. We establish:
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Theorem 4.1.Leta > 0 be fixed and lep € [2 — 3,3 — 2(3). Then there exist
positive quantites*(a), c¢*(a), A1, A* and )\, such that foh > b*(a) andc < ¢*(a)
the followings are true:

(1) for A < Xy, (4.1) has at least one solution.
(2) for A > Ay, (4.1) has no solution.
(3) for Ay < A < A%, (4.1) has at least three solutions.

Proof. To prove Theorem.1 from our discussion in Sectio® it is enough to
show that for certain parameter valugshas the shape in Figude: namely

e f'(s) > 0forall s> 0.

e H'(s) <0;0<s <.

e there existg, > 0 such that{ (p;) > 0.
Here f(u) = “=wtbu=c First, we show thaf’(s) > 0 for all s > 0. Indeed, if
b > % = by,

I's) = o 8)s* — a2 — B)s' 7 + b(1 — B)s ™ + fes !
> s7[B3- ﬁ)_s —a(2—3)s+b(1 - B)]

- (2—pB)a (2 B)W (1—p)b
"Sﬁ@_ﬁ)(s 23 m) G- 97 3—5]
- [ 2-p)P  (1-05)b
> B0 |~ —p 3—5}
- (2 - p)a?
R Yo T R
> 0.
Next, sincef is increasing orf0, o), lim, .o+ f(s) = —oo andlim,_., f(s) =

+o0, there exists a unique > 0 such thatf(5) = 0 and a uniqué > [ such that
F(0) = 0. Now recall thatf (s) = F(s) — 2sf(s). Clearly H(0) = 0. We will
now show that’(s) < 0;0 < s < 6. First note that

1 a b c
F(s) = P a0 20— P <050<s <.
(s) 4_53 3_53 +2—ﬁ8 1—58 <0;0<s<
Hence
s 1=Bay all=B) ,,  b1-B)
P L@ h o @by Do gcs<h. (4.2
cs 4_55 33 s+ 53 s (4.2)
Now sincep < 3 — 23, if b > 3(5 5;%}:@&’;5&@3;) .= by, by using(4.2), we
obtain that
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pH'(s) = (p—=1)f(s) = sf'(s)
= (p—4+p)s" - a@ 3+ 8)s* " +b(p — 2+ B)s' 7

—c(p —1+ﬁ)s
< (p—4+08)s" —alp—3+p8)s" " +b(p—2+3)s"’
—(p—1+ﬁ)[ g” <31 §>525+b<21 5)15]
_ [3(p—5+2ﬁ)8 _2a(p—4+2ﬁ)8+b(p 3+2ﬁ)]8 5
4—p 3—p 2-p
_ [%p—5+mn<s_a@—ﬁxp—4+2m)2
4—p 3(3—B)(p—5+208)
(4P p-4+28)?*  blp—3+26) 1517
3(3—8)*(p —5+2p) 24
< [- a*(4— B)(p—4+20)? L bp—3+206) J51-7
3(3—8)*(p—5+2p) 2-p
p—3+28, _@R-HUA-Bp-4+20" i

= 53 [_
< 0;0<s<0.

3(3—0)*(p—5+26)(p—3+20)

Next, we show that there exists > 6 such thatH (p;) > 0. Let p» = pa, where

_ 2=B)(p=3+0) q;j _ ;
1= =B (p—ith)" Sincep > 2 — 3, we obtain that

H(pz) = F(p2) — @f(/)z)

_ _ B _ 1-8
= 4_5/)2 3 BPQ +2_5P2 1— 3"

—%[pi’_ﬁ apy ™ +bpy " —epy” |
__péﬂp—4+53_a@—3+m2 b(p—2+ )
R A A

1-p

1-p

py " p—4+B 3 alp—3+p8) 5 clp—1+p)
> » [ 1-3 Py — 5-5 Py — -3 ]
_ pé_ﬁ[((p—4+ﬁ)u_p—3+ﬁ)u2a3_0(p—1+ﬁ)]

p 4-p 3-p 1-p

_ o p=148), (1=B(2Ap=348) a5
p1-8) '‘-1+8B-pE-p" '
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Thus we have (p,) > 0if ¢ < éljﬂgé(fg;’(ﬁ)ﬁ)) p2a® = c¢*(a). Since H(0) =

0,H'(s) < 0;0 < s < #andH(py) > 0, clearly p, > 6. Taking b*(a) =
max{by, bo }, it follows that forb > bv*(a) andc < ¢*(a), Theoremi.1 holds.

Remark 4.1. The range restriction op here helps us prove analytically that the
bifurcation curve is reversefl-shaped. However, this is not a necessary condition
as seen from our computational result. (See Exarfiplén Sectionb)

5 Computational Results

Here using Mathematica computations(@f2), we derive the exact bifurcation
curves for the following examples:

(a) CaseA withp =1.6,a=10ands = 0.5

)

(b) CaseA withp =10, = 50 and = 0.5
) CaseBwithp =2.5,a=10,b="72,¢c=1andf =0.1
)

(c
(

d) CaseB withp =3,a =10,b =50,c =20ands = 0.1

4[)({7
300
200

100|

|
8605 10 15 2o 25 3¢ I R R T LT

Figure 6: Examplga) p = 1.6, = 10 andg = 0.5
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Figure 7: Exampléb) p = 10, = 50 and = 0.5

Figure 8:

40
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Exampléc) p = 2.5,a = 10,b = 72,¢c=1ands = 0.1
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Figure 9: Exampléd) p = 3,a = 10,0 = 50,c = 20 andj = 0.1
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