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OnS-shaped and reversedS-shaped
bifurcation curves for singular problems

Eunkyung Ko∗, Eun Kyoung Lee†, R. Shivaji‡

Abstract

We analyze the positive solutions to the singular boundary value problem
{

−(|u′|p−2u′)′ = λ
g(u)
uβ ; (0, 1),

u(0) = 0 = u(1),

wherep > 1, β ∈ (0, 1), λ > 0 andg : [0,∞) → R is aC1 function. In
particular, we discuss examples wheng(0) > 0 and wheng(0) < 0 that lead
to S-shaped and reversedS-shaped bifurcation curves, respectively.

1 Introduction

We consider the singular boundary value problem involving thep-Laplacian op-
erator of the form:

{

−(|u′|p−2u′)′ = λ
g(u)
uβ ; (0, 1),

u(0) = 0 = u(1),
(1.1)

wherep > 1, β ∈ (0, 1), λ > 0 is a parameter andg : [0, 1] → R is a C1

function. Problem(1.1) arises in the study of non-Newtonian fluids ([6]) and
nonlinear diffusion problems. The quantityp is a characteristic of the medium,
and forp > 2 the fluids medium are called dilatant fluids, while those withp < 2
are called pseudoplastics. Whenp = 2 they are Newtonian fluids ([5]).
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In this paper, we study the following two examples:

(A) g(u) = e
αu

α+u ; α > 0,

(B) g(u) = u3 − au2 + bu − c ; a > 0, b > 0 andc > 0.

Note that in Case(A) limu→+0
g(u)
uβ = +∞ (Infinite Positone Case) and in Case

(B) limu→+0
g(u)
uβ = −∞ (Infinite Semipositone Case). Whenp = 2 andβ = 0,

Case(A) is generally referred as the one-dimensional perturbed Gelfand problem
([1]).

In Case(A) we will prove that forα large, the bifurcation curve of positive
solution is at leastS-shaped, while in Case(B) for certain ranges ofa, b andc,

we will prove that the bifurcation curve of positive solution is at least reversed
S-shaped. Forp = 2 andβ = 0, results onS-shaped bifurcation curves have been
studied by many authors ([3], [7], [8], [11] and [12]) and results on a reversedS-
shaped bifurcation curve have been studied by Castro and Shivaji in ([4]). We will
establish the results via the quadrature method which we will describe in Section
2. In Section3, we will discuss Case(A), and in Section4 we will discuss Case
(B). In Section5, we provide computational results describing the exact shapes
of the two bifurcation curves.

2 Preliminaries

In this section we give some preliminaries. Letf(u) = g(u)
uβ and we rewrite(1.1)

as:
{

−(|u′|p−2u′)′ = λf(u) ; (0, 1),

u(0) = 0 = u(1).
(2.1)

It follows easily that ifu is a strictly positive solution of(2.1), then necessarily
u must be symmetric aboutx = 1

2
, u′ > 0; (0, 1

2
) andu′ < 0; (1

2
, 1). To prove

our main results, we will first state some lemmas that follow from the quadrature
method described in [2] and [10] for the one dimensionalp−Laplacian problem
for p > 1. See also[3], [4] and[9] for the description of the quadrature method in
the casep = 2. DefineF : R+ → R by F (u) :=

∫ u

0
f(s) ds andG : D ⊆ R+ →

R+ be defined by

G(ρ) := 2(
p − 1

p
)

1

p

∫ ρ

0

ds

(F (ρ) − F (s))
1

p

, (2.2)

whereD = {ρ > 0|f(ρ) > 0 and F (ρ) > F (s), ∀ 0 ≤ s < ρ}.

Lemma 2.1. (See [10])(u, λ) is a positive solution of(2.1) with λ > 0 if and

only if λ(ρ)
1

p = G(ρ), whereρ = ‖u‖ = sups∈(0,1) u(s) = u(1
2
).

Now we also state an important lemma that can be easily deduced from the
results in [3] for thep−Laplacian problem.
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Lemma 2.2. G(ρ) is differentiable onD and

dG(ρ)

dρ
= 2(

p − 1

p
)

1

p

∫ 1

0

H(ρ) − H(ρv)

[F (ρ) − F (ρv)]
p+1

p

dv, (2.3)

whereH(s) = F (s) − 1
p
sf(s).

We will deduce information on the nature of the bifurcation curve by analyzing

the sign ofdG(ρ)
dρ

. It is clear thatdG(ρ)
dρ

has the same sign asd
dρ

(

λ(ρ)
1

p

)

. From(2.3),

a sufficient condition fordG(ρ)
dρ

to be positive is:

H(ρ) > H(s) ∀ s ∈ [0, ρ) (2.4)

and a sufficient condition fordG(ρ)
dρ

to be negative is:

H(ρ) < H(s) ∀ s ∈ [0, ρ). (2.5)

Hence, ifH ′(s) > 0 for all s > 0, thenG(ρ) = (λ(ρ))
1

p is a strictly increasing
function, i.e. the bifurcation curve is neitherS-shaped nor reversedS-shaped.

In Section3, for the CaseA, we will show that ifα ≫ 1, then there exist
ρ0 > 0 andρ1 > ρ0 such thatH ′(s) > 0; 0 < s < ρ0 andH(ρ1) < 0 (see Figure
1).

Ρ0 Ρ1
s

H

Figure 1: FunctionH for the CaseA

Here,D = (0,∞), limρ→0+ G(ρ) = 0 and sincelims→∞

f(s)
sp−1 = 0 we obtain

limρ→∞ G(ρ) = ∞. (See [2], Theorem7 ). Now, using(2.4) − (2.5), G′(ρ) > 0
for 0 < ρ ≤ ρ0 andG′(ρ1) < 0. Hence this will establish that the bifurcation
curve is at leastS-shaped (see Figure2).
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Λ1 Λ2
Λ
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Figure 2:S−shaped bifurcaiton curve

In Section4, for the CaseB, for certain ranges ofa, b, c andp we will show
thatf andF take the following shapes (see Figure3) andf ′(s) > 0; s ≥ 0.

Β
u

f

Β Θ
u

F

Figure 3: Functionsf(u) andF (u)

Hereβ andθ are the unique positive zeros off andF , respectively. Further,
we will show thatH ′(s) < 0; 0 < s ≤ θ and there existsρ2 > θ such that
H(ρ2) > 0 (see Figure4).
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Θ Ρ2
s

H

Figure 4: FunctionH for the CaseB

HereD = (θ,∞), limρ→θ+ G(ρ) > 0 and sincelims→∞

f(s)
sp−1 = ∞, we obtain

thatlimρ→∞ G(ρ) = 0. (See [2], Theorem7 ). Now using(2.4)−(2.5), G′(ρ) < 0
for ρ ∈ (θ, θ + ǫ) for ǫ ≈ 0 andG′(ρ2) > 0. Hence this will establish that the
bifurcation curve is at least reversedS-shaped (see Figure5).

Λ1 Λ* Λ2
Λ

Θ

Ρ2

Ρ

Λ1 Λ2Λ*
Λ

Θ

Ρ2

Ρ

Figure 5: ReversedS−shaped bifurcation curves

Finally, in Section5, we will use Mathematica computations to provide the
exact shape of the bifurcation curves for certain values of the parameters involved.

3 Infinite Positone CaseA

Here we study the CaseA, namely the boundary value problem :
{

−(|u′|p−2u′)′ = λ e
αu

α+u

uβ ; (0, 1),

u(0) = 0 = u(1),
(3.1)

wherep > 1, α > 0 and0 < β < 1. We prove:

Theorem 3.1. ∀λ > 0, the problem(3.1) has a solution. Further, there exist
λ1 > 0 andλ2 > 0 such that(3.1) has at least three solutions forλ ∈ (λ1, λ2) for
α ≫ 1.
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Proof . To prove Theorem3.1, from our discussion in Section2 it is enough to
show that whenα ≫ 1 H has the shape in Figure1 : namely

• lims→0+ H ′(s) > 0.

• there existsρ1 > 0 such thatH(ρ1) < 0.

Heref(s) = e
αs

α+s

sβ . Recall thatF (u) =
∫ u

0
f(s) ds andH(s) = F (s)− 1

p
sf(s).

ClearlyH(0) = 0. Sincef ′(s) = e
αs

α+s{ α2

sβ(α+s)2
− β

sβ+1}, we have

H ′(s) =
1

p

[

(p − 1)f(s) − sf ′(s)
]

=
1

p

[

(p − 1)
e

αs
α+s

sβ
− se

αs
α+s

(

α2

sβ(α + s)2
−

β

sβ+1

)

]

=
e

αs
α+s

psβ

[

(β + p − 1)(α + s)2 − α2s

(α + s)2

]

.

and hencelims→0+ H ′(s) = +∞. Next, we show that there existsρ1 > 0 such
thatH(ρ1) < 0. Takeρ1 = α. Then we have thatH(α) =

∫ α

0
f(s)ds − α

p
f(α).

Since

dH(α)

dα
=

(

1 −
1

p

)

f(α) −
α

p
f ′(α)

=

(

1 −
1

p

)

e
α
2

αβ
−

α

p

e
α
2

αβ

(

1

4
−

β

α

)

=
e

α
2

αβ

[(

1 −
1

p

)

−
α

4p
+

β

p

]

=
1

p
e

α
2 α1−β

[

β + p − 1

α
−

1

4

]

,

we obtain thatdH(α)
dα

→ −∞ asα → ∞. HenceH(α) < 0 for α ≫ 1. Hence,
H(s) has the shape in Figure3 for α ≫ 1, and Theorem3.1 is proven.

4 Infinite Semipositone CaseB

Here we study the CaseB, namely the boundary value problem :
{

−(|u′|p−2u′)′ = λu3
−au2+bu−c

uβ ; (0, 1),

u(0) = 0 = u(1),
(4.1)

wherep > 1, a, b andc are positive real numbers and0 < β < 1. We establish:
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Theorem 4.1. Let a > 0 be fixed and letp ∈ [2 − β, 3 − 2β). Then there exist
positive quantitesb∗(a), c∗(a), λ1, λ

∗ andλ2 such that forb > b∗(a) andc < c∗(a)
the followings are true:

(1) for λ ≤ λ2, (4.1) has at least one solution.

(2) for λ > λ2, (4.1) has no solution.

(3) for λ1 < λ < λ∗, (4.1) has at least three solutions.

Proof. To prove Theorem4.1 from our discussion in Section2, it is enough to
show that for certain parameter valuesH has the shape in Figure4 : namely

• f ′(s) > 0 for all s ≥ 0.

• H ′(s) < 0; 0 < s ≤ θ.

• there existsρ2 > θ such thatH(ρ2) > 0.

Heref(u) = u3
−au2+bu−c

uβ . First, we show thatf ′(s) > 0 for all s ≥ 0. Indeed, if

b >
(2−β)2a2

4(3−β)(1−β)
:= b1,

f ′(s) = (3 − β)s2−β − a(2 − β)s1−β + b(1 − β)s−β + βcs−β−1

> s−β
[

(3 − β)s2 − a(2 − β)s + b(1 − β)
]

= s−β(3 − β)

[

(

s −
(2 − β)a

2(3 − β)

)2

−
(2 − β)2a2

4(3 − β)2
+

(1 − β)b

3 − β

]

> s−β(3 − β)

[

−
(2 − β)2a2

4(3 − β)2
+

(1 − β)b

3 − β

]

= s−β(1 − β)

[

−
(2 − β)2a2

4(3 − β)(1 − β)
+ b

]

> 0.

Next, sincef is increasing on(0,∞), lims→0+ f(s) = −∞ andlims→∞ f(s) =
+∞, there exists a uniqueβ > 0 such thatf(β) = 0 and a uniqueθ > β such that
F (θ) = 0. Now recall thatH(s) = F (s) − 1

p
sf(s). ClearlyH(0) = 0. We will

now show thatH ′(s) < 0 ; 0 < s ≤ θ. First note that

F (s) =
1

4 − β
s4−β −

a

3 − β
s3−β +

b

2 − β
s2−β −

c

1 − β
s1−β < 0 ; 0 < s ≤ θ.

Hence

cs−β >
1 − β

4 − β
s3−β −

a(1 − β)

3 − β
s2−β +

b(1 − β)

2 − β
s1−β ; 0 < s ≤ θ. (4.2)

Now sincep < 3 − 2β, if b >
(2−β)(4−β)(p−4+2β)2a2

3(3−β)2(p−5+2β)(p−3+2β)
:= b2, by using(4.2), we

obtain that
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pH ′(s) = (p − 1)f(s) − sf ′(s)

= (p − 4 + β)s3−β − a(p − 3 + β)s2−β + b(p − 2 + β)s1−β

− c(p − 1 + β)s−β

< (p − 4 + β)s3−β − a(p − 3 + β)s2−β + b(p − 2 + β)s1−β

− (p − 1 + β)[
1 − β

4 − β
s3−β −

a(1 − β)

3 − β
s2−β +

b(1 − β)

2 − β
s1−β]

= [
3(p − 5 + 2β)

4 − β
s2 −

2a(p − 4 + 2β)

3 − β
s +

b(p − 3 + 2β)

2 − β
]s1−β

= [
3(p − 5 + 2β)

4 − β

(

s −
a(4 − β)(p − 4 + 2β)

3(3 − β)(p − 5 + 2β)

)2

−
a2(4 − β)(p − 4 + 2β)2

3(3 − β)2(p − 5 + 2β)
+

b(p − 3 + 2β)

2 − β
]s1−β

< [ −
a2(4 − β)(p − 4 + 2β)2

3(3 − β)2(p − 5 + 2β)
+

b(p − 3 + 2β)

2 − β
]s1−β

=
p − 3 + 2β

2 − β
[ −

a2(2 − β)(4 − β)(p − 4 + 2β)2

3(3 − β)2(p − 5 + 2β)(p − 3 + 2β)
+ b ]s1−β

< 0 ; 0 < s ≤ θ.

Next, we show that there existsρ2 > θ such thatH(ρ2) > 0. Let ρ2 = µa, where
µ = (2−β)(p−3+β)

(3−β)(p−4+β)
. Sincep ≥ 2 − β, we obtain that

H(ρ2) = F (ρ2) −
ρ2

p
f(ρ2)

=
1

4 − β
ρ

4−β
2 −

a

3 − β
ρ

3−β
2 +

b

2 − β
ρ

2−β
2 −

c

1 − β
ρ

1−β
2

−
ρ2

p
[ ρ

3−β
2 − aρ

2−β
2 + bρ

1−β
2 − cρ

−β
2 ]

=
ρ

1−β
2

p
[
p − 4 + β

4 − β
ρ3

2 −
a(p − 3 + β)

3 − β
ρ2

2 +
b(p − 2 + β)

2 − β
ρ2

−
c(p − 1 + β)

1 − β
]

≥
ρ

1−β
2

p
[
p − 4 + β

4 − β
ρ3

2 −
a(p − 3 + β)

3 − β
ρ2

2 −
c(p − 1 + β)

1 − β
]

=
ρ

1−β
2

p
[

(

(p − 4 + β)µ

4 − β
−

p − 3 + β

3 − β

)

µ2a3 −
c(p − 1 + β)

1 − β
]

=
ρ

1−β
2 (p − 1 + β)

p(1 − β)
[

(1 − β)(−2(p − 3 + β))

(p − 1 + β)(3 − β)(4 − β)
µ2a3 − c ].
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Thus we haveH(ρ2) > 0 if c <
(1−β)(−2(p−3+β))
(p−1+β)(3−β)(4−β)

µ2a3 := c∗(a). SinceH(0) =

0, H ′(s) < 0 ; 0 < s ≤ θ and H(ρ2) > 0, clearly ρ2 > θ. Taking b∗(a) =
max{b1, b2}, it follows that forb > b∗(a) andc < c∗(a), Theorem4.1 holds.

Remark 4.1. The range restriction onp here helps us prove analytically that the
bifurcation curve is reversedS-shaped. However, this is not a necessary condition
as seen from our computational result. (See Example(d) in Section5)

5 Computational Results

Here using Mathematica computations of(2.2), we derive the exact bifurcation
curves for the following examples:

(a) CaseA with p = 1.6, α = 10 andβ = 0.5

(b) CaseA with p = 10, α = 50 andβ = 0.5

(c) CaseB with p = 2.5, a = 10, b = 72, c = 1 andβ = 0.1

(d) CaseB with p = 3, a = 10, b = 50, c = 20 andβ = 0.1

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Λ0

100

200

300

400
Ρ

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Λ0

5

10

15

20

25
Ρ

Figure 6: Example(a) p = 1.6, α = 10 andβ = 0.5
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Figure 7: Example(b) p = 10, α = 50 andβ = 0.5
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Λ0.00
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0.30
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Figure 8: Example(c) p = 2.5, a = 10, b = 72, c = 1 andβ = 0.1
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Figure 9: Example(d) p = 3, a = 10, b = 50, c = 20 andβ = 0.1
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