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s Subje
t Classi�
ation: Primary 34D20, 39A30.1 Introdu
tionConsider the di�eren
e equation
xn+1 = Mnxn, n = 0, 1, 2, . . . , (1)where xn ∈ R

2 and Mn ∈ R
2×2. We do not 
onsider the trivial 
ase whenall the entries of Mn are equal to 0 for some n. Let ‖M‖ be the spe
tralnorm, i.e., ‖M‖ is the square root of the largest eigenvalue of the symmetri
positive semi-de�nite matrix MTM. It is well-known [3, p. 232℄ that if

∏

∞

n=0 ‖Mn‖ = 0, then all solutions of equation (1) tend to zero as n → ∞,i.e., the zero solution is asymptoti
ally stable. Á. Elbert [10℄ gave a su�
ient
ondition for the asymptoti
 stability under the assumptions
(i)
∏

∞

n=0 max {‖Mn‖, 1} < ∞,
(ii) 0 <

∏

∞

n=0 ‖Mn‖,
(iii)

∏

∞

n=0 max {| detMn|, 1} < ∞.His proof was based on estimation of the norm of some spe
ial matri
es anda �tri
ky� de
omposition of matri
es Mn. He applied this result to dedu
ean Armellini-Tonelli-Sansone-type theorem (abbreviated as A-T-S theorem),i.e., a theorem guaranteeing asymptoti
 stability with respe
t to x for thezero solution of the linear se
ond order di�erential equation
x′′ + a(t)x = 0 (a(t) ր ∞, t → ∞) (2)with step fun
tion 
oe�
ient a [11, 12℄.I. Bihari [5℄ and Elbert [9℄ introdu
ed the half-linear di�erential equation

x′′|x′|m−1 + q(t)|x|m−1x = 0, m ∈ R
+, (3)whi
h has attra
ted attention, and it has an extensive literature (see, e.g., [7℄,[8℄ and the referen
es therein). Bihari [6℄ has generalized the A-T-S theoremto this equation in the 
ase of smooth 
oe�
ient q, requiring �regular� growthEJQTDE, 2011 No. 38, p. 2



of q. Roughly speaking, this 
ondition means that the growth of q 
annotbe lo
ated to a set with small measure (see Se
tion 3). Of 
ourse, a stepfun
tion q does not satisfy this 
ondition. Elbert's method, using a wide anddeep ma
hinery from linear analysis, does not apply to the half-linear 
ase.In this paper we establish an A-T-S theorem for the half-linear di�erentialequation with step fun
tion 
oe�
ient q. The proof is based upon a geometri
method. This method applies also to the linear 
ase, so we 
an give a newsimple proof for Elbert's result, assuming only lim supn→∞

∏n

k=0 ‖Mk‖ < ∞instead of (i) � (iii).2 Di�eren
e equationTo investigate equation (1), we will de�ne a di�eren
e equation on the planewhi
h has the same stability properties as equation (1). Let us introdu
ethe following notations for the matri
es of the re�e
tion with respe
t to the
x-axis, and of the rotation around the origin 
ounter
lo
kwise with ϕ in R

2:
R =

(

1 0
0 −1

)

, E(ϕ) =

(

cos ϕ − sin ϕ
sin ϕ cos ϕ

)

. (4)Obviously,
E(ϕ1)E(ϕ2) = E(ϕ1 + ϕ2), E(ϕ)R = RE(−ϕ). (5)We will need the following theorem (see, e.g., [16, p. 188℄):Theorem (polar fa
torization). Every M ∈ R

n×n 
an be represented as aprodu
t M = SQ where S is symmetri
, positive semi-de�nite, and Q isorthogonal. S is uniquely determined while Q is unique if and only if M isnon-singular.In this theorem S is the square root of the symmetri
 positive semi-de�nite matrix MTM. If M ∈ R
n×n is non-singular, then the produ
t MTMis positive de�nite, thus it 
an be diagonalized: MTM = PD2P−1, where D2is the diagonal matrix 
ontaining the eigenvalues of MTM and the orthogonalmatrix P has the proper eigenve
tors in its 
olumns. Then S = PDP−1 and

M = PDP−1Q. (6)EJQTDE, 2011 No. 38, p. 3



Denote by Λ and λ the eigenvalues of MTM (‖M‖ = Λ ≥ λ > 0). Supposethat the diagonal elements in D are in de
reasing order. If detM = 0, then
S is positive semi-de�nite and the symmetri
 matrix S̃ := ‖M‖−1S 
an berepresented as S̃ = PD̃P−1, where P is orthogonal and

D̃ =

(

1 0
0 0

)

.Applying the above argument to the 
oe�
ient matri
es of (1), we have
Mn = ‖Mn‖PnD̂nP

−1
n Qn, (7)where

D̂n :=

(

1 0
0 dn

)

, dn :=

{ √

λn

Λn

> 0, if detMn 6= 0;
0, if detMn = 0. (8)Let us examine the �ow Fn :=

∏n

k=0 Mk of equation (1). Using the fa
t, thatthe produ
t of orthogonal matri
es are also orthogonal, Fn has the form
Fn =

n
∏

k=0

PkD̂kP
−1
k Qk =

(

n
∏

k=0

‖Mk‖
)

Pn

(

n
∏

k=0

D̂kOk

)

, (9)where the orthogonal matri
es Ok (k = 0, . . . , n + 1) are de�ned by
O0 := P−1

0 Q0, Ok = P−1
k QkPk−1, k = 1, . . . , n, (10)and the produ
t ∏n

k=0 Nk is meant in the order Nn · · ·N0. It is known fromthe elementary geometry that in the plane every orthogonal transformationis a rotation or a produ
t of a rotation and a re�e
tion with respe
t to the
x-axis. Thus, if Ok is not a rotation, then let Ok = E(ϑk)R for some ϑk.Sin
e R is 
ommutable with every diagonal matri
es, from (5) we obtain

Fn =

(

n
∏

k=0

‖Mk‖
)

RmE(αn)

(

n
∏

k=0

D̂kE(ωk)

) (11)for some m ∈ N0 (m ≤ n+1) and some ωk's, where αk, ωk 
an be 
al
ulatedfrom M0, . . . ,Mk. EJQTDE, 2011 No. 38, p. 4



Consider now the di�eren
e equation
xn+1 = ‖Mn‖

(

1 0
0 dn

)(

cos ωn − sin ωn

sin ωn cos ωn

)

xn,

0 ≤ dn ≤ 1, n = 0, 1, 2, . . .

(12)The equilibrium (0, 0) of (1) is stable (asymptoti
ally stable) if and only ifthe equilibrium (0, 0) of (12) is stable (asymptoti
ally stable). Now, we 
anstate the main theorem of this se
tion:Theorem 1. Suppose that lim supn→∞

∏n

k=0 ‖Mk‖ < ∞. If
∞
∑

n=0

min{1 − dn, 1 − dn+1} sin2 ωn+1 = ∞, (13)then the zero solution of di�eren
e equation (12) is asymptoti
ally stable.Proof. Obviously, it is enough to deal with the 
ase ‖Mk‖ = 1 (k = 0, 1, . . .)and to show that ∥∥
∥

∏

∞

n=0 D̂nE(ωn)
∥

∥

∥
=0. Geometri
ally, the dynami
s of (12)is 
omposed of 
onse
utive rotations and 
ontra
tions along the y-axis. Letus introdu
e polar 
oordinates r, ϕ so that

x :=

(

x
y

)

, x = r sin ϕ, y = r cos ϕ.In these 
oordinates the phase spa
e for system (12) is r ≥ 0, −∞ < ϕ < ∞.Using the notations
x̃n = E(ωn)xn, κn := ϕn+1 − (ϕn + ωn), ∆rn := rn+1 − rn, n = 0, 1, . . .we have

√

x2
n + y2

n =
√

x̃2
n + ỹ2

n, xn+1 = x̃n, yn+1 = dnỹn

ϕn+1 = ϕ0 +
n
∑

i=0

(ωi + κi), rn+1 = r0 +
n
∑

i=0

∆ri,and ∆ri ≤ 0 be
ause of the 
ontra
tion. Therefore, the sequen
e {rn}∞n=0 ismonotonously de
reasing. EJQTDE, 2011 No. 38, p. 5



Suppose that the statement of the theorem is not true, i.e., r̄ := limn→∞ rn

> 0. Then
−∆ri = ri − ri+1 =

√

x2
i + y2

i −
√

x2
i+1 + y2

i+1

=
√

x̃2
i + ỹ2

i −
√

x̃2
i + d2

i ỹ
2
i =

(1 − d2
i )ỹ

2
i

√

x̃2
i + ỹ2

i +
√

x̃2
i + d2

i ỹ
2
i

≥ (1 − d2
i )r

2
i cos2(ϕi + ωi)

2ri

≥ r̄

2
(1 − di) cos2(ϕi + ωi).

(14)
We want to get the 
ontradi
tion that the sum of the lower estimating termsin (14) diverges. The problem is that these terms 
ontain ϕi's, whi
h dependon solutions, so they are unknown; we have to get rid of them. Obviously,

| cos(ϕi + ωi)| = | cos ϕi cos ωi − sin ϕi sin ωi|
≥ | sin ϕi|| sinωi| − | cos ϕi|| cosωi|.

(15)For arbitrarily �xed 0 < γ < ε < 1, de�ne µ(ε, γ) :=
√

1 − γ2 − εγ. Sin
e
limε→0,γ→0 µ(ε, γ) = 1, we may assume that µ(ε, γ) ≥ 1/2. We distinguishthree 
ases:a) γ| sin ωi| ≥ | cos ϕi| and | cos ωi| ≥ ε. Then | sin ϕi| ≥ | cos ωi|, andfrom (15) we get

| cos(ϕi + ωi)| ≥ | sinωi|| cosωi|(1 − γ) ≥ | sin ωi|(1 − γ)ε. (16)In this 
ase, estimate (14) is 
ontinued as
−∆ri ≥

r̄

2
(1 − di) cos2(ϕi + ωi) ≥

r̄

2
(1 − γ)2ε2(1 − di) sin2 ωi. (17)b) γ| sin ωi| ≥ | cos ϕi| and | cos ωi| < ε. Then

| sinϕi| ≥
√

1 − γ2 sin2 ωi ≥
√

1 − γ2, (18)and
| cos(ϕi + ωi)| ≥ (

√

1 − γ2 − εγ)| sinωi| = µ(ε, γ)| sinωi| ≥
1

2
| sinωi|.Then

−∆ri ≥
r̄

2
(1 − di) cos2(ϕi + ωi) ≥

r̄

8
(1 − di) sin2 ωi. (19)EJQTDE, 2011 No. 38, p. 6




) γ| sin ωi| < | cos ϕi|. In this 
ase we 
an estimate −∆ri−1 (insteadof −∆ri) from below by | sin ωi|. In fa
t, using also the inequality
| cosϕi| =

|yi|
√

x2
i + y2

i

=
di−1|ỹi−1|

√

x̃2
i−1 + d2

i−1ỹ
2
i−1

≤ |ỹi−1|
√

x̃2
i−1 + ỹ2

i−1

= | cos(ϕi−1 + ωi−1)|,
(20)from (14) we obtain

−∆ri−1 ≥
r̄

2
(1 − di−1) cos2(ϕi−1 + ωi−1) ≥

r̄

2
(1 − di−1) cos2 ϕi

≥ r̄

2
γ2(1 − di−1) sin2 ωi ≥

r̄

2
γ2 min{1 − di−1, 1 − di} sin2 ωi.(21)Setting

c :=
r̄

2
min{(1 − γ)2ε2;

1

4
; γ2} > 0,for every i we have

c min{1 − di−1; 1 − di} sin2 ωi ≤ −∆ri−1 − ∆ri = ri−1 − ri+1.Summarizing these inequalities we obtain
c

∞
∑

i=1

min{1 − di−1; 1 − di} sin2 ωi ≤ r0 − r̄ < ∞,whi
h 
ontradi
ts assumption (13).3 The half-linear equationIn this se
tion we 
onsider the half-linear se
ond order di�erential equation
x′′|x′|n−1 + q(t)|x|n−1x = 0, n ∈ R

+, (22)whi
h was introdu
ed by Bihari [5℄ and Elbert [9℄. They 
alled it half-linearbe
ause its solution set is homogeneous, but it is not additive. This equationis a generalization of the se
ond order linear di�erential equation
x′′ + q(t)x = 0 (23)EJQTDE, 2011 No. 38, p. 7



des
ribing the motion of a linear os
illator. Following P. Hartman [13, p.500℄, we 
all a non-trivial solution x0(t) of (22) small if
lim
t→∞

x0(t) = 0. (24)H. Milloux [18℄ proved, that if q is di�erentiable, monotonously in
reasingand tends to in�nity as t → ∞, then the linear equation (23) has at least onesmall solution. He also 
onstru
ted an equation with su
h a 
oe�
ient q hav-ing not small solutions, too. The famous Armellini-Tonelli-Sansone Theorem(see, e.g., [17℄) gave a su�
ient 
ondition guaranteeing that all solutions of(23) were small. Many papers examined and sharpened the above theorems,even for nonlinear di�erential equations or di�eren
e equations (see, e.g.,[15, 17℄ and the referen
es therein).F. V. Atkinson and Elbert [4℄ extended the theorem of H. Milloux tothe half-linear di�erential equation (22). An extension of the A-T-S theoremto (22) was given by Bihari with the following 
on
ept. A nonde
reasingfun
tion f : [0,∞) → (0,∞) with limt→∞ f(t) = ∞ is 
alled to grow in-termittently if for every ε > 0 there is a sequen
e {(ai, bi)}∞i=0 of disjointintervals su
h that ai → ∞ as i → ∞, and
lim sup

i→∞

i
∑

k=1

bk − ak

bi

≤ ε,

∞
∑

i=1

(f(ai+1) − f(bi)) < ∞are satis�ed. If su
h a sequen
e does not exist, then f is 
alled to growregularly.Theorem B (Bihari [6℄). If q is 
ontinuously di�erentiable and it grows toin�nity regularly as t → ∞, then all non-trivial solutions of equation (22)are small.The simplest 
ase of the intermittent growth is when q is a monotonouslyin
reasing step fun
tion. In this se
tion we will examine this 
ase, i.e., theequation
x′′|x′|n−1 + qk|x|n−1x = 0 (tk ≤ t < tk+1, k = 0, 1, . . .), (25)where

t0 = 0, lim
k→∞

tk = ∞,

0 < q0 ≤ q1 ≤ . . . ≤ qk ≤ qk+1 ≤ . . . , lim
k→∞

qk = ∞.EJQTDE, 2011 No. 38, p. 8



In [14℄, the �rst author of this paper showed that under these 
onditionsequation (25) has a small solution. Elbert [11, 12℄ proved an A-T-S theoremfor the linear (n = 1) 
ase of equation (25) as a dire
t appli
ation of histheorem on the asymptoti
 stability of the trivial solution of (1).Theorem C (Elbert [11℄). Let n = 1. If
∞
∑

k=0

min

{

1 − qk

qk+1
, 1 − qk+1

qk+2

}

sin2(
√

qk+1(tk+2 − tk+1)) = ∞, (26)then all non-trivial solutions of equation (25) are small.Our main goal is to extend Theorem C to the 
ase n > 1 of half-linearequation (25). To this end, we need the so-
alled generalized sine and 
osinefun
tions introdu
ed by Elbert [9℄. Consider the solution S = Sn(Φ) of theinitial value problem
{

S ′′|S ′|n−1 + S|S|n−1 = 0

S(0) = 0, S ′(0) = 1.
(27)Multiplying the di�erential equation by S ′ and integrating it over [0, Φ] weobtain the relation

|S ′|n+1 + |S|n+1 = 1 (−∞ < Φ < ∞), (28)whi
h 
an be 
onsidered as a generalization of the 
lassi
al identity cos2 ϕ +
sin2 ϕ = 1 (the 
ase n = 1). S and S ′ are periodi
 fun
tions with period 2π̂,where π̂ is de�ned as

π̂ =
2 π

n+1

sin π
n+1

,whi
h gives ba
k π in the ordinary 
ase n = 1 (see [9℄). Furthermore, S isodd and S ′ is even. The generalized tangent fun
tion 
an be introdu
ed aswell:
T (Φ) =

S(Φ)

S ′(Φ)
.Now we 
an state our main theorem.Theorem 2. Let n > 1. If

∞
∑

k=0

min

{

1 − qk

qk+1

, 1 − qk+1

qk+2

}

∣

∣

∣

∣

∣

S

(

q
1

n+1
k+1 (tk+2 − tk+1)

)
∣

∣

∣

∣

∣

n+1

= ∞, (29)then all non-trivial solutions of equation (25) are small.EJQTDE, 2011 No. 38, p. 9



Proof. First, using the notation q(t) := qk (tk ≤ t < tk+1, k = 0, 1, 2 . . .) weintrodu
e a new time variable
τ = ϕ(t) =

∫ t

0

q(s)
1

n+1 ds, τk := ϕ(tk). (30)Let x(t) = x(ϕ−1(τ)) =: y(τ), where ϕ−1 is the inverse fun
tion of ϕ. Then
x′(t) = ẏ(τ)q

1

n+1 (t), x′′(t) = ÿ(τ)q
2

n+1 (t) (t 6= tk, k = 0, 1, 2, . . .),where (·)· = d(·)/dτ . Thus, equation (25) is transformed into the form
ÿ(τ)|ẏ(τ)|n−1 + |y(τ)|n−1y(τ) = 0, (τ 6= τk k = 0, 1, . . .). (31)Sin
e any solution x of equation (25) has to be 
ontinuously di�erentiable on

(0,∞), x′(tk+1 − 0) = x′(tk+1 + 0) = x′(tk+1) must hold for every k ∈ N, i.e.,
ẏ(τk+1) = ẏ(τk+1 + 0) =

(

qk

qk+1

)
1

n+1

ẏ(τk+1 − 0),where f(t − 0) and f(t + 0) denotes the left-hand side and the right-handside limit of a fun
tion f at t, respe
tively. We obtain that (25) is equivalentto the following di�erential equation with impulses:






ÿ(τ)|ẏ(τ)|n−1 + |y(τ)|n−1y(τ) = 0, τ 6= τk

ẏ(τk+1) =
(

qk
qk+1

)

1
n+1

ẏ(τk+1 − 0), k = 0, 1, 2, . . .
(32)Let us introdu
e the generalized polar 
oordinates ẏ = ρS ′(Φ), y = ρS(Φ),where

ρ = (|ẏ|n+1 + |y|n+1)
1

n+1 , T (Φ) =
y

ẏ
, −∞ < Φ < ∞.This is the so-
alled generalized Prüfer transformation. With the aid of thesevariables we 
an rewrite equation (31) into

Φ̇ = 1, ρ̇ = 0, (τk ≤ τ < τk+1, k = 0, 1, . . .). (33)So the dynami
s of system (32) on the Minkowski plane [19℄ (ẏ, y) is thefollowing. It turns any point (ẏ0, y0) around the origin on the MinkowskiEJQTDE, 2011 No. 38, p. 10




ir
le with radius ρ0 := (|ẏ0|n+1 + |y0|n+1)
1

n+1 on [τ0, τ1), and at τ1 the point
(ẏ(τ1 − 0), y(τ1 − 0)) jumps to the point

(ẏ(τ1), y(τ1)) :=

(

(

q0

q1

)
1

n+1

ẏ(τ1 − 0), y(τ1 − 0)

)

.This pro
ess is repeated 
onse
utively for [τ1, τ2), [τ2, τ3), . . .. De�ne
ρk :=

(

|ẏ(τk)|n+1 + |y(τk)|n+1
)

1

n+1 , Φk := Φ(τk), Ωk := τk+1 − τk,

∆ρk := ρk+1 − ρk, κk := Φk+1 − (Φk + Ωk), k = 0, 1, . . .Obviously,
Φk+1 = Φ0 +

k
∑

i=0

(Ωi + κi), ρk+1 = ρ0 +

k
∑

i=0

∆ρi, k = 0, 1 . . .Sin
e ∆ρi ≤ 0, the sequen
e {ρk}∞k=0 is monotonously de
reasing, therefore ithas a limit ρ̄ := limk→∞ ρk. If the statement of the theorem is not true, thenthere exists a solution (ρ, Φ) su
h that ρ̄ > 0. Let us 
onsider this solutionand estimate −∆ρi:
−∆ρi = ρi − ρi+1

= (|ẏ(τi)|n+1 + |y(τi)|n+1)
1

n+1 − (|ẏ(τi+1)|n+1 + |y(τi+1)|n+1)
1

n+1

= (|ẏ(τi+1 − 0)|n+1 + |y(τi+1 − 0)|n+1)
1

n+1

− (|ẏ(τi+1)|n+1 + |y(τi+1)|n+1)
1

n+1

= (|ẏ(τi+1 − 0)|n+1 + |y(τi+1 − 0)|n+1)
1

n+1

−
(

qi

qi+1
|ẏ(τi+1 − 0)|n+1 + |y(τi+1 − 0)|n+1

)
1

n+1

=
1

n + 1

(

ρn+1
i+1 + ηi

(

ρn+1
i − ρn+1

i+1

))

−
n

n+1

×
(

1 − qi

qi+1

)

|ẏ(τi+1 − 0)|n+1

≥ 1

n + 1

(

(ρ̄)n+1
)

−
n

n+1

(

1 − qi

qi+1

)

ρn+1
i |S ′(Φi + Ωi)|n+1

≥ ρ̄

n + 1

(

1 − qi

qi+1

)

|S ′(Φi + Ωi)|n+1

(34)

EJQTDE, 2011 No. 38, p. 11



with some ηi ∈ (0, 1) for all i ∈ N0. Now we need to estimate |S ′(φi + Ωi)|from below by either |S(Ωi)| or |S(Ωi+1)|, similarly to the proof of Theorem1, where we used the addititonal formulae for the 
osine fun
tion. However,to our best knowledge, the problem of �nding exa
t addition formulae for Sand S ′ is not 
ompletely solved, although there are some papers about thistopi
 (see, e.g., [1℄, [2℄). Therefore, to 
omplete the proof we need a newmethod di�erent from one we used in the proof of Theorem 1 after formula(14).Fun
tions |S ′(Φ + Ω)| and |S(Ω)| are π̂-periodi
 with respe
t to bothvariables Φ, Ω, hen
e we may restri
t ourselves to the quadrant [−π̂/2, π̂/2]×
[−π̂/2, π̂/2] on the (Φ, Ω) plane. Thanks to the symmetry properties of Sand S ′, it is enough to make the estimate on Q := [0, π̂/2] × [0, π̂/2].At �rst, let us handle the set

Qε := {(Φ, Ω) ∈ Q : |S ′(Φ)| < ε},where ε > 0 is small enough. The 
omplementer set of Qε with respe
t to
Q will be treated in another way. The same way will be used also for the
omplementer set of

Qγ := {(Φ, Ω) ∈ Q : |S ′(Φ)| ≤ γ|S(Ω)|} (0 < γ < 1),so now we 
onsider the set Qγ
ε := Qε ∩ Qγ (see the �gure).A part of the boundary of this set is a pie
e of the 
urve de�ned by theequation

Γ : |S ′(Φ)| = γ|S(Ω)|.We show that the tangent to Γ at (π̂/2, 0) is the line Φ = π̂/2, i.e.,
lim

Φ→
π

2
−0

f ′(Φ) = −∞; f(Φ) := S−1

(

1

γ
S ′(Φ)

)

, (35)provided n > 1. The statement of the theorem for the linear 
ase n = 1 wasproved in Theorem 1, so proving (35) we 
an restri
t ourselves to the 
ase
n > 1.It is easy to see that

(S−1)′(W ) =
1

(1 − W n+1)
1

n+1

(0 ≤ W ≤ 1).EJQTDE, 2011 No. 38, p. 12



Besides, by equation (27) we have
S ′′(Φ) = −|S ′(Φ)|−n+1|S(Φ)|n−1S(Φ). (36)Therefore, ddΦ
f(Φ) = f ′(Φ) =

− 1
γ
(S ′(Φ))−n+1Sn(Φ)

(

1 − 1
γn+1 (S ′(Φ))n+1

)
1

n+1

,
onsequently, (35) holds, independently of γ. (35) implies the existen
e of aEJQTDE, 2011 No. 38, p. 13



δ > 0 su
h that
f ′(Φ) < −2

(

(S ′)−1(ε) <
π̂

2
− δ < Φ <

π̂

2

)

,when
e we get
f(Φ) ≥ −2

(

Φ − π̂

2

)

,whi
h means that Γ is lo
ated on the right-hand side of the line Ω = −2(Φ−
π̂/2) near the point (π̂/2, 0) (see the �gure). To estimate |S ′(Φi + Ωi)| frombelow by |S(Ωi)| in (34) we have to estimate the quotient |S ′(Φ + Ω)| /|S(Ω)|from below. In Qγ

ε we de
rease this quotient ex
hanging point (Φ, Ω) for thehorizontally 
orresponding point (π̂/2 − Ω/2, Ω) of the line Φ = π̂/2 − Ω/2(see the �gure again). Therefore, by the L'Hospital Rule and (36) we get
limΦ→

π̂

2
−0,Ω→0+0, (Φ,Ω)∈Q

γ

ε

|S ′(Φ + Ω)|
|S(Ω)| ≥ lim

Ω→0+0

−S ′

((

π̂
2
− 1

2
Ω
)

+ Ω
)

S(Ω)

= lim
Ω→0+0

−S ′

(

π̂
2

+ 1
2
Ω
)

S(Ω)
= lim

Ω→0+0

−S ′′

(

π̂
2

+ 1
2
Ω
)

1
2

S ′(Ω)

= lim
Ω→0+0

∣

∣

∣
S ′

(

π̂
2

+ Ω
2

)
∣

∣

∣

−n+1 ∣
∣

∣
S
(

π̂
2

+ Ω
2

)
∣

∣

∣

n−1

S
(

π̂
2

+ Ω
2

)

2S ′(Ω)
= ∞.This means that there exists a κ > 0 su
h that

|S ′(Φ + Ω)| ≥ κ|S(Ω)| ((Φ, Ω) ∈ Qγ
ε ). (37)Now we are ready to 
omplete estimate (34). We distinguish three 
ases:A) (Φi, Ωi) ∈ Qγ

ε
. Then by (34) and (37) we have
−∆ρi ≥

ρ

n + 1

(

1 − qi

qi+1

)

κn+1|S(Ωi)|n+1. (38)In the remaining 
ases we estimate −∆ρi−1. By the analogue of (20) it isalways true that
−∆ρi−1 ≥ ρ

n + 1

(

1 − qi−1

qi

)

|S ′(Φi−1 + Ωi−1)|n+1

≥ ρ

n + 1

(

1 − qi−1

qi

)

|S ′(Φi)|n+1.EJQTDE, 2011 No. 38, p. 14



B) (Φi, Ωi) ∈ Qε\Qγ
ε
. Then |S ′(Φi)| ≥ γ|S(Ωi)|, and

−∆ρi−1 ≥ γn+1 ρ

n + 1

(

1 − qi−1

qi

)

|S(Ωi)|n+1. (39)C) (Φi, Ωi) ∈ Q\Qε. Then |S ′(Φi)| ≥ ε|S(Ωi)| and
−∆ρi−1 ≥ εn+1 ρ

n + 1

(

1 − qi−1

qi

)

|S(Ωi)|n+1. (40)Setting
C :=

ρ

n + 1
min{κn+1; γn+1; εn+1} > 0,and taking into a

ount (38), (39), (40), for every i we have

C min

{

1 − qi−1

qi

; 1 − qi

qi+1

}

|S(Ωi)|n+1 ≤ ∆ρi−1 − ∆ρi = ρi−1 − ρi+1.Summarizing these inequalities we obtain
C

∞
∑

n=1

min

{

1 − qi−1

qi

; 1 − qi

qi+1

}

|S(Ωi)|n+1 ≤ ρ0 − ρ < ∞,whi
h 
ontradi
ts the assumption of the theorem.Theorem 2 extends Elbert's Theorem C to half-linear equations provided
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