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Abstract

We give a sufficient condition guaranteeing asymptotic stability
with respect to x for the zero solution of the half-linear differential
equation

2|2/ () |z e = 0, 1<neR,

with step function coefficient g. The geometric method of the proof can
be applied also to two dimensional systems of linear non-autonomous
difference equations. The application gives a new simple proof for a
sharpened version of A. Elbert’s asymptotic stability theorems for such
difference equations and linear second order differential equations with
step function coefficients.
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1 Introduction
Consider the difference equation
Xpt1 = M, X, n=20,1,2,..., (1)

where x,, € R? and M,, € R?*2. We do not consider the trivial case when
all the entries of M,, are equal to 0 for some n. Let ||M]| be the spectral
norm, i.e., || M|| is the square root of the largest eigenvalue of the symmetric
positive semi-definite matrix MTM. Tt is well-known [3, p. 232] that if
[0 [IM,|| = 0, then all solutions of equation (1) tend to zero as n — oo,
i.e., the zero solution is asymptotically stable. A. Elbert [10] gave a sufficient
condition for the asymptotic stability under the assumptions

(1) TTazgmax{|[My]|, 1} < oo,
(i) 0 <TTozo IMal,
(iii) [, max{|det M,,|,1} < oco.

His proof was based on estimation of the norm of some special matrices and
a “tricky” decomposition of matrices M,,. He applied this result to deduce
an Armellini-Tonelli-Sansone-type theorem (abbreviated as A-T-S theorem),
i.e., a theorem guaranteeing asymptotic stability with respect to = for the
zero solution of the linear second order differential equation

" +a(t)r=0 (a(t) /" 00, t — 00) (2)

with step function coefficient a [11, 12].
I. Bihari [5] and Elbert [9] introduced the half-linear differential equation

2|7 | 4 () || e = 0, m € RT, (3)

which has attracted attention, and it has an extensive literature (see, e.g., [7],
[8] and the references therein). Bihari [6] has generalized the A-T-S theorem
to this equation in the case of smooth coefficient ¢, requiring “regular” growth
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of ¢. Roughly speaking, this condition means that the growth of ¢ cannot
be located to a set with small measure (see Section 3). Of course, a step
function ¢ does not satisfy this condition. Elbert’s method, using a wide and
deep machinery from linear analysis, does not apply to the half-linear case.

In this paper we establish an A-T-S theorem for the half-linear differential
equation with step function coefficient ¢. The proof is based upon a geometric
method. This method applies also to the linear case, so we can give a new
simple proof for Elbert’s result, assuming only limsup,, .. [T;_, [[My| < o
instead of (i) — (iii).

2 Difference equation

To investigate equation (1), we will define a difference equation on the plane
which has the same stability properties as equation (1). Let us introduce
the following notations for the matrices of the reflection with respect to the
x-axis, and of the rotation around the origin counterclockwise with ¢ in R?:

(1 0 [ cosp —sing
R_(O —1)’ E(@_(singo Ccos ) (4)

Obviously,

E(01)E(p2) = E(¢1 + ¢2), E(p)R = RE(—p). (5)
We will need the following theorem (see, e.g., [16, p. 188]):

Theorem (polar factorization). EFvery M € R"™ "™ can be represented as a
product M = SQ where S is symmetric, positive semi-definite, and Q 1is
orthogonal. S is uniquely determined while Q is unique if and only if M is
non-singular.

In this theorem S is the square root of the symmetric positive semi-
definite matrix MTM. If M € R"*" is non-singular, then the product MTM
is positive definite, thus it can be diagonalized: M™M = PD?P~!, where D?
is the diagonal matrix containing the eigenvalues of MM and the orthogonal
matrix P has the proper eigenvectors in its columns. Then S = PDP~! and

M = PDP'Q. (6)
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Denote by A and ) the eigenvalues of M™M (||M|| = A > X > 0). Suppose
that the diagonal elements in D are in decreasing order. If det M = 0, then
S is positive semi-definite and the symmetric matrix S := ||[M|~'S can be
represented as S = PDP !, where P is orthogonal and

~ 10
D - ( Lo ) .
Applying the above argument to the coefficient matrices of (1), we have

M, = HMn”Pn]jnP;lenv (7)

where

A A_?’L . .
Dn;:(l 0 ) oA >0 irdetM, 20 @)

Let us examine the flow F,, := [[,_, M, of equation (1). Using the fact, that
the product of orthogonal matrices are also orthogonal, F,, has the form

where the orthogonal matrices O (k =0,...,n + 1) are defined by

OQ = PalQo, Ok = P];IQkPk—la k= ]-7 sy Ty (10)

and the product HZ:O N, is meant in the order N,, - - - Ng. It is known from
the elementary geometry that in the plane every orthogonal transformation
is a rotation or a product of a rotation and a reflection with respect to the
x-axis. Thus, if Oy is not a rotation, then let O, = E(J;)R for some 9.
Since R is commutable with every diagonal matrices, from (5) we obtain

F, = <H HMkH) R"E(ay) <H f)kE(wk)> (11)

k=0

for some m € Ny (m < n+1) and some wy’s, where «y, wy, can be calculated
from My, ..., M.
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Consider now the difference equation
1 0 cosw, — sinw,
Xnpt+1 = ||Mn|| ( 0 dn ) ( sinwn COS Wy, )Xna (12)
0<d, <1, n=01,2,...

The equilibrium (0,0) of (1) is stable (asymptotically stable) if and only if
the equilibrium (0,0) of (12) is stable (asymptotically stable). Now, we can
state the main theorem of this section:

Theorem 1. Suppose that limsup,, . [Ti_q ||My| < oo. If
Z min{1l — d,,, 1 — dp41}sin® w41 = 00, (13)
n=0

then the zero solution of difference equation (12) is asymptotically stable.

Proof. Obviously, it is enough to deal with the case |[My||=1 (k=0,1,...)
and to show that HHZO:O f)nE(wn)”:O. Geometrically, the dynamics of (12)

is composed of consecutive rotations and contractions along the y-axis. Let
us introduce polar coordinates r, ¢ so that

X::(Jyj), T = rsin g, Y = T COS .

In these coordinates the phase space for system (12) isr > 0, —o0 < ¢ < o0.
Using the notations

X, = E(wn)Xpn, Kpi=¢ni1— (pn+wn), Arp,:=rp1—r,, n=01,...

we have

\% l‘% + y% =V i% + g%’ Tpy1 = Tn, Ynt1 = dnTn
Pot1 =0+ Y (Wit k), rap=ro+y Ar,
i=0 i=0

and Ar; < 0 because of the contraction. Therefore, the sequence {r,}°, is
monotonously decreasing.
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Suppose that the statement of the theorem is not true, i.e., 7 := lim,, o 7y
> 0. Then

_ _ 2, .2 2 9
—Ar; =1 —Tip = \/xz Ty — \/xi+1+yi+1

1 —d?)g?
B JE a0
VI + G2+ T+

1 — d?)r? cos?(¢p; i r
> ( DL ;OS (i + wi) > g(l —d;) COSQ(%‘ + w;).
Ty

(14)

We want to get the contradiction that the sum of the lower estimating terms
in (14) diverges. The problem is that these terms contain ¢;’s, which depend
on solutions, so they are unknown; we have to get rid of them. Obviously,
| cos(p; + w;)| = | cos @; cos w; — sin p; sin w;| (15)
> | sin ;|| sinw;| — | cos ;]| cosw;].
For arbitrarily fixed 0 < v < ¢ < 1, define pu(e,7y) := /1 — 2 — €. Since
lim. -0 p(e,7) = 1, we may assume that pu(e,y) > 1/2. We distinguish
three cases:

a) «v|sinw;| > | cos ¢;| and | cosw;| > €. Then |sin ;| > | cosw;|, and
from (15) we get

| cos(p; + w;)| > | sinw;|| cosw;|(1 — ) > |sinw;|(1 — 7)e. (16)

In this case, estimate (14) is continued as

—Ar; > g(l —d;) cos®(p; + w;) > =(1 —7)%*(1 — d;) sin®w;.  (17)

DO =3

b) ~|sinw;| > | cos ¢;| and | cosw;| < e. Then

|sin ;] > 1/1 —42sin?w; > /1 — 12, (18)
and
1
| cos(pi +w;)| > (V1 =72 —ey)|sinw;| = p(e, )| sinw;| > §| sin w;].

Then

—Ar; > g(l —d;) cos2(<pi +w) >=(1-d;) sin? w;. (19)

ool 3
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c) v|sinw;| < |cos;|. In this case we can estimate —Ar;_; (instead
of —Ar;) from below by |sinw;|. In fact, using also the inequality

|COS§0“ _ |yl| _ di—1|gi—1|
Z V ﬁ + .%‘2 \/5%2271 + d?ﬂﬂz‘{l
15| (20)
i—1

< = | cos(pi—1 +wi1)l,

V jifl + gzzfl

from (14) we obtain

—Ar;_ > g(l —di_1) cos® (i1 +wi_1) > g(l —d;_1) cos® p;
> g'yz(l —d;_1)sin® w; > gyz min{l — d;_,, 1 — d;} sin® w;.
(21)
Setting
r 1
¢:= cmin{(1 —)%% 397} > 0,
2 4
for every ¢ we have
cmin{l — di—l; 1-— dz} sin2 Wi S —ATi_l — ATZ‘ =Ti—1 — Tit1-
Summarizing these inequalities we obtain
chin{l —di_1;1 —d;}sin®w; <rg—F < 00,
i=1
which contradicts assumption (13). O

3  The half-linear equation
In this section we consider the half-linear second order differential equation
2|2 " () |x" e = 0, n€RT, (22)

which was introduced by Bihari [5] and Elbert [9]. They called it half-linear
because its solution set is homogeneous, but it is not additive. This equation
is a generalization of the second order linear differential equation

" 4+ qt)x =0 (23)
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describing the motion of a linear oscillator. Following P. Hartman [13, p.
500], we call a non-trivial solution xy(t) of (22) small if

tlirono xo(t) = 0. (24)
H. Milloux [18] proved, that if ¢ is differentiable, monotonously increasing
and tends to infinity as ¢ — oo, then the linear equation (23) has at least one
small solution. He also constructed an equation with such a coefficient ¢ hav-
ing not small solutions, too. The famous Armellini-Tonelli-Sansone Theorem
(see, e.g., [17]) gave a sufficient condition guaranteeing that all solutions of
(23) were small. Many papers examined and sharpened the above theorems,
even for nonlinear differential equations or difference equations (see, e.g.,
[15, 17] and the references therein).

F. V. Atkinson and Elbert [4] extended the theorem of H. Milloux to
the half-linear differential equation (22). An extension of the A-T-S theorem
to (22) was given by Bihari with the following concept. A nondecreasing
function f : [0,00) — (0,00) with lim;_, f(t) = oo is called to grow in-
termittently if for every ¢ > 0 there is a sequence {(a;, b;)}5°, of disjoint
intervals such that a; — oo as © — oo, and

) by —a =
llmsupz b . b <, Z(f(ai+1) — f(bi)) < o0
100 g ? =1

are satisfied. If such a sequence does not exist, then f is called to grow
reqularly.

Theorem B (Bihari [6]). If q is continuously differentiable and it grows to
infinity reqularly as t — oo, then all non-trivial solutions of equation (22)
are small.

The simplest case of the intermittent growth is when ¢ is a monotonously
increasing step function. In this section we will examine this case, i.e., the
equation

|7+ gl e =0 (tp <t <tg1, k=0,1,...), (25)
where
to =0, klim t, = 00,
O<@p=<=g=<..<@Gg<qg1=<..., ]}LIEOQkZOO-
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In [14], the first author of this paper showed that under these conditions
equation (25) has a small solution. Elbert [11, 12| proved an A-T-S theorem
for the linear (n = 1) case of equation (25) as a direct application of his
theorem on the asymptotic stability of the trivial solution of (1).

Theorem C (Elbert [11]). Let n = 1. If

me {1 - —1- %} sin®(\/Qrer1 (trr2 — te1)) = 00, (26)

Qi1 Qr+2
then all non-trivial solutions of equation (25) are small.

Our main goal is to extend Theorem C to the case n > 1 of half-linear
equation (25). To this end, we need the so-called generalized sine and cosine
functions introduced by Elbert [9]. Consider the solution S = S,(®) of the
initial value problem

(27)

S//‘S/|n71 4 S‘S‘nil — 0
S(0)=0, S(0)=

Multiplying the differential equation by S” and integrating it over [0, ®] we
obtain the relation

IS St =1 (—o00 < @ < 00), (28)

which can be considered as a generalization of the classical identity cos? ¢ +
sin =1 (the case n = 1). S and S’ are periodic functions with period 27,
where 7 is defined as
. 2
™= 77
S1n el
which gives back 7 in the ordinary case n = 1 (see [9]). Furthermore, S is

odd and S’ is even. The generalized tangent function can be introduced as

well:
S(P)
S'(®)

Now we can state our main theorem.

Theorem 2. Letn > 1. If
1
S (qiffll (trt2 — tk+1)>

me{l—— 1—%}
then all non-trivial solutions of equation (25) are small.

T(®) =

n+1
=00, (29)

qk+1 qr+2
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Proof. First, using the notation q(t) := qx (tx <t < tgy1, k=0,1,2...) we
introduce a new time variable

=) = / a(s)mids, o= plte), (30)

Let z(t) = x(p~ (7)) =: y(7), where ¢! is the inverse function of . Then

TE) =g (), @) =ima ) (tF b, k=0,1,2,..),

where (-) = d(-)/dr. Thus, equation (25) is transformed into the form

GO + (D" y(r) =0, (r#mk=0,1,...).  (31)
Since any solution z of equation (25) has to be continuously differentiable on
(0,00), ' (tg41 — 0) = &' (tg41 + 0) = &' (tx41) must hold for every k € N, i.e.,

_1

n+1
J(Tes1) = §(7ess +0) = (q—) (7ot —0),
Qk+1

where f(t —0) and f(t + 0) denotes the left-hand side and the right-hand
side limit of a function f at ¢, respectively. We obtain that (25) is equivalent
to the following differential equation with impulses:

Jlg(r=t + |y(71)|”’1y(7) =0, TF#m

Y(Tht1) = <qg—i1) "y (e — 0), k=0,1,2,...

Let us introduce the generalized polar coordinates y = pS'(®), y = pS(P),
where

1 1y y
p= (9" + |y, T(@) =2, —o00 < ® < 0.

This is the so-called generalized Priifer transformation. With the aid of these
variables we can rewrite equation (31) into

o =1, p=0, (e <7 <Tpa1, k=0,1,...). (33)

So the dynamics of system (32) on the Minkowski plane [19] (y,y) is the
following. It turns any point (o, yo) around the origin on the Minkowski
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circle with radius po == ([o|"*' + [yo|"+*)7#1 on [ry,71), and at 7 the point
(g(m1 — 0),y(m — 0)) jumps to the point

(9(71),y(1)) = ((%) a y(r = 0),y(m — 0)) :

This process is repeated consecutively for |11, 73), [T2, 73), . ... Define
= (l9(m) " + |y(7 |n+1) o Ppi=0(), = T — Thy
Apk = Pk+1 — Pk, R = +1_((I>k+Qk)a k’ZO,l,
Obviously,
k
Qi1 = <I>0—|—ZQ+/£Z) /Jk+1=/30+ZA/%, k=0,1...
=0 =0

Since Ap; < 0, the sequence {px}32, is monotonously decreasing, therefore it
has a limit p := limy_. ., px. If the statement of the theorem is not true, then
there exists a solution (p, ®) such that p > 0. Let us consider this solution
and estimate —Ap;:

—Api = pi — pit
. n n _1
= (|9(m) " + [y(m) YT = (9(man) |+ [y (r) [P
1
= (|9(is1 — O)|" " + |y (7341 — O) ") 77
— ([§(m)|" + Jy (i) [P
= (|9(7ip1 = O)|" ™ + |y (7341 — O) ") 7e1

_1

qi . n n ntl
- ( 97t — O + [y(risn — O) )
di+1

(34)

1
= (P?ﬁl + 7 (P?Jrl P?jll)) T

+
( ) (i1 — )
1

> 1) TR (1 _ 4 ) P S (@ 4 Q)|
> +1<<p> ) (1= ) s @ )
> 14 (1 % ) |S/((I)i+Qi)|n+1

n+1 Qi+1
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with some 7; € (0,1) for all i € Ny. Now we need to estimate |S'(¢; + ;)|
from below by either [S(§2;)] or [S(€2;4+1)], similarly to the proof of Theorem
1, where we used the addititonal formulae for the cosine function. However,
to our best knowledge, the problem of finding exact addition formulae for S
and S’ is not completely solved, although there are some papers about this
topic (see, e.g., [1], [2]). Therefore, to complete the proof we need a new
method different from one we used in the proof of Theorem 1 after formula
(14).

Functions |S'(® + Q)| and |S(2)| are 7-periodic with respect to both
variables @, ), hence we may restrict ourselves to the quadrant [—7 /2, /2] x
[—7/2,7/2] on the (®,Q) plane. Thanks to the symmetry properties of S
and S’, it is enough to make the estimate on Q) := [0,7/2] x [0, 7/2].

At first, let us handle the set

Qe :=={(2,Q) € Q:15(P)] < e},

where ¢ > 0 is small enough. The complementer set of (). with respect to
@ will be treated in another way. The same way will be used also for the
complementer set of

Q" :={(2,Q) € Q:|F(D) <HISD} (0<y <),

so now we consider the set Q7 := Q. N Q" (see the figure).
A part of the boundary of this set is a piece of the curve defined by the
equation

L2 [S(®)] = 415(Q)].
We show that the tangent to I' at (7/2,0) is the line ® = 7/2, i.e.,

lim Of’(CID) =—00; f(®):=95" (lS/(CI))) : (35)

LSS Y

provided n > 1. The statement of the theorem for the linear case n = 1 was
proved in Theorem 1, so proving (35) we can restrict ourselves to the case
n > 1.

It is easy to see that
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Q ~
Q=-2(d-17/2)
4 \
2 Q" | Q!
N
(®,Q)
QS
(SY'(e) T o
2
o+Q=T1/2

Besides, by equation (27) we have

S"(®) = —|S"(@)| S (@) S (@)

(36)
Therefore,

~1(S'(®)) 1 57()

(1 sr@y) ™

consequently, (35) holds, independently of . (35) implies the existence of a

d ,
/(@) = (@)

)
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6 > 0 such that

F(®) < —2 ((S’)l(a) - g << g) ,

whence we get
r@z-2(e-7).

which means that I' is located on the right-hand side of the line Q = —2(® —
7/2) near the point (7/2,0) (see the figure). To estimate |S’(®; + ;)| from
below by |S(£2;)] in (34) we have to estimate the quotient |S'(® + Q)] /|S(Q)]
from below. In Q7 we decrease this quotient exchanging point (®,€) for the
horizontally corresponding point (7/2 — €2/2,Q) of the line & = 7/2 — Q/2
(see the figure again). Therefore, by the L'Hospital Rule and (36) we get

s S ((5-19)+9)

lim

d—Z0,0-0+0, (2,0)€Q? 15(Q)]| = 05010 S(Q)
=s(5+t0)  -sr(B+i0)d
B Qli%l}ro S(Q) - QEIOI}*O S'(§2)
o FC [T ) s (5 8)
B QEI({IFO 25'(Q) -
This means that there exists a x > 0 such that

[S(@+ Q)= w[SEOQ]  (9,Q) € QD). (37)
Now we are ready to complete estimate (34). We distinguish three cases:
A) (®;,Q;) € Q7. Then by (34) and (37) we have
ﬁ q; n+1 n+1
—Ap; > —— (1 — — | K" S( . 38
pz (1= ) s (38)

In the remaining cases we estimate —Ap,;_;. By the analogue of (20) it is
always true that

—Api_1 > nL (1 - M) 1S (D1 + Qg™

7

> P (1 o Qiql) |S,((I>i)|n+1-

n+1

)
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B) (®;, Q) € Q\Q7. Then |S"(®;)| > ~[S(Q:)], and

Apir =L (12 B g, 39
R e (e L) (39

C) (®;, %) € Q\Q.. Then |S'(®;)| > £[S()| and

Apa z et L (128 g 40
porz et P (125 500, (10

Setting

ﬁ : n+1l. . n+1l, n+l
= —— min{k""; j € >0,
n+1 { 7 }

and taking into account (38), (39), (40), for every i we have

C min {1 S e B R } 1S(Q)[™ < Apir — Aps = piot — piss.
qi Qi+1

Summarizing these inequalities we obtain

CZmin{l St } S < py— 7 < o0,
) i+1

n=1
which contradicts the assumption of the theorem. O

Theorem 2 extends Elbert’s Theorem C to half-linear equations provided
n > 1. It would bee interesting to find an extension to the case n < 1, too.
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