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Abstract

In this paper, the authors study the oscillatory properties of third order quasilinear
neutral difference equation of the form

A(an(A*(@n + Przn_s))*) + quzo_, =0, n >0, (E)

where a > 0,¢, > 0,0 < p, < p < co. By using Riccati transformation we establish
some new sufficient conditions which ensure that every solution of equation (E) is ei-
ther oscillatory or converges to zero. These results improve some known results in the
literature. Examples are provided to illustrate the main results.
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1 Introduction
Consider a neutral type difference equation of the form
A(an(A2 (Tn + PnTn—s))") + gnzn_, = 0,n €N, (1.1)

o0
where & and 7 are nonnegative integers, {a,} is a positive real sequence with . -4 =
n=ng a5
forallng € N ={1,2,...}, {pn} is a bounded nonnegative real sequence, {¢, } is a nonnegative
real sequence, and « is a ratio of odd positive integers.

Let § = max(d, 7). By solution of equation (1.1), we mean a real sequence {z,} defined
for all n > 1 — 0 and satisfies equation (1.1) for all n € N. A nontrivial solution of equation
(1.1) is said to be oscillatory if it is neither eventually positive nor eventually negative and
nonoscillatory otherwise. The equation (1.1) is said to be almost oscillatory if all its solutions
are either oscillatory or tend to zero as n — oo.

The oscillation theory of difference equations and their applications have been receiving
intensive attention in the last few decades, see for example [1, 5, 11] and the references cited
therein. Especially the study of oscillatory behavior of second order equations of various
types occupied a great deal of interest. However, the study of third order difference equations

EJQTDE, 2011 No. 76, p. 1



has received considerably less attention even though such equations have wide applications
in the fields such as economics, mathematical biology and many other areas of mathematics.
In [7], the authors considered the equation

Alen A(dnAzy)) + gnf (Tn—o41) =0 (1.2)
and studied oscillatory and asymptotic behavior of solutions of equation (1.2) subject to the
conditions

S| o 1
Ac, >0, — = — = o0. 1.3
en > n;()cn n;Udn 00 (1.3)

In [2], the authors classified the nonoscillatory solutions of equation (1.2) into different
classes and established conditions concerning the existence of solutions in these classes.
In [6], the authors considered the equation

A(Cn(A2zn)a) + an(za(n)> =0 (14)
where o(n) < n and « is a quotient of odd positive integers, and studied the oscillatory
behavior of equation (1.4) under the condition > - < oo.

n=ng ¢

In [14], the authors studied the oscillatory and asymptotic behavior of solutions of the
equation

A(CnA(dn(Axn)a)) + an(znfa) =0 (15)
under the conditions . L =ocoand Y + =oo.
n=ng " n=ng
In [23], the authors considered the following equation
Alen A(dpA(zy + Prn—k))) + @nf(@p—m) =0 (1.6)
and established criteria for the oscillation of all solutions of equation (1.6) under the condi-
tion (1.3).
In [15] the authors considered the third order equation of the form

Alen (A(dnA(zn + prn—7)))") + @nf (Tn-o) =0 (1.7)

and established conditions for the oscillation of all solutions of equation (1.7) under the
condition (1.3) without assuming Ac, > 0. For further results concerning the oscillatory
and asymptotic behavior of third order difference equation one can refer to [2, 13, 16-22]
and the references cited there in.

From the review of literature it is found that most of the results for the oscillation of third
order neutral type difference equations are obtained under the assumption —1 < p,, < 1.
So it is interesting to study the oscillatory behavior of equation (1.1) under the condition
0 < pn < p < oo. To the best of our knowledge, there are no results regarding the oscillation
of equation(1.1) under the assumption p, > 1. Therefore the purpose of this paper is to
present some new oscillatory and asymptotic criteria for equation (1.1). We establish criteria
for the equation (1.1) to be almost oscillatory.

The paper is organized as follows. In Section 2, we present the main results and in
Section 3, we provide some examples to illustrate the main results.

2 Oscillation Results

In this section, we establish some new oscillation criteria for the equation (1.1). We begin
with some useful lemmas, which will be used later. We set z, = x,, + ppxn_s, and we may
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deal only with the positive solutions of equation (1.1) since the proof for the opposite case
is similar. We also introduce a usual convention, namely for any sequence {fr} and any

m—1 m—1
meNweput > fp=0and [[ fr=1

k=m k=m
Lemma 2.1. Assume that a > 1, x1, 29 € [0,00). Then

xf +a§ > %(zl + z2)7. (2.1)
Proof. The proof can be found in [8, pp. 292] and also in [9, Remark 2.1].
Lemma 2.2. Assume that 0 < a < 1, x1, 9 € [0,00). Then

xf +x§ > (21 + 22)”. (2.2)

Proof. Assume that 21 = 0 or 23 = 0. Then we have (2.2). Assume that 1 > 0,22 > 0.
Define f(z1,22) = 2§ + 2§ — (1 + x2)*. Fix z1. Then

d
f(zi;m = axf — e +a2)"
= a[xg_l —(x1+ xg)a_l] >0, since 0 < o < 1.

Thus, f is nondecreasing with respect to za, which yields f(z1,22) > 0. This completes the
proof.

Lemma 2.3. Let {f,} and {gn} be real sequences, and suppose there exists a o > 0 and a
sequence {hy} such that f, = hy, 4+ gnhn—o holds for all n > ng € N. Suppose that lim f,
erists and lim inf g, > —1. Then lim suph, > 0 implies lim f, > 0.

Proof. The proof can be modeled similar to that of Lemma 3 of [10], and hence the details

are omitted.

Lemma 2.4. Assume that {x,} is a positive solution of equation (1.1) and lim z, # 0.

n—oo

If
oo [e%e] 1 [e%e] o
pr— 2.
S5 (anze) o= >
where
Qn = min{Qna qn—é}a (24)
then
Zn > 0,Az, > 0,A%z, > 0, A(a,(A%2,)%) <0 (2.5)

forn > ny € N, where ny s sufficiently large.

Proof. Assume that {x,} is a positive solution of equation (1.1). We may deal only with the
case « > 1, since the case 0 < < 1 is similar. From equation(1.1), we see that z,, > ,, > 0
and

Alan(A%2,)*) = —gno_. < 0. (2.6)

n—r —

Then, {(a,(A%z,)*)} is nonincreasing and eventually of one sign. Therefore {A?z,} is also
of one sign and so we have two possibilities: A%z, > 0 or A%z, <0 for all n > n; € N. We
claim that A%z, > 0. If not, then there exists a constant M > 0 such that

(an(A%2,)*) < =M < 0.
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Summing the above inequality from n; to n — 1, we obtain

n—1 1
1
Az, <Azp, — M« Z -
s=nq As"
Therefore, lim Az, = —oo. Then, from A%z, < 0 and Az, < 0, we have lim z, = —oc0.
n—oo n—oo

This contradiction proves that A2z, > 0.
Next, we prove that Az, > 0. Otherwise, we assume that Az, < 0. From equation (1.1),
we have

A(an(AQZn)a) +paA(an75(A2zn75)a) + Qszf—r +pa(In75$277—75 =0

and then using Lemma 2.1, we obtain

Alan(A%2,)%) + p*Alan_5(A%2,_5)") + <0. (2.7)

Summing the last inequality from n to co, we obtain

_2a12Q5H

an(A%2,)% + p*(an—s(A%2,—5)

In view of (2.6), we see that
an(AQZn)a < an—6(A22n—5)a-
Thus

1 oo
n— A? n—-6)") 2 s sZg -
(@n—s(A%2,_5)*) > 311+ p%) ;Q Zo—r

Since lim z, # 0, from Lemma 2.3, lim z, =L >0, and z25__ > L. Then we obtain

1
Az s>L | ——n
izt () <MZQ>

Summing the last inequality from n to oo, we have

—Az,_s ZL(m)li ( _ ZQt>

S=n

Summing the last inequality again from ny to oo, we have

Zm-éZL(m) ZZ<MZ@> ’

n=ni s=n

which contradicts (2.3). Thus Az, > 0. The proof is now complete.
Lemma 2.5. Assume that {z,} satisfies (2.5) for n > ny € N. Then

Az, > (aéAQZn) B1(n,nq), (2.8)

and L
2n > (aﬁ A2zn) B2(n,n1), (2.9)

where

Bi(n,n1) = i: %, Ba(n,m1) = i (71_711_8)

o o
s=ny As s=n1 as
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Proof. Since A(a,(A%z,)*) <0, we have a,,(A?z,)* is nonincreasing. Then we obtain,

Q=

= (as(A%29)%)

Azy > Azy — Azp, = g T
e
S=Nq S
i ) n—1 1
> (aﬁ A zn) —.
s=nq As
Similarly, we have
n—1 s—1
Zn > an o A2 Zn) g E —
s=ni t=n1 aa
Since
n—1 s—1 n—1 —
1 1 (n— 1 — 1)
Z Z = Z Z F Z
s=ni t=n1 ata t=nj s= a t=n1

and therefore

Zn 2> (a'r% A2zn) 62(”7”1)-
Lemma 2.6. Let a > 0. If fr, > 0 and Af,, >0 for alln > ng € N, then
Afe > afd 'Af, if a>1,

and
Afo‘>ozfn+1Afn if 0<a<l

for all n > nyg.

Proof. By Mean value theorem, we have for n > ng
Afg = fap — [ =at® 1A,

where f, <t < fp41. The result follows by taking ¢ > f,, when o > 1 and ¢ < f,4+1 when
O<a<l.

Next, we state and prove the main theorems.

Theorem 2.1. Let o > 1. Assume that (2.3) holds and T > 6. Further, assume that there
exists a positive nondecreasing sequence {pn}, such that for any nqa € N, there exists an
integer ng > ny, with

psQs  (1+p%) (Aps)**!
Ii _ = 00. 2.1
L sup Z {20‘ L (a4 1)t (psfi(s — 1yme))e > (2.10)

S5=n2
Then equation (1.1) is almost oscillatory.

Proof. Assume that {x,} is a positive solution of equation (1.1) which does not tend to
zero as n — o0o. From the proof of Lemma 2.4, we obtain (2.5) and (2.7). Define

wn = pp l8E0) (2.11)

Zn—1

Then w, > 0 due to Lemma 2.4. From (2.11) and Lemma 2.6, we have
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A? o an(A%z,)”
Aw, = Apn“wl(a—znﬂ) + oA (M)
Zn+177
— A an+1(A27;n+1)0‘ A(an(AQZn)a) an+1(A2Zn+1)a
- Pn o + pn —Pn « o
Zntl—1 n—r1 Zpt+l—1%n—1
Apy PrlA(an(D%2,)%)  appang1(A®zn1)”
Wn+1 + « - « a
Pn+1 Zn—1 Zn+1—7%n—r

From (2.5) and (2.8), we have

<

1 1
Azpor > (ag_ APz, 2)Bi(n—7,n1) > (a7 1 A2 41)B1(n — 7,0

It follows from (2.11) and (2.12) that

«
Azy_

T

a—1
EASIYA VA

1)-

Alan(A22,) A Q n—T,mny) otl
Aw, < Pn ( nog n) ) + Pn Wor1 — pnﬂl(iJrl 1)wnil'
Zp—r Pn+1 Pﬁ¥+1

Similarly, define another function v,, by

_ (an—5(A%2n5)%)
Un = Pn = .
Zn*‘r

Then v, > 0 due to Lemma 2.4. From (2.14) and Lemma 2.6, we have

A n—5(A%2,_5)"
A'Un = L Un41 + pnA ( . 5( o n 6) )
Pn+1 Bn—r
A _5(A2z,_5)@ A (A2 AT
= (an ) - Zn 5) ) + Pn Vni1 — pnanJrla 6( inJrl 5) A257
Zp—r Pn+1 Zn-l—l—rznf‘r
A(an_5(A%2,_5)" A Ang1—5(A22pi1-5)"
< o (an 6(a Zn (5) ) + Pn Vni1 — apn n+1a 6( n+1 6) As
Zp—1 Pn+1 Zntl—rin—r

From (2.5) and (2.8) and 7 > §, we have

T

n—7T-

1 1
Az > (a;}_TAan_T)ﬁl(n —7,m1) > (a2 sA%z,_s)B1(n — T,n1).

Then from (2.15), we have

(at1)

Aan_s(A%2p_5)* A apnBi(n —1,n1)v, %

A’Un Spn ( n 5z(a n 5) )+ Pn Vna1 — Pn ( o ) n+1
n—r Pn+1 pn+i¥

From (2.13) and (2.16), we obtain

Pn [A(an(AQZn)a) + paA(an—t?(AQZn—é)aﬂ

Awy, +p*Av, < -
z,

n—Tr
Apn apnfi(n —7,n1) ot
+ Wn+1 — 1+L wn+1
Pn+1 P o
n+1
(a+1)
o | Apn appfi(n —, nl)vn-i-al
+ Un41 — 141
1 =
Pt pn-‘,—l
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From (2.7) and (2.17), we have

Qn  Ap apafi(n —7,my) en
Aw, +p*Av, < —py 2af1 + p 711Un+1 - (1+§ )wnjl
nt pn+1
3 (at1)
A « n—T,n1)v, %
I P N i — DV (2.18)
anrl anriY
Using (2.18) and the inequality
(a+1) a® Ba+1
Bu—Au™ £ i s A0 (2.19)
we have
Qn 1 (Apn)a+1 (Apn)a—H P

A n+ aA n S " Fn + .
On RS = T T T 0 1) (paBi(n— 7m1)® | (paBr(n — 7m1))® (a + 1)oH

Summing the last inequality from ns to n — 1, we obtain

n—1

Qs 1 o (APS)OHrl «
—_— < .
Z [ps 201 (a4 1)af! (I+p )(/)sﬁ1(s —7,ny))*| ~ Wna TP Uns

S=na2

Taking limsup in the above inequality, we obtain a contradiction with (2.10). The proof is
complete.

By using the inequality in Lemma 2.2, we obtain the following result.

Theorem 2.2. Let 0 < a < 1. Assume that (2.3) holds and T > §. Further, assume that
there exists a positive nondecreasing sequence {p,}, such that for any ny € N, there exists
an integer ng > ny, with

n—1
: (1+p%) (Aps)H! _
Jim sup 3 {PSQS T ) (s — )|

S=n2

Then equation (1.1) is almost oscillatory.
Proof. The proof is similar to that of Theorem 2.1 and hence the details are omitted.

Theorem 2.3. Let o > 1. Assume that (2.3) holds and T > 6. Further, assume that there
exists a positive nondecreasing sequence {pn}, such that for any nqa € N, there exists an
integer no > ny, with

n—1
. psQs  (14p%) (Aps)® _
nh~>nc}o Sup Z {QQ—l  4a ps(Ba(s — T,m1))2 1B (s —T,my) | o (2.20)

S=nNn2
Then equation (1.1) is almost oscillatory.

Proof. Assume that {x,} is a positive solution of equation (1.1), which does not tend to
zero asymptotically. By the proof of Lemma 2.4, we have (2.5) and (2.7). Then from Lemma
2.5, we obtain (2.8) and (2.9).

Define w, and v, by (2.11) and (2.14) respectively. Proceeding as in the proof
of Theorem 2.1, we obtain (2.12) and (2.15). It follows from (2.12) that

Apn P (an(A%2,)%) apn(pn+1an+1(A2zn+1)a)2zg:}-Azn—T
Wn+1 + « - 2a 2 «
Prt1 Z5 . Prt+1255 1 (Prt1@nt1(A%2n41)%)

Aw, < (2.21)
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In view of (2.5),(2.8) and (2.9), we see that

a—1 a—1
2y Az z0 Az
noT T noT T > — a-l — . 2.22
nt1(A%2p41)% 7 an(A2z,)® (Boln =)™ iln —7,m) ( )
Substituting (2.22) in (2.21), we have
Ap,, nA(an(A%2,) Qapn a—
Aw, < 2%, 00 + L ( CE ) _ P (By(n—7,m0))* Br(n— 7o)l (2.23)
Prn+1 Zp—1 Prn+1
On the other hand, from (2.15), we have
A n nA n— AQ n— « n\FPn n+1— A2 n+1— @)2 a_lA n—r
Av, < P UnHJrP (a (Sa( Zn—s) )7 apn(p 2+1¢1 24;1 5(A%zn41 52) ) 2n Az '
Prt1 fn—r anrlszrlf‘ra”fH‘l—(s(A Zn+1—5)a
(2.24)

By (2.5),(2.8),(2.9) and 7 > J, we see that

a— a—1
PAVA VA 2y Dzp_ s

1
a—1
s (AT ) an s (AZan )" > (Ba(n —7,11))%  fr(n — 7,n1). (2.25)

Substituting (2.25) into (2.24), we obtain

Apy, DA 5(A22 5% apn o
Av, < P vn+1+p ( 6(5 o)) _ 2/) (Bo(n—7,m1))* ' B1(n—7,n1)v2, . (2.26)
Pn+1 Zn—1 Pn+1

Using (2.23) and (2.26), we have
pnA(an(A2zn)a) +paA(an75(A2zn75)a)

Aw, +p*Av, < o

n—T
A o _
+ 2P — S B — 7)) B — R,
Pn+1 n+1
A o _
4 |2 — S Ba(n = ) B — TR | (2.27)
Pr+1 Pr+1

Applying (2.7), and the inequality Bu — Au? < g, A > 0in (2.27), we have
Qn | (1+p?) (Apy)?

201 dap,  (B2(n—71,n1))*"1B1(n —7,n1)
Summing (2.28) from na(ng > n1) to n — 1, we obtain

n—1 o

Z [ Qs (1+p%) (Aps)?

s - S ’LUn2 + a’l}nZ.
Paga= daps  (B2(s —7,m1))* 1 B1(s — T,m1) P

Taking lim sup in the above inequality, we obtain a contradiction with (2.20). The proof is
complete.

Awy, + p*Av, < —pp (2.28)

S=ns2

From Lemma 2.2, similar to the proof of Theorem 2.3, we obtain the following result.

Theorem 2.4. Let 0 < a < 1. Assume that (2.3) holds and T > §. Further more, assume
that there exists a positive nondecreasing sequence {py}, such that for any n1 € N, there
exists an integer ng > ny, with

n—1
_ (1+p°) (Aps)?
Jim sup 3 {pst T o pu(Bals — mm)) 1B — 7om)

S5=n2

= Q.

Then equation (1.1) is almost oscillatory.
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Next we establish some criteria for the oscillation of equation (1.1) for the case when
T <4.

Theorem 2.5. Assume that (2.3) holds, & > 1 and 7 < 6. Further, assume that there exists
a positive nondecreasing sequence {pn}, such that for any ny € N, there exists an integer
ng > Ny, with

n—1
. j : PsQs (1 +Pa) (Aps)aJrl _
W, 5P Lal Tt ) (B — s T (2:29)

S=ns2
Then equation (1.1) is almost oscillatory.

Proof. Assume that {z,} is a positive solution of equation (1.1), which does not tend to
zero as n — o0o. From the proof of Lemma 2.4, we obtain (2.5) and (2.7). Hence by Lemma
2.5, we have (2.8). Define

wn = pp 8 E0) (2.30)
-6
Then w, > 0. From (2.30) and Lemma 2.6 we have
Aw, = L W41 + p”A (%)
Pn+1 n—ao
< 14 Wni1 + po (a’ (a Z ) )_ ap aa+1( 5 +1) Zg:gAZn_g_ (231)
Pr+1 “n—6 “n41-5%n—45
By (2.5) and (2.8), we have
Azn_s > (a7_5(A%2n—s))B1(n— 6,n1) > (a2, 1 A%2p41)Br(n — 6,m).
It follows from (2.31) and (2.30) that
) 5 (at1)
nA n A n * A n n - Y% n 5
Aw, < (an(A%20)%) | Ap ey — 2P Pi(n lm)w 1 (2.32)
25 s P+l I+
n pn+1
Similarly, define another function v,, by
Oy §(A25, )
vy = pp 28I (2.33)
Zn—s
Then v, > 0,
Aan_s(A? A Bu(n — 6, ma)o,
Avy < pr (anﬂs(a Zn—s5) )+ Pn S appfBi(n 1+ln1 VY (2.34)
From (2.32) and (2.34), we have
n [A(an (A%2,)%) + pPAlan_s(A%2p_5)
Awn—f—pO‘Avn S P [ ( ( ) ) f ( 5( 6) )]
Zn—4§
Apy, appfBi(n—9o,n atl
+ P Wit — 14 51(1+l 1)wn11
Prt1 pn+(1’t
A b 5.m1) (at1)
o n appo1(n — 7”11}”&
+ P it — e (2.35)
Prt1 pn-}-?
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By (2.5),(2.7),(2.35) and 7 < ¢, we obtain

Q Ap appfi(n —6,ny) ekl

Awp, +p*Av, < *pn2a—:l1 + P tw”Jfl - 1+1 Wy

nt pn+1
A Buln— b.m) (at1)
appP1(n —0,n1)v,, 5
+ p° 5 Lo gy — 22 T il (2.36)
ntl pn+iY
From (2.36) and the inequality (2.19), we have
Qn 1 (Apn)aJrl (Apn)aJrl p”

Aw, +p*Av, < —p,, + .
’ P2t T 5 (i — 5,10 (puPln =, n))" (o + 1)1

Summing the last inequality from na(ng > n1) to n — 1, we obtain

n—1
Qs 1 ( ps)a+1
S - 1 a < ng a no -
2 ['” 2e1 ~ fag et PG G G Gy | S e TP

S=n2

Taking limsup in the above inequality, we obtain a contradiction with (2.29).The proof is
complete.

From Lemma 2.2, similar to the proof of Theorem 2.5, we obtain the following result.

Theorem 2.6. Assume that (2.3) holds, 0 < o <1 and 7 < §. Further, assume that there
exists a positive nondecreasing function {p,}, such that for any n; € N, there exists an
integer no > ny, with

n—1
. (1+p*) (Apy)t! _
nlin;o sup Z |:pst - (@ 1) (paBr(s — 6, m1))" = 0.

S=no

Then equation (1.1) is almost oscillatory.
Using the method of proof adapted in Theorem 2.3, we obtain the following result.

Theorem 2.7. Assume that (2.3) holds, & > 1 and 7 < 6. Further, assume that there exists
a positive nondecreasing sequence {pn}, such that for any ny € N, there exists an integer
ng > Ny, with

- = Q.

n—1
. psQs  (1+p%) (Aps)?
nlggo Supb Z [20‘1 da ps(Ba(s —0,m1))*"181(s — ,n1)

S=n2
Then equation (1.1) is almost oscillatory.

From Lemma 2.2 and Theorem 2.7, similar to the proof of Theorem 2.3 we establish the
following result.

Theorem 2.8. Assume (2.3) holds, 0 < o < 1 and 7 < §. Further, assume that there exists
a positive nondecreasing sequence {pn}, such that for any ny € N, there exists an integer
ng > Ny, with

n—1

. (1+p") (Aps)” -
nh—>H<>10 sup S;Z [/)st T 4o ps(Ba(s — 0,m1))21B1(s — 0,n1) = o0.

Then equation (1.1) is almost oscillatory.

Remark 1: From Theorems 2.1 - 2.8, one can derive several oscillation criteria for the
equation (1.1) by choosing specific sequence for {p,}.
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3 Examples

In this section, we present three examples to illustrate the main results.

Example 3.1. Consider the third order half-linear neutral difference equation

A
A(n(A*(zy +p 20-1))%) + Emid =0, n>1. (3.1)
Here a,, = n,pp, =p>0,7=2,0 =1, a0 = 3,q, = no,)\ > 0. Then Q,, = g, = n(, and
n—1
Bi(n,1) = 3 4 > (n—1)3, for n sufficiently large. It is easy to see that (2.3) holds. Set

s=1 83

pn = n°. We obtain
| i [PSQS Ltp")  (Ap)*! }

201 (a4 1)*t (psfi(s — T,m1))

lim sup

n—1
) A 51 4p*) s
= S“PZ (E T A (oap) T

if A > M Hence by Theorem 2.1, equation (3.1) is almost oscillatory when
A > 54(1+P )
FER

Example 3.2. Consider the third order half - linear difference equation

1 A
A (ﬁ (A%(zn +p xn_1))3) + 5 2 =0, n>1. (3.2)

A A

Here ap, = %, pp=p>0, 7=0=1, a=3 and q, = 5> A >0. Then @, = ¢n = —,
n

n35

é nn—1)(n—2)

Bi(n,1) = w and f(2(n,1) =

for n sufficiently large. It is easy to see that (2.3) holds. Set p,, = n°. We obtain

pst 1+p ) (Ap5)2
nh~>ngo Supz [QCY 1 4o ps (Ba(s —6,m1))* 1 B1(s — 0, ”1)}

n—1
) A 150(1 + p3)n?
= 1 —_ = =
nL”;oS“pg (45 (n—1)3(n— 2)3(n — 3)2 °
if A > 0. Hence, by Theorem 2.7, equation (3.2) is almost oscillatory when A > 0.

Example 3.3. Consider the third order difference equation of the form

1 A
A3(z, + gxn,g)Jr —3Tn-1= 0, n>1. (3.3)
Here a,, = 1,p, = 3,7'—1 0=2,a=1 ann2,>\>0 Thenanqn:i2

Bi(n,1) =n — 1. It is easy to see that (2.3) holds. Set p,, = n.

psQs (1 +p%) (Apg)ott
J, S Z[W T (a+ 1) (pafi(s — 7m))° ]

1
- nlgg)supZ(g 355—2))007
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if A > 0. Hence by Theorem 2.5, equation (3.3) is almost oscillatory. However one cannot
derive this conclusion from Theorem 3.1 of [15] since condition (h4) of Theorem 3.1 of [15]
is not satisfied.

4 Conclusion

In this paper, we have established some new oscillation theorems for the equation (1.1) for
the case 0 < p, < p < oo, and 7 and § are nonnegative integers. If 7 is nonnegative and
0 is negative then the condition 7 > § in Theorems 2.1 to 2.4 and if 7 is negative and ¢
is nonnegative then the condition 6 > 7 in Theorems 2.5 to 2.8 is satisfied and hence our
results can be extended to these cases and the details are left to the reader. The reader
can refer [3,9,12,24] for oscillation results of higher order neutral difference equations with
different ranges of the neutral coefficient. It would be interesting to study equation (1.1)
under the cases when p, < —1 or nh—>Holo pn = 00 or {p,} is an oscillatory sequence.

Acknowledgement: The authors sincerely thank the editor and anonymous referees for
their valuable suggestions and useful comments that have led to the present improved version
of the original manuscript.
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