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Abstract. We consider an initial boundary value problem for the nonhomogeneous heat
conducting magnetohydrodynamic flows. We show that for the initial density allowing
vacuum, the strong solution exists globally if the velocity field satisfies Serrin’s condi-
tion. Our method relies upon the delicate energy estimates and regularity properties of
Stokes system and elliptic equations.
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1 Introduction

Magnetohydrodynamics studies the dynamics of electrically conducting fluids and the theory
of the macroscopic interaction of electrically conducting fluids with a magnetic field. Due to
the profound physical background and important mathematical significance, a great deal of
attention has been focused on studying well-posedness of solutions to the MHD system, both
from a pure mathematical point of view and for concrete applications. For more background,
we refer to [6] and references therein.

Let QO C R3 be a bounded smooth domain, the motion of a viscous, incompressible, and
heat conducting magnetohydrodynamic fluid in () can be described by the following MHD
system

'atp + div(pu) =0,
dt(pu) + div(pu @ u) — pAu+ VP =b - Vb,
cu[0¢(00) + div(pud)] — kA0 = 2u|D(u)|? + v| curlb|?, (1.1)
db—b-Vu+u-Vb =vAb,
divu=0, divb =0
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with the initial condition

(p,u,0,b)(0,x) = (po, up, B, bo)(x), x e, (1.2)
and the boundary condition
%0 _
on
where n is the unit outward normal to dQ). Here p,u, 6, P,b are the fluid density, velocity,

absolute temperature, pressure, and the magnetic field, respectively. ©(u) denotes the defor-
mation tensor given by

u=20, 0, b=0, onodQ), (1.3)

D(u) = %(w +(Vu)).

The constant p > 0 is the viscosity coefficient. Positive constants c, and x are respectively the
heat capacity, the ratio of the heat conductivity coefficient over the heat capacity, and v > 0 is
the magnetic diffusivity acting as a magnetic diffusion coefficient of the magnetic field.

When b = 0, the system (1.1) reduces to the nonhomogeneous heat conducting Navier—
Stokes equations and there are a lot of results on the existence in the literature. For the
initial density containing vacuum states, Lions [14, Chapter 2] established the global existence
of weak solutions in any space dimensions. Later on, Cho-Kim [5] proposed a compati-
bility condition on the initial data and investigated the local existence of strong solutions.
By delicate energy estimates, Zhong [19] showed the global existence of strong solutions on
three-dimensional bounded domains under some smallness assumption. There are also very
interesting investigations about the existence of strong solutions to the three-dimensional non-
homogeneous heat conducting Navier-Stokes equations, please refer to [15,17,18,21].

Recently, the local and global existence of strong solutions to the multi-dimensional vis-
cous heat conducting magnetohydrodynamic flows with non-negative density were estab-
lished. Inspired by [5], Wu [16] proved the local existence of strong solutions. By using the
techniques in [19], the author [20] studied the global strong solutions for small initial data. At
the same time, he also obtained a blowup criterion of strong solutions. By a critical Sobolev
inequality of logarithmic type, Fan-Li-Nakamura [7] showed the global strong solutions with
no restrictions on the initial data in two-dimensional bounded domains. Very recently, Zhu-
Ou [22] obtained the global existence and algebraic decay of strong solutions to the non-
homogeneous heat-conducting magnetohydrodynamic equations with density-temperature-
dependent viscosity and resistivity coefficients. At the same time, many authors studied
blowup criteria and regularity criteria of incompressible magnetohydrodynamic equations
and related system, please refer to [1,2,4,10-12]. In this paper, motivated by [19], we aim at
giving a Serrin-type blowup criterion of strong solutions of the system (1.1).

Before stating our main results, we first explain the notations and conventions used
throughout this paper. We use the notation

/-dx:/ﬂ-dx.

For 1 < p < o0 and integer k > 0, the standard Sobolev spaces are denoted by:

LP = LP(Q), WEP = WEP(Q), HY = HF2 (),
Hy={ueH"|u=00n0Q}, H2={u e H?| Vu-n=0ondQ}.

Now we define precisely what we mean by strong solutions to the problem (1.1)—(1.3).
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Definition 1.1. (p,u,6,b) is called a strong solution to (1.1)-(1.3) in Q) x (0, T), if for some
qo >3,

p >0, pC([0, T W), pr € C([0, T]; L),

(u,b) € C([0, T]; HY N H2) 0 L2(0, T; W),

6 >0, 6 € C([0, T]; H?) N L2(0, T; W),

(bi,uy,0,) € L2(0, T; HY), (by, \/pus, \/o6) € L(0, T; L2).

Furthermore, both (1.1) and (1.2) hold almost everywhere in Q x (0, T).
Our main results read as follows.
Theorem 1.2. For constant q € (3, 6], assume that the initial data (p9 > 0,up, 69 > 0,bg) satisfy
00 € WH(Q)), (ug,by) € H(Q)NH*(Q), 6 € H2(Q), divug=divby =0, (1.4)

and the compatibility conditions

{—yAuo + VP —bg-Vby = /0081, (1.5)

kA6 + 21| D (up) [* + v| curl bo|* =  /pog2,

for some Py € H'(Q) and g1,82 € L2(Q). Let (o,u,0,b) be a strong solution to the problem (1.1)-
(1.3). If T* < oo is the maximal time of existence for that solution, then we have

].. s Jry — y 16
i, [ulls0,;0r) = @ (1.6)
where v and s satisfy

2 3

§+;§1’ s>1, 3<r<oo. (1.7)

Remark 1.3. The local existence of a strong solution with initial data as in Theorem 1.2 has
been established in [16]. Hence, the maximal time T* is well-defined.

Remark 1.4. The conclusion in Theorem 1.2 is somewhat surprising since the criterion (1.6)
is independent of the magnetic field. The result indicates that the magnetic field acts no
significant roles on the mechanism of blowup of nonhomogeneous heat conducting magne-
tohydrodynamic flows. Thus we generalize [19, Theorem 1.1] to the heat conducting MHD
flows.

Remark 1.5. Due to the Sobolev inequality |[ull;s < C||Vu||;2, we thus improve the blowup
criterion obtained in [20, Theorem 1.1].

We will prove Theorem 1.2 by contradiction in Section 3. In fact, the proof of the theorem
is based on a priori estimates under the assumption that |[u||;s(o 7.1y is bounded independent
of any T € (0,T*). The a priori estimates are then sufficient for us to apply the local exis-
tence result repeatedly to extend a local solution beyond the maximal time of existence T*,
consequently, contradicting the maximality of T*.

The rest of this paper is organized as follows. In Section 2, we collect some elementary
facts and inequalities that will be used later. Section 3 is devoted to the proof of Theorem 1.2.
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2 Preliminaries

In this section, we will recall some known facts and elementary inequalities that will be used
frequently later.

First, the following Gagliardo—Nirenberg inequality (see [9]) will be useful in the next
section.

Lemma 2.1 (Gagliardo-Nirenberg). Let QO C R? be a bounded smooth domain. Assume that 1 <
q,v < oo, and j, m are arbitrary integers satisfying 0 < j < m. If v € W™ (Q)) N L1(QY), then we
have

ID0|1r < CllollLs |25y,

where

3 3 3
—j+ == 1—u+a<—m—|—>,
j+,=0-ag .

and

[

The constant C depends only on m,j,q,r,a, and C).

,1], otherwise.

S~

. { [L,1), ifm—j—2 is an nonnegative integer,
a {

Next, we give some regularity results for the following Stokes system

—uAU+ VP =F, xe€Q,
divU=0, xc€Q, (2.1)
U=0, xe€d.
Lemma 2.2. Let m > 2 be an integer, r any real number with 1 < r < oo and let () be a bounded
domain of R3 of class C" 11, Let F € W"27(Q)) be given. Then the Stokes system (2.1) has a unique

solution U € W™ (Q) and P € W"~17(Q) /R. In addition, there exists a constant C > 0 depending
only on m,r, and Q) such that

[ lwer + ([Pl -1 /g < CI[F [l
Proof. See [3, Theorem 4.8]. O

3 Proof of Theorem 1.2

Let (p,u,0,b) be a strong solution described in Theorem 1.2. Suppose that (1.6) were false,
that is, there exists a constant My > 0 such that

i s(0T-1r) < . .
Tlngl [allzs0,7,0r) < Mo < 00 (3.1)
Rewrite the system (1.1) as
pr+u-Vp =0,
pu; +pu-Vu—puAu+ VP =b-Vb,
Cco00; + pu - VO] — kA0 = 2u|D (u)|* + v| curl b|?, (3.2)

b;—b-Vu+u-Vb—vAb =0,
\divu:0, divb = 0.
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In what follows, C stands for a generic positive constant which may depend on My, u,c,,x,v, T
and the initial data.

First of all, we have the following basic energy estimates and the upper bound of the
density.

Lemma 3.1. It holds that for any T € (0, T*),

T
sup (!IPI\Lw+Cv|\09\IL1+||x/ﬁu||iz+|\blliz)+/O (el Vullz +v[[VblIZ:) dt

0<t<T
< llpollz= + colloofoll 1 + | /Pouol| 72 + [[bo 7. (3.3)
Proof. Since divu = 0, we then derive from [14, Theorem 2.1] that for any ¢ € (0, T*),

lo() = = llool| - (34)
Applying standard maximum principle to (3.2)3 along with 6y > 0 shows (see [8, p. 43])

inf 6> 0. (3.5)
Qx[0,T]

Multiplying (3.2), by u and integrating (by parts) over (2, we derive that

;;t/p\u\zdx—ky/Wu\zdx - /b-Vb-udx. (3.6)
Multiplying (3.2)4 by b and integrating (by parts) over (), we get after using (1.3) that
%% / Ib[2dx +v/ Vb|2dx = /b - Vu-bdx — /u- Vb - bdx. (3.7)

Due to divb = 0 and u|yn = 0, we have
/b Vb - udx — /biaibfujdx __ /b . Vu - bdx. (3.8)
Similarly, one obtains

—/u-Vb-bdx _ —/ Wabibidx = /u-Vb-bdx,

and thus
/ u- Vb - bdx = 0. (3.9)
Combining (3.6)—(3.9), we deduce that
1d
oy (olu*+[b]?) dx + / (u|Vul* +v|Vb|?) dx = 0. (3.10)

Integrating (3.2)3 with respect to the spatial variable gives rise to

cv% /p9dx —Zy/ 1D (u)|*dx —1// |Vb|?dx = 0. (3.11)
Substituting (3.11) into (3.10) and noting that
2y / D(w) Pdx = —L / (O + 0ju 2
= —y/\Vu|2dx—y/aiujajuidx

- —y/|Vu|2dx,
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we derive that p . .
a 1 2, g2 _
i / <cvp9—|— 2p|u\ + z\b\ )dx 0, (3.12)

which combined with (3.10) leads to

d
5 [ (copd + plul? + [bP) dx + [ (4 Vuf* + v| V) dx = 0.

Integrating the above equality over (0, T) yields

T
sup (celjofl + /ol + 1) + [ (ul Vul +v| Vbl a
<t<

< colpobollrr + Ilv/PouolI72 + [[bol|7.

0

This along with (3.4) implies the desired (3.3) and consequently completes the proof. O
The following lemma was deduced in [13], we sketch it here for completeness.

Lemma 3.2. Under the condition (3.1), it holds that for p € [2,12] and T € [0, T*),
sup [|bl|zr + /OT/ [b|P~2|Vb|2dxdt < C. (3.13)
Proof. Multiplying (3.2); by p|b|P~2b and integrating the resulting equation over (), we deduce
jt/ybypdxwp(p—n/|b|P—2|Vb12dx < p/(b-Vu—u-Vb) bP2bdx.  (3.14)
Integration by parts together with (3.2)5 yields
—p /(u V)b - [b|P2bdx = /divu|b|pdx —0. (3.15)

We derive from integration by parts, Holder’s inequality, and Gagliardo-Nirenberg inequality
that for r and s satisfying (1.7),

p/(b-V)u- Ib|P~2bdx

‘/7‘7(174_1)/“,,;92yvb\2dx+C(v,P)/’ufsz’pdx

v 1 B r 2(r—3) p. 0
_P<p4>/,b,p 2|Vb|2dx + CllulZ [I[bI5 .7 I1bI%]I,
1% -1 _ < s
< P(Z)/w 2| Vb [2dx + 6] V[b| 2|2 + C(8) (1 + [lulli,) [, (3.16)

Substituting (3.15) and (3.16) into (3.14) and choosing J suitably small give that

i/|b|pdx+w<pz_1)/|b|”‘2|Vb|2dx <+ ) [ IblFax.

We thus obtain (3.13) directly after using Gronwall’s inequality and (3.1). This finishes the
proof of Lemma 3.2. O

Next, the following lemma concerns the key time-independent estimates on the
L*(0, T; L?)-norm of the gradients of the velocity and the magnetic field.
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Lemma 3.3. Under the condition (3.1), it holds that for any T € (0, T*),

T
sup (HVuH%zHIVbH%zH/O (Iv/ouellz2 + [bell 72 + [[ullfe + [ V?bI7.) dt < C. (3.17)

0<t<T

Proof. Multiplying (3.2), by u; and integrating the resulting equations over (), we derive from
Cauchy-Schwarz inequality that

nd 2 / 2
¥ |Vul“dx + [ p|us|“dx
:/b-Vb-utdx—/pu-Vu-utdx
= —jt/b~Vu'bdx—i—/[bt~Vu-b+b-Vu~bt—pu~Vu'ut]dx
<% [b-Vubars 2 [ (pluf+[bi) dx + [ GpluPITul +8[bP|Val) dx,
and thus
Z/(V\Vu|2+2b-Vu-b) dx+/p]ut]2dx
< [1biPdx+ [ (splal|Vuf + 16[b|Vul?) dx. (3.18)
Multiplying (3.2); by b; and integrating by parts yield
vjt/\Vb|2dx+2/\bt\2dx:2/(b-Vu—u-Vb) bidx
< ;/\btlzdx—i—S/ (IbP|Vul + [uP|Vb2) dx,  (3.19)
which combined with (3.18) implies
[ (W VuP 4+ v|VbP +2b-Vu-b)dx + [ (olw|? + [bi]2) dx
T Pt ot
< C [ (pluPIVuP + [bP|Vul + [u]?| Vb[?) dx. (3.20)
Recall that (u, P) satisfies the following Stokes system

—puAu+VP =—puy—pu-Vu+b-Vb, xecQ,
divu =0, x €Q),
u=20, x € o0

Applying Lemma 2.2 with F £ —pu; — pu - Vu + b - Vb, we obtain from (3.4) that

lul?2 < C (lowe)|?. + llou- Vu|[7. + [[b- Vb||%,)
< C (Ve + [lvpu- V7. + [[b- Vb|[3,) . (3.21)

It follows from the standard L2-estimates of elliptic system and (3.2), that

|92b]12 < € (|Ibi| + [lu - Vbl + [b- Vul%), (622)
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which together with (3.21) leads to for some K > 0,
[ullfz + Vb7 < K (llveuel72 + [1bell72) + C (|l y/ou - Va7 + [[b- Vb][7.)
+C(Jlu- Vb3, + b Vull7,). (3.23)
Adding (3.23) multiplied by i to (3.20), we get from Holder’s inequality, (3.13), and the
Gagliardo-Nirenberg inequality that
A0+ 3 (Iaw I +18i0%) + 5 (lulBa + [ 9%b3:)
< C [ (pluP|VuP + [bP|Vul + [uP|Vb[ + [bP|Vb ) dx
< CHPHLmHuH%rIIVuHi%2 +ClIbl 7| Vull 2 [ Vul| o
+ ClulE [IVB? 2 + ClIb{e[ Vb2 Vb5
< Cllulf | Vull2 [ Vulfy + | Va2Vl
+ Cllull3 [ VBII3: *Vb| 1 + C[[ bl 2| Vb

1
< 5 (lullfe + V2bIIZ2) +C (1 + [[ulli + [|Vullz + [VbI[Z) (IVali +1Vb[E)

and thus
1 1
A1) + 5 (Iauls + IbulB) + 5 (lull?e + 19%b]1%)
< (L4 [Julliy + [Vullf2 + [IVb[IZ2) ([Vullz2 + [ Vb]E) . (3.24)
Here
A(D) é/(y\Vu|2+v\Vb|2+2b-Vu-b) dx
satisfies
3
gHVuuﬁz +v[|Vb||7, — C < A(t) < 7”|\vu|y§2 +v||Vb|3 +C (3.25)
due to o
[ 2 ubas| < Bivull + ol < Sivulk
Consequently, the desired (3.17) follows from (3.24), Gronwall’s inequality, (3.25), (3.3), and
(3.1). This completes the proof of Lemma 3.3. O

Finally, the following lemma will deal with the higher order estimates of the solutions
which are needed to guarantee the extension of the local strong solution to be a global one.

Lemma 3.4. Under the condition (3.1), it holds that for any T € (0, T*),

sup ([lpllwia + [ullie + 10132 + [b]F2) < C. (3.26)

0<t<T

Proof. Differentiating (3.2), with respect to t and using (1.1);, we arrive at

puy +pu - Vuy — pAuy
= —VPD +div(pu) (uy +u-Vu) —pu; - Vu+b; - Vb + b - Vb,. (3.27)
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Multiplying (3.27) by u; and integrating (by parts) over Q2 yield
;Z/p|ut|2dx+y/\Vut|2dx = /div(pu)|ut|2dx+/div(pu)u-Vu-utdx
—/put~Vu-utdx—i—/bt-Vb-utdx
n / b. Vb, - udx £ i I (3.28)
k=1

By virtue of Holder’s inequality, Sobolev’s inequality, (3.4), and (3.17), we find that for 6 > 0,

il = |~ [ pu- iz

< 2]|p]| 2o 1l el /P | Ve 2

< Clloll =l Vullpa Pl y/purll [ Va |
< Cllolli=IVull 2l ypudl 2 Vu |,
LSV + Cllypu

VAN

|| = ‘—/pu-V(u-Vu-ut)dx

IN

/ (ol Vul?lu| + pluf* [ V2ulju| + plul?|Vul[Vu]) dx

< llpllelull e Vall [ Val sl s + ol allgs [Vl 2 e s
+ ol lullfs | Vull ol Vel 2
< ClIVulZallull gl V2

U 2 2 .
11Vl + Cllule;

A\

A

1 3

sl < [IVulli2llvoul < Va2l /ol 2 [l v/owll e
3 1 3
< Cllpllf=1'Vallpzllvoue |7 [ Vel 2

< fol Vil +Cllvpui
al < [0l 2 e < Cllbel 2 e T 2
< L |Tw iz, + CO)lbilE + 219l
s = ‘—/b-Vut-btdx
< bl[ sl Vg 2 [be | 15 < CHvaLZHvutHLsztH%Z||bt||%6

)
< L1 Vulf + CO)lIbel2 + 5 Vi

Substituting the above estimates into (3.28), we deduce that

d
glveudi + pllVeelf. < Cllvpui + Cllulfe + Cllbil[Z + 6] Vb 2. (3.29)
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Next, differentiating (3.2); with respect to t and multiplying the resulting equations by by,
we obtain after using integrating by parts and (3.17) that

1d

5 i [ 1brPax+v [ Vb < C (il iblll2 + o] 12) [ Vbl

1 1
<C (HufHL6HbHL3 + \Iullmllbtllizllbtllfﬁ) Vb |12

1 1
<c (HVutuLz AT zz) |Vbi

v
EHVthI 2+ Cl|Vu|[3, + Clby |7,
which implies that for some C; > 0,
d
7ol + vl Vb [F2 < Gl V|72 + Clle 2. (3.30)

Adding (3.29) multiplied by 281 t0 (3.30) and then choosing & suitably small, we deduce that

d _ v
= (2Cun M vpudlZ: + bl )+ Cull Vue |2+ S Vbel 2 < Cllull2e +C (I vpuiliZ: + [1be2)

Thus we infer from the Gronwall inequality and (3.17) that
T
Sup, (IlveulZ: + Ib:22) + /0 (Va2 + | Vby|Z.) dt < C. (331)

As a consequence, we derive from the regularity theory of elliptic system, (3.2)4, (3.31), and
(3.17) that

bl < C (Ibellf2 + [lu- VbIZ: + [b- ValZ2 + [b]IF:)
< C+Cllullfe /I VblIL + Clblize [ Vullf:
< c+C||Vu|!22||Vb|\Lz||Vb||L6 + Cl[Vb|l 2] Vbl | V|2

<C+3 ||b|| e
where we have used the following Sobolev’s inequality

1 1
vl < C[VV|[ 2] Vv]|2, forve Hyn H>.

Hence we get
sup ||b|2, < C. (3.32)

0<t<T

Furthermore, it follows from Lemmas 2.2 and 2.1, (3.4), (3.17), (3.31), and (3.32) that

lullf < C (lloweliZ: + llow - Vul[Z. + [[b- Vb]3)
< Cllplle=llveullz + Clipllz=l[ullfslIValfs + CliblIZs [ VbIIZ:
< C+C|VullZ:[[Vul s

1
<C+ EH“H%—IZ'



Serrin-type blowup criterion 11

which yields

sup [|uf2. < C. (3.33)

0<t<T
Now we estimate || Vp||s. First of all, applying Lemma 2.2 once more, we have

a2 < C (lowell?s + llou- Vu||7s + [|b - Vb||%)
< Cllpllf=luellZs + Cllplif=lullf= || Vul|Zs + C[[bl|i~ [ Vb]7s
< C| Vw2, +C,

which together with (3.31) implies

T
| Tl < c. (339

Then taking spatial derivative V on the transport equation (3.2); leads to
Vo+u-Vp+Vu-Vp=0.

Thus standard energy methods yields for any g € (3,6],

d
i 1Vel = C@)[Vull=IVplls < Clluflwes|[Vellws,
which combined with Gronwall’s inequality and (3.24) gives

sup [[Vpllus < C.

0<t<T

This along with (3.4) yields
sup |o[lws < C. (3.35)

0<t<T

Finally, we need to estimate ||0|| ;2. Motivated by [19], denote by § = ﬁ [ 0dx, the average
of 6, then we obtain from (3.4), (3.3), and the Poincaré inequality that

\9|/pdx < ’/p@dx

which together with the fact that | [ vdx| + || Vo|| ;2 is an equivalent norm to the usual one in
H'(Q) implies that

< C+C||Vo| 2,

+‘/p(9—9)dx

6] < C+C||VO|12. (3.36)
Similarly, one deduces
10l e < Cllv/PBll 2+ ClIV ] 2. (3.37)

Multiplying (3.2)3 by 6; and integrating the resulting equation over () yield that

S [ 1V0Pax e, [ ploax = —co [ plu- VO)adx+ 20 [ [D()61dx

3
Y / Vb0dx 2 Y I (3.38)
i=1
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By Holder’s inequality, (3.4), and (3.33), we get
1] < colloll /@842l V81 < 211y /PB: + C VB (3:39)
From (3.33) and (3.36), one has
L= 2;% [ 1) Podx — 24 [ (10 (@)?)i6dx
< 2;4;/\@(u)|29dx—|—C/9|Vu]|Vut|dx
<2 % [ [0 (@)Poax + Cloll | Vul [ Vui]
<2p 8 [ () Pox + €0l e | P
< 2;[% / 1D (u)[*0dx + C|| Vw7, + C|| V0|2, + C. (3.40)
Moreover, one infers
I = ujt / |Vb|20dx — 1//(|Vb]2)t9dx
< v(i/|Vb|29dx+C/9|Vb|]Vbt|dx
< v [ 1Vb0dx+ Clols Vbl T
< v & [ 1VbPedx +Clel bl Vi
< u;t/|Vb|29dx+CHVth%z+Cy|ve||§2+c. (3.41)
Inserting (3.39)—(3.41) into (3.38), we get
[ (6IV0 — 40 (w) 6 — 20| Vb[26) dx + <ol /81
< C|| Vw2, + C[| Vb |2, + C[ V8], + C. (3.42)

Noting that

K
4#/\9(11)\296196 < Clolls[Vul?yy < Cll6ll f[ullfe < 2VOlE +C,

and
K
2v [ |Vb[6dx < Clolls [ VBI < Cléllin b < §IVeIE: +C,

which combined with (3.42), Gronwall’s inequality, and (3.31) leads to

T
sup ([ VoI + [ | /pei|adt < C.

0<t<T

This together with (3.36) yields

T
sup 1012+ [ Ilv/peiladt < C. (3.43)
0<t<T 0
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Differentiating (3.2)3 with respect to ¢ and using (1.1);, we arrive at
Co[pBk + pu - VO] — kA6,
= cpdiv(pu) (8; +u - VO) — coou; - VO + 2u(|D(u)]?): 4+ v(|Vb|?):. (3.44)
Multiplying (3.44) by 6; and integrating (by parts) over () give rise to
12 2
22 /p|9t dx—Hc/ V6, [2dx

= cv/dw pu |9t|2dx—|—cv/div(pu)(u -V0)0,dx

5 -
—cv/p(ut-V9)9tdx+2y/(|’}3(u)|2)t9tdx+1//(|Vb|2)t9tdxé Y i (345)
k=1

Applying Holder’s inequality, Sobolev’s inequality, (3.4), (3.32), (3.33), (3.37), and (3.43), we
find

Rl = |=co [ pu- Vi

1
< 2¢o[|pl[E[[ull | /00: | 2| V6 [ 12
K
< 15/1VOlL + Cll e 2;

2| = ’—Cv/pu~ V[(u-V6)6,]dx

IN

co [ (plullVul [Vl 61] + plul*| V6] I6:| + ol V6] Ve dx

< collpll=llulle= I Vullis [ VOl 2110 s + colloll [[allFal V261l 2|6l e
+colloll ullZ VOl 2 [V Ol 2
< C(L+ V20l 2) ([l v/Pbell 2 + V6]l 2)

< 15 /IVelIE + CIV2001E + Clly/pbil 3z + C;

_ 1
|Ja| <collpli =l /oue |l 2| VO[3 164 s
< COL+ V20l 2) (1v/Pbell 2 + [V 12)

< I8+ CI V2613 + Cll /per s + G

|Jal SC/IVUIIVUt!f)tdx < Cl[Vull ][V 2|6 16

< ClIVuell2 ([0l 2 + [ VO] 12)

< 10HV@tII 2+ Cl[Vue[f2 + Cllv/pb: 1725

I <C [ Vbl Vbifoutx < CI[ Vb5 | Vel 6]
< C[ Vb r2([[v/p0t [ 12 + ([ VO 12)

< 10HV9tHLz +C|[ Vbt || 72 + Cll /b |-

Substituting the above estimates into (3.45), we derive that

d
coz VPOl + [ VO[T < Cll /o8t 112 + ClIV2OIIT: + ClIVue[[f2 + Cl[Vby[|T2 + C. - (346)
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The standard H2-estimate of (3.2); gives rise to
10132 < C (llp6rl72 + llpw - VOIE + | [Vul?[f2 + [16]17)
< Cliplle=llv/e8: 172 + Clipll = [[ulli= [ V6|7 + Cl Vullzs + ClIO1
< CllVooilliz + Cl6llE + Clulle
< Cllypbili. + C (3.47)
due to (3.33) and (3.43). Then we obtain from (3.46) and (3.47) that

d
o /B0 + [ V0| < Clly /B8 3 + Cll V|22 + C Vi3 + C,

which combined with the Gronwall inequality and (3.31) that

T
sup II\/EGtH%mL/O V6|74t < C. (3.48)

0<t<T

Consequently, we deduce from (3.47) and (3.48) that

sup [|0]|2, < C sup [|\/o8]? +C < C. (3.49)
0<t<T 0<t<T
So the desired (3.26) follows from (3.32), (3.33), (3.35), and (3.49). O

With Lemmas 3.1-3.4 at hand, we are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2. We argue by contradiction. Suppose that (1.6) were false, that is, (3.1)
holds. Note that the general constant C in Lemmas 3.1-3.4 is independent of t < T*, that is,
all the a priori estimates obtained in Lemmas 3.1-3.4 are uniformly bounded for any t < T*.
Hence, the function

(0,,6,b)(T*,x) £ lim (p,u,6,b) (1, )

satisfy the initial condition (1.4) at t+ = T*. Furthermore, standard arguments yield that
pu, p0 € C([0, T]; L?), here f = f; +u- V f, which implies

(pt, p0)(T*,x) = lim (ot p0) (¢, x) € L%,

Hence,
{—yAu +VP—b-Vb|i_r = /p(T*, x)g1(x),
KA + 2|D (u)|* 4 v| curl b|? =1+ = /p(T*, x)g2(x),
with
gi(x) 2 {p‘%m,x)(pa)w*,x), for x € {x]p(T",x) > 0},
0, for x € {x|p(T*, x) =0},
and

(x) & cop™2(T*, x)(p0)(T*,x), for x € {x|p(T*x) > 0},
82 0, for x € {x|p(T*, x) =0},

satisfying g1,8, € L? due to (3.31), (3.48), and (3.26). Thus, (p,u,0,b)(T*,x) also satisfies
(1.5). Therefore, taking (p,u,6,b)(T*, x) as the initial data, one can extend the local strong
solution beyond T*, which contradicts the maximality of T*. Thus we finish the proof of
Theorem 1.2. O
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