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1 Introduction

The aim of our article is the investigation of the behavior of the weak solutions to the trans-
mission Robin problem for quasi-linear elliptic second-order equations with the variable p(x)-
Laplacian in a neighborhood of an angular or a conical boundary point of the bounded cone.
The case for the constant p-Laplacian was investigated in our monograph [4]. The transmis-
sion problems appear frequently in various areas of physics and engineering. For instance,
one of the important problems of the electrodynamics of solid media is the research of electro-
magnetic processes in ferromagnetic with various dielectric constants. This type of problems
appears in solid mechanics if a body consists of composite materials as well. Let us mention
also vibrating folded membranes, composite plates, folded plates, junctions in elastic multi-
structures etc.

In this article we obtain estimates of the weak solutions to the elliptic transmission problem
for the variable p(x)-Laplacian near singularities on the boundary (conical boundary point or
edge). The same problems for p(x) = p = const were studied in our monograph [4].

Boundary value problems for elliptic second order equations with a non-standard growth
in function spaces with variable exponents actively studied in recent years. We refer to [8]
for an overview and the recent paper [1, 9–11] and reference therein. Differential equations
with variable exponents-growth conditions arise from the nonlinear elasticity theory, elec-
trorheological fluids, etc. There are many essential differences between the variable exponent
problems and the constant exponent problems. In the variable exponent problems, many

BEmail: mborsuk40@gmail.com

https://doi.org/10.14232/ejqtde.2019.1.93
https://www.math.u-szeged.hu/ejqtde/


2 M. Borsuk

singular phenomena occurred and many special questions were raised. V. Zhikov [12, 13]
has gave examples of the Lavrentiev phenomenon for the variational problems with variable
exponent.

Most of the works devoted to the quasi-linear elliptic second-order equations with the
variable p(x)-Laplacian refers to the Dirichlet problem in smooth bounded domains (see [8]).
We know only a few articles studying the Robin problem for such equations, but in these
works a domain is smooth and lower order terms depend only on (x, u) and do not depend
on |∇u|. Our articles [2, 3] is deduced to the Robin problem in a cone for such equations
with a singular p(x)-power gradient lower order term. Here we describe qualitatively the
behavior of the weak solution near a conical point, namely we derive the sharp estimate of the
type |u(x)| = O(|x|κ) for the weak solution modulus (for the solution decrease rate) of our
transmission problem near a conical boundary point. We establish the comparison principle
for weak solutions as well. We shall use calculations and some results of our previous article
[2].

We introduce the following notations: let C be an open cone in Rn, n ≥ 2, with the vertex
at the origin O and the angular opening of cone ω0 ∈ (0, π). Let Br be an open ball with
radius r centered at O. We use the following standard notations:

• Sn−1: a unit sphere in Rn centered at O;

• (r, ω), ω = (ω1, ω2, . . . , ωn−1): the spherical coordinates of x ∈ Rn with pole O:

x1 = r cos ω1,

x2 = r cos ω2 sin ω1,
...

xn−1 = r cos ωn−1 sin ωn−2 . . . sin ω1,

xn = r sin ωn−1 sin ωn−2 . . . sin ω1;

• Ω: a domain on the unit sphere Sn−1 with the smooth boundary ∂Ω obtained by the
intersection of the cone C with the sphere Sn−1;

• ∂Ω = ∂C∩ Sn−1;

• Gd
0 ≡ C∩ Bd = {(r, ω) | 0 < r < d; ω ∈ Ω};

• Γd
0 ≡ ∂C∩ Bd = {(r, ω) | 0 < r < d; ω ∈ ∂Ω};

• Ωd = Gd
0 ∩ {|x| = d};

We assume that Gd
0 = Gd

+ ∪ Gd
− is divided into two subdomains

Gd
+ := {(r, ω) : 0 < r < d, ω ∈ Ω+} and Gd

− : {(r, ω) : 0 < r < d, ω ∈ Ω−}

by a Σd
0 := Gd

0 ∩ {xn = 0} , where O ∈ Σd
0,

Ω+ = Ω ∩ {xn > 0}, Ω− = Ω ∩ {xn < 0} =⇒ Ω = Ω+ ∪Ω−;

σ0 = Σd
0 ∩Ωd; ∂±Ω = Ω± ∩ ∂C; ∂Ω± = ∂±Ω ∪ σ0;

• Γd
0 = Γd

+ ∪ Γd
−, Γd

± := {(r, ω) : 0 < r < d, ω ∈ Ω±};
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• u(x) =

{
u+(x), x ∈ Gd

+,

u−(x), x ∈ Gd
−;

f (x) =

{
f+(x), x ∈ Gd

+,

f−(x), x ∈ Gd
−

etc.;

• [u]Σd
0

denotes the saltus of the function u(x) on crossing Σd
0, i.e.

[u]Σd
0
= u+(x)

∣∣∣
Σd

0

−u−(x)
∣∣∣
Σd

0

,

where u±(x)
∣∣
Σd

0
= limGd

±3y→x∈Σd
0

u±(y);

• ni = cos(−→n , xi), i = 1, 2, where −→n denotes the unit outward vector with respect to Gd
+

(or Gd
0) normal to Σd

0 (respectively ∂Gd
0 \ O).

We use the standard function spaces:

• Ck(G±) with the norm |u±|k,G± ;

• the Lebesgue space Lp(G±), p ≥ 1 with the norm ‖u±‖p,G± ;

• the Sobolev space Wk,p(G±) with the norm ‖u±‖p,k;G±

and introduce their direct sums

• Ck(G) = Ck(G+)u Ck(G−) with the norm |u|k,G = |u+|k,G+
+ |u−|k,G− ;

• Lp(G) = Lp(G+)u Lp(G−) with the norm

‖u‖Lp(G) =

(∫
G+

|u+|pdx
) 1

p

+

(∫
G−
|u−|pdx

) 1
p

;

• Wk,p(G) = Wk,p(G+)uWk,p(G−) with the norm

‖u‖p,k;G =

( ∫
G+

k

∑
|β|=0
|Dβu+|pdx

) 1
p

+

( ∫
G−

k

∑
|β|=0
|Dβu−|pdx

) 1
p

.

We investigate the behavior in a neighborhood of the origin O of solutions to the transmission
Robin problem: 

−4p(x)u + a(x)u|u|p(x)−1 + b(u,∇u) = f (x), x ∈ Gd0
0 ,

[u]
Σd0

0
= 0,[

|∇u|p(x)−2 ∂u
∂−→n

]
Σd0

0

+ β

|x|p(x)−1 u|u|p(x)−2 = h(x, u), x ∈ Σd0
0 ,

|∇u|p(x)−2 ∂u
∂−→n + γ

|x|p(x)−1 u|u|p(x)−2 = g(x, u), x ∈ Γd0
0 ,

(TRQL)

where 0 < d0 � 1 (d0 is fixed) and

4p(x)u ≡ div
(
|∇u|p(x)−2∇u

)
. (1.1)

We will work under the following assumptions:

(i) 1 < p− ≤ p(x) ≤ p+ = p(0) < n; ∀x ∈ Gd0
0 ;
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(ii) the Lipschitz condition: p(x) ∈ C0,1(Gd0
0 ) =⇒ 0 ≤ p+ − p(x) ≤ L|x|, ∀x ∈ Gd0

0 ;
where L is the Lipschitz constant for p(x);

(iii) β = const > 0, γ = const > 0, such that{
β ≥ 2 and γ ≥ 1

2 β, if p+ ≥ 2;

1 ≤ γ ≤ 1
2 β, if 1 < p+ ≤ 2;

(1.2)

(iv) the function b(u, ξ) is differentiable with respect to the u, ξ variables in M = R×Rn

and satisfy in M the following inequalities:

(iv)a |b(u, ξ)| ≤ δ|u|−1|ξ|p(x) + b0|u|p(x)−1,

{
0 ≤ δ < µ, if µ > 0;

δ ≥ 0, if µ = 0;

(iv)b b(u, ξ) sign u ≥ ν|u|−1|ξ|p(x) − b0|u|p(x)−1, ν > 0; if µ = 0;

(iv)c

√√√√ n

∑
i=1

∣∣∣∣∂b(u, ξ)

∂ξi

∣∣∣∣2 ≤ b1|u|−1|ξ|p(x)−1;
∂b(u, ξ)

∂u
≥ b2|u|−2|ξ|p(x);

b0 ≥ 0, b1 ≥ 0, b2 ≥ 0;

(v) 0 ≤ a0 ≤ a(x) ≤ const · |x|−p(x);

| f (x)| ≤ f0|x|β(x), f0 ≥ 0, β(x) ≥ p+−1
p+−1+µ (p(x)− 1) λ− p(x); ∀x ∈ Gd0

0 ; 0 ≤ µ < 1
and λ is the least positive eigenvalue of problem (NEVP) (see below);

(vv) |h(x, u)| ≤ h0|x|1+β(x); ∀u ∈ L∞; ∂h(x,u)
∂u ≤ 0, h(x, 0) ≡ 0, x ∈ Σd0

0 ;
|g(x, u)| ≤ g0|x|1+β(x); ∀u ∈ L∞; ∂g(x,u)

∂u ≤ 0, g(x, 0) ≡ 0, x ∈ Γd0
0 ;

(vvv) the spherical region Ω ⊂ Sn−1 is invariant with respect to rotations in Sn−2.

We consider the functions class

N
1,p(x)
−1,∞ (Gd0

0 ) =

{
u
∣∣∣∣ u(x) ∈ L∞(G

d0
0 ) and

∫
Gd0

0

〈
|x|−p(x)|u|p(x) + |u|−1|∇u|p(x)

〉
dx < ∞

}

which was introduced in [5]. It is obvious that N1,p(x)
−1,∞ (Gd0

0 ) ⊂W1,p(x)(Gd0
0 ).

Definition 1.1. The function u is called a weak bounded solution of problem (TRQL) provided
that u(x) ∈ N

1,p(x)
−1,∞ (Gd0

0 ) and satisfies the integral identity

Q(u, η) :≡
∫

Gd0
0

〈
|∇u|p(x)−2uxi ηxi + a(x)u|u|p(x)−1η(x) + b (u,∇u) η(x)

〉
dx

+ γ
∫

Γd0
0

r1−p(x)u|u|p(x)−2η(x)dS + β
∫

Σd0
0

r1−p(x)u|u|p(x)−2η(x)dS

−
∫

Ωd0

|∇u|p(x)−2 ∂u
∂r

η(x)dΩd −
∫

Γd0
0

g(x, u)η(x)dS−
∫

Σd0
0

h(x, u)η(x)dS

=
∫

Gd0
0

f (x)η(x)dx

(II)

for all η(x) ∈ N
1,p(x)
−1,∞ (Gd0

0 ).
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Proposition 1.2. Above assumptions (i)–(vv) ensure the existence of integrals over Gd0
0 , Σd0

0 and Γd0
0

in (II). Therefore, the Definition 1.1 is correct.

Proof. 1) We use well known the Hölder inequality with p(x), p′(x) : 1
p(x) +

1
p′(x) = 1 and

inequality

‖|∇u|p(x)−1‖p′(x) ≤


‖∇u‖

p−
p+

(p−−1)

p(x) , if ‖∇u‖p(x) ≤ 1;

‖∇u‖
p+
p−

(p+−1)

p(x) , if ‖∇u‖p(x) ≥ 1;

1, if ‖∇u‖p(x) ≥ 1;

we have∫
Gd0

0

|∇u|p(x)−2uxi ηxi dx ≤
∫

Gd0
0

|∇u|p(x)−1|∇η|dx ≤ 2‖∇η‖p(x) · ‖|∇u|p(x)−1‖p′(x) < ∞,

∀u(x), η(x) ∈ N
1,p(x)
−1,∞ (Gd0

0 );

2) By assumption (v),

∫
Gd0

0

a(x)u|u|p(x)−1η(x)dx ≤ const · ‖η‖L∞ ·
∫

Gd0
0

|x|−p(x)|u|p(x)dx < ∞,

∀u(x), η(x) ∈ N
1,p(x)
−1,∞ (Gd0

0 );

3) By assumption (iv)a,

∫
Gd0

0

b (u,∇u) η(x)dx ≤ δ‖η‖L∞

∫
Gd0

0

|u|−1|∇u|p(x)dx + b0

∫
Gd0

0

|u(x)|p(x)−1|η(x)|dx < ∞,

∀u(x), η(x) ∈ N
1,p(x)
−1,∞ (Gd0

0 );

because of

∫
Gd0

0

|u(x)|p(x)−1|η(x)|dx ≤ ‖η‖L∞ ·
(

meas Gd0
0

)
·
{

1, if |u| ≤ 1;

‖u‖p+−1
L∞

, if |u| > 1.

4) ∫
Γd0

0 ∪Σd0
0

r1−p(x)u|u|p(x)−2η(x)dS ≤ ‖η‖L∞ · ‖u‖
p+−1
L∞

∫
Γd0

0 ∪Σd0
0

r1−p(x)dS

≤ const · ‖η‖L∞ · ‖u‖
p+−1
L∞

∫ d0

0
rn−p+−1dr =

const
n− p+

‖η‖L∞ · ‖u‖
p+−1
L∞

· dn−p+
0 .

5) By assumption (v) and (1.3) (see below),∫
Gd0

0

f (x)η(x)dx

≤ f0‖η‖L∞

∫
Gd0

0

|x|β(x)dx = f0‖η‖L∞ (meas Ωd0)
∫ d0

0
rκ(p(x)−1)−p(x)+n−1dr

≤ f0‖η‖L∞ (meas Ωd0)
∫ d0

0
rκ(p−−1)−p++n−1dr =

f0‖η‖L∞ (meas Ωd0)

κ(p− − 1)− p+ + n
dκ(p−−1)−p++n

0 .
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6) By assumption (vv),

∫
Γd0

0

g(x, u)η(x)dS ≤ g0‖η‖L∞

∫
Γd0

0

r1+β(x)dS = g0‖η‖L∞ (meas ∂Ωd0)
∫ d0

0
rκ(p(x)−1)−p(x)+ndr

≤ g0‖η‖L∞ (meas ∂Ωd0)
∫ d0

0
rκ(p−−1)−p++ndr =

g0‖η‖L∞ (meas ∂Ωd0)

κ(p− − 1)− p+ + n + 1
dκ(p−−1)−p++n+1

0 .

Similarly we verify the existence and the finiteness of
∫

Σd0
0

h(x, u)η(x)dS.

7) Finally, the existence and the finiteness of
∫

Ωd0
|∇u|p(x)−2 ∂u

∂r η(x)dΩd follows from the equal-
ity (II).

The main result is the following statement.

Theorem 1.3. Let u be a weak bounded solution of problem (TRQL), M0 = sup
x∈Gd0

0
|u(x)|* and

let λ be the least positive eigenvalue of problem (NEVP) (see Section 2). Suppose that (i)–(vvv)
hold. Then there exist d̃ ∈ (0, d0) and a constant C0 > 0 depending only on λ, d0, M0, p+, p−, L, n,
(µ− δ), ν, b0, f0 and such that

|u(x)| ≤ C0|x|κ , κ =
p+ − 1

p+ − 1 + µ
λ; ∀x ∈ Gd̃

0 . (1.3)

2 Nonlinear eigenvalue problem

Let −→ν be the exterior normal to ∂C at points of ∂Ω and −→τ be the exterior with respect to Ω+

normal to σ0 (lying in the tangent to Ω plane). To prove the main result we shall consider the
nonlinear eigenvalue problem for ψ(ω) ∈ C2(Ω) ∩C1(Ω), where

ψ(ω) =

{
ψ+(ω), ω ∈ Ω+,

ψ−(ω), ω ∈ Ω−,

−divω

(
(λ2ψ2 + |∇ωψ|2)(p+−2)/2∇ωψ

)
= λ (λ(p+ − 1) + n− p+) (λ2ψ2 + |∇ωψ|2)(p+−2)/2ψ, ω ∈ Ω,

[ψ]σ0 = 0;
[
(λ2ψ2 + |∇ωψ|2)(p+−2)/2 ∂ψ

∂−→ν

]
σ0
+ β

(
p+−1+µ

p+−1

)p+−1
· ψ|ψ|p+−2

∣∣∣
σ0

= 0,

(λ2ψ2 + |∇ωψ|2)(p+−2)/2 ∂ψ

∂−→ν + γ
(

p+−1+µ
p+−1

)p+−1
· ψ|ψ|p+−2 = 0, ω ∈ ∂Ω,

(NEVP)

where |∇ωψ| denotes the projection of the vector∇ψ onto the tangent plane to the unit sphere
at the point ω:

∇ωψ =

{
1
√

q1

∂ψ

∂ω1
, . . . ,

1
√

qn−1

∂ψ

∂ωn−1

}
,

|∇ωψ|2 =
n−1

∑
i=1

1
qi

(
∂ψ

∂ωi

)2

, q1 = 1, qi = (sin ω1 · · · sin ωi−1)
2, i ≥ 2.

Proposition 2.1.
λ (λ(p+ − 1) + n− p+) > 0 =⇒ λ > 0. (2.1)

*see Section 3, Theorem 3.3
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Proof. We multiply the (NEVP) equation by ψ(ω) and integrate over Ω:

∫
Ω

〈
−ψ(ω)divω

(
(λ2ψ2 + |∇ωψ|2)(p+−2)/2∇ωψ

)〉
dΩ

= λ (λ(p+ − 1) + n− p+)
∫

Ω
(λ2ψ2 + |∇ωψ|2)(p+−2)/2ψ2(ω)dΩ.

Integrating by parts the left integral, we obtain∫
Ω

〈
−ψ(ω)divω

(
(λ2ψ2 + |∇ωψ|2)(p+−2)/2∇ωψ

)〉
dΩ

=
∫

Ω
(λ2ψ2 + |∇ωψ|2)(p+−2)/2|∇ωψ|2dΩ−

∫
σ0

[
(λ2ψ2 + |∇ωψ|2)(p+−2)/2 ∂ψ

∂−→ν

]
ψ(ω)dσ

−
∫

∂Ω
(λ2ψ2 + |∇ωψ|2)(p+−2)/2 ∂ψ

∂−→ν
ψ(ω)dσ

=
∫

Ω
(λ2ψ2 + |∇ωψ|2)(p+−2)/2|∇ωψ|2dΩ + β

(
p+ − 1 + µ

p+ − 1

)p+−1

·
∫

σ0

|ψ|pdσ

+ γ

(
p+ − 1 + µ

p+ − 1

)p+−1

·
∫

∂Ω
|ψ|pdσ.

From the above obtained equalities we derive

λ (λ(p+ − 1) + n− p+)
∫

Ω
(λ2ψ2 + |∇ωψ|2)(p+−2)/2ψ2(ω)dΩ

=
∫

Ω
(λ2ψ2 + |∇ωψ|2)(p+−2)/2|∇ωψ|2dΩ + β

(
p+ − 1 + µ

p+ − 1

)p+−1 ∫
σ0

|ψ|pdσ

+ γ

(
p+ − 1 + µ

p+ − 1

)p+−1 ∫
∂Ω
|ψ|pdσ. (2.2)

Because of β > 0, γ > 0 and ψ(ω) 6≡ 0, the last equality means that inequality (2.1) is true.
Since p+ ∈ (1, n) we have also λ > 0.

Proposition 2.2. Let y(ω) = ∇ωψ(ω)
ψ(ω)

. There exists a constant Y0 = c(p+, λ, n) that satisfies the
inequality

|y(ω)| ≤ Y0, ∀ω ∈ Ω. (2.3)

Proof. From (2.2) it follows that∫
Ω
|ψ(ω)|p+(λ2 + y2(ω))

p+−2
2 y2(ω)dΩ

≤ λ 〈λ(p+ − 1) + n− p+〉
∫

Ω
|ψ(ω)|p+(λ2 + y2(ω))

p+−2
2 dΩ

=⇒
∫

Ω
|ψ(ω)|p+(λ2 + y2(ω))

p+−2
2
{

y2(ω)− λ 〈λ(p+ − 1) + n− p+〉
}

dΩ ≤ 0.

Hence it is clear the desired estimate (2.3)

|y(ω)| ≤
√

λ 〈λ(p+ − 1) + n− p+〉 ≡ Y0.
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If we rename ω = ω1, ω′ = (ω2, . . . , ωn−1) then, by assumption (vvv), we can see that
ψ(ω1, ω′) do not depend on ω′. Therefore our problem (NEVP) is equivalent the following
nondivergent form:

(
λ2ψ2 + (p+ − 1)ψ′2

)
ψ′′(ω) + (n− 2) cot ω

(
λ2ψ2 + ψ′2

)
ψ′(ω)

+λ (λ(2p+ − 3) + n− p+)ψ′2ψ(ω)

+λ3 (λ(p+ − 1) + n− p+)ψ3(ω) = 0, ω ∈ Ω =
(
−ω0

2 , ω0
2

)
\ {0};

ψ+(0) = ψ−(0) = ψ(0);[
λ2ψ2 + ψ′2)(p+−2)/2ψ′(ω)

]
ω=0

+ β
(

p+−1+µ
p+−1

)p+−1
ψ(0)|ψ(0)|p+−2 = 0;

±(λ2ψ2 + ψ′2)(p+−2)/2ψ′(ω) + γ
(

p+−1+µ
p+−1

)p+−1
ψ|ψ|p+−2 = 0, ω = ±ω0/2.

(OEVP)

2.1 Properties of the (OEVP) eigenvalue and corresponding eigenfunction

First of all, we note that ψ−(−ω) = ψ+(ω). Note that any two eigenfunctions are scalar mul-
tiples of each other if they solve problem for the same λ. Therefore, without loss of generality
we can assume that

ψ+

(ω0

2

)
= ψ−

(
−ω0

2

)
= 1. (2.4)

Lemma 2.3.

1) y−(ω) > 0, ω ∈ Ω−, y+(ω) < 0, ω ∈ Ω+. Moreover, if n = 2 then y′±(ω) < 0, ω ∈ Ω±
and therefore y±(ω) are decreasing functions.

2) There exists a constant ψ0 = c(p+, n, λ, γ, β, µ, ω0) that satisfies the inequality

1 ≤ ψ(ω) ≤ ψ0, ω ∈ Ω. (2.5)

Proof. Let us consider the y(ω) = ψ′(ω)
ψ(ω)

. From (OEVP) we obtain the problem

(
(p+ − 1)y2 + λ2) y′(ω) + (n− 2) cot ω

(
y2 + λ2) y(ω) + (p+ − 1)y4

+λ (2λ(p+ − 1) + n− p+) y2 + λ3 (λ(p+ − 1) + n− p+) = 0, ω ∈ Ω,[
y
〈
λ2 + y2〉 p+−2

2

]
ω=0

= −β

(
p+ − 1 + µ

p+ − 1

)p+−1

,

y+
〈
λ2 + y2

+

〉 p+−2
2 = −γ

(
p+ − 1 + µ

p+ − 1

)p+−1

, ω =
ω0

2
,

y−
〈
λ2 + y2

−
〉 p+−2

2 = +γ

(
p+ − 1 + µ

p+ − 1

)p+−1

, ω = −ω0

2
.

(CP)

At first, we note that y−(−ω) = −y+(ω) and therefore y′−(−ω) = y′+(ω). From this and from
the conjunction condition (CP) we get

y+(0)
〈
λ2 + y2

+(0)
〉 p+−2

2 − y−(0)
〈
λ2 + y2

−(0)
〉 p+−2

2 = −β

(
p+ − 1 + µ

p+ − 1

)p+−1

,

=⇒


y+(0)

〈
λ2 + y2

+(0)
〉 p+−2

2 = −β

2

(
p+ − 1 + µ

p+ − 1

)p+−1

,

y−(0)
〈
λ2 + y2

−(0)
〉 p+−2

2 =
β

2

(
p+ − 1 + µ

p+ − 1

)p+−1

.

(2.6)
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Thus we have:
y+(0) < 0, y+

(ω0

2

)
< 0; y−(0) > 0, y−

(
−ω0

2

)
> 0. (2.7)

Now we consider two cases: n = 2 and n > 2.

n = 2.

From the equation (CP) it follows that y′±(ω) < 0, ω ∈ Ω and therefore y±(ω) are decreasing
functions. Hence it follows that

y+
(ω0

2

)
≤ y+(ω) ≤ y+(0) < 0, ω ∈ Ω+;

0 < y−(0) ≤ y−(ω) ≤ y−
(
−ω0

2

)
, ω ∈ Ω−.

(2.8)

Remark 2.4. The assumption (1.2) guaranties inequalities (2.8).

Now, we shall estimate y±
(
±ω0

2

)
and y±(0) from boundary condition and (2.6). For this

we consider the equation

|t|
(
λ2 + t2) p+−2

2 = a, (2.9)

where a is a given positive number. We assert that this equation has a bounded solution. In
fact:

• for p+ = 2 a solution is |t| = a;

• for p+ > 2 we have |t|p+−1 ≤ |t|
(
λ2 + t2) p+−2

2 = a, =⇒ |t| ≤ a
1

p+−1 ;

• if 1 < p+ < 2 then the equation cannot have a unbounded solution, because of

lim
|t|→+∞

|t|

(λ2 + t2)
2−p+

2

= lim
|t|→+∞

|t|p+−1 = +∞,

which contradicts (2.9).

Hence it follows that there exist such constants c(p+, λ, γ, µ) and c(p+, λ, β, µ) that∣∣∣y± (±ω0

2

)∣∣∣ ≤ c(p+, λ, γ, µ); |y±(0)| ≤ c(p+, λ, β, µ). (2.10)

By the definition of y(ω) and (2.4), we derive from (2.8) and (2.10)

1 ≤ ψ+(ω) = exp

(
−
∫ ω0

2

ω
y+(ξ)dξ

)
≤ c(p+, λ, γ, µ, ω0) = ψ0, ω ∈ [0, ω0/2]; (2.11)

1 ≤ ψ−(ω) = exp
(∫ ω

− ω0
2

y−(ξ)dξ

)
≤ c(p+, λ, γ, µ, ω0) = ψ0, ω ∈ [−ω0/2, 0]. (2.12)

n > 2.

Let us prove that y+(ω) < 0 for all ω ∈ [0, ω0/2]. It is true on the ends of this segment (see
(2.7)). Let us assume that y+(ω) ≥ 0 in some interval [ω1, ω2] ⊂ [0, ω0/2] and y+(ω1) =

y+(ω2) = 0 (by the continuity of y+(ω) at least two such points can be found). Therefore
y′+(ω1) > 0, but it impossible by differential equation: in those points, where the function
becomes zero, itâĂŹs first derivative is strongly negative. The same we obtain if in one point
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y+(ω1) = 0, where the function (curve) touches abscissa axis. Now it is clear that y−(ω) > 0
for all ω ∈ [−ω0/2, 0]. Hence, by the definition of y(ω) and (2.4), we derive from (2.3) the
following:

1 ≤ ψ+(ω) = exp

(
−
∫ ω0

2

ω
y+(ξ)dξ

)
≤ exp

(ω0

2
Y0

)
= ψ0, ω ∈ [0, ω0/2]; (2.13)

1 ≤ ψ−(ω) = exp
(∫ ω

− ω0
2

y−(ξ)dξ

)
≤ exp

(ω0

2
Y0

)
= ψ0, ω ∈ [−ω0/2, 0]. (2.14)

Proposition 2.5. Let
∣∣y± (±ω0

2

)∣∣ = |y0|. If assumptions (i) and (1.2) satisfy then(
κ
λ

√
λ2 + y2

0

)p(x)−p(0)

≤ 1, ∀x ∈ Γd
0,(

κ
λ

√
λ2 + y2

±(0)
)p(x)−p(0)

≤ 1, ∀x ∈ Σd
0,

(2.15)

where κ is defined by (1.3).

Proof. For the proof of the first inequality of (2.15) we refer to the proof of Proposition 2.1 of
[2]. The proof of the second inequality of (2.15) is analogous.

Proposition 2.6.

y′(ω)

y2 + λ2 ≥ −
(p+ − 1)(y2 + λ2) + (n− p+)λ

(p+ − 1)y2 + λ2 , ω ∈ Ωd. (2.16)

Proof. Since

(p+ − 1)y4 + λ (2λ(p+ − 1) + n− p+) y2 + λ3 (λ(p+ − 1) + n− p+)

= (p+ − 1)(y2 + λ2)

(
y2 + λ2 +

n− p+
p+ − 1

λ

)
,

the (CP) equation can be rewritten as follows

y′+(ω)

y2
+ + λ2

= − (n− 2) cot ω

(p+ − 1)y2
+ + λ2

· y+(ω)− (p+ − 1)(y2
+ + λ2) + (n− p+)λ

(p+ − 1)y2
+ + λ2

, ω ∈
(

0,
ω0

2

)
.

y′−(ω)

y2
− + λ2

= − (n− 2) cot ω

(p+ − 1)y2
− + λ2

· y−(ω)− (p+ − 1)(y2
− + λ2) + (n− p+)λ

(p+ − 1)y2
− + λ2

, ω ∈
(
−ω0

2
, 0
)

.

Now, by Lemma 2.3, y+(ω) < 0, ω ∈ Ω+; y−(ω) > 0, ω ∈ Ω−, hence from this it follows the
desired inequality (2.16).

3 Maximum principle

In this section we derive L∞-a priori estimate of the weak bounded solution to problem (TRQL).
For this we shall consider the problem in a domain G ⊂ Rn, n ≥ 2 being a bounded domain
with the boundary Γ and that is divided into two subdomains G+ and G− by Σ0=G∩{xn= 0}.
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We suppose that Γ is a smooth surface everywhere except at the origin O ∈ Γ, and near the
point O it is a conical surface whose vertex is O, namely G ∩ Bd0 = Gd0

0 . Thus, Gd0
0 ⊂ G.

We shall derive L∞-a priori estimate of the weak bounded solution to the transmission
Robin problem: 

−4p(x)u + a(x)u|u|p(x)−1 + b(u,∇u) = f (x), x ∈ G,

[u]Σ0 = 0,[
|∇u|p(x)−2 ∂u

∂−→n

]
Σ0

+ β

|x|p(x)−1 u|u|p(x)−2 = h(x, u), x ∈ Σ0,

|∇u|p(x)−2 ∂u
∂−→n + γ

|x|p(x)−1 u|u|p(x)−2 = g(x, u), x ∈ Γ.

(TRPr)

Definition 3.1. The function u is called a weak bounded solution of problem (TRPr) provided
that u(x) ∈ N

1,p(x)
−1,∞ (G) and satisfies the integral identity

∫
G

〈
|∇u|p(x)−2uxi ηxi + a(x)u|u|p(x)−1η(x) + b (u,∇u) η(x)

〉
dx

+ γ
∫

Γ
r1−p(x)u|u|p(x)−2η(x)dS + β

∫
Σ

r1−p(x)u|u|p(x)−2η(x)dS

=
∫

Γ
g(x, u)η(x)dS +

∫
Σ0

h(x, u)η(x)dS +
∫

G
f (x)η(x)dx

(3.1)

for all η(x) ∈ N
1,p(x)
−1,∞ (G).

At first we formulate well-known lemmas.

Lemma 3.2 (see [7, Lemma 2.1] and [6, Lemma 1.60]). Let us consider the function

η(x) =

{
eκx − 1, x ≥ 0,

−e−κx + 1, x ≤ 0,

where κ > 0. Let a, b be positive constants, m > 1. If κ > (2b/a) + m, then we have

aη′(x)− bη(x) ≥ a
2

eκx, ∀x ≥ 0, (3.2)

η(x) ≥
[
η
( x

m

)]m
, ∀x ≥ 0. (3.3)

Moreover, there exist a d ≥ 0 and an M > 0 such that

η(x) ≤ M
[
η
( x

m

)]m
and η′(x) ≤ M

[
η
( x

m

)]m
, ∀x ≥ d; (3.4)

|η(x)| ≥ x, ∀x ∈ R. (3.5)

Theorem 3.3. Let u(x) be a weak solution of (TRQL). If assumptions (i)–(vv) hold in G, then there
exists a constant M0 > 0 depending only on meas G, n, p±, s, µ, f0, g0, a0, β0, γ and such that
‖u‖L∞(G) ≤ M0.

Proof. Let us define the set A(k) = {x ∈ G : |u(x)| > k} and let χA(k) be the characteristic func-
tion of the set A(k). Note that A(k + d) ⊆ A(k) for all d > 0. Putting η((|u| − k)+)χA(k) sign u
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as the test function in (3.1), where η is defined by Lemma 3.2 and k ≥ k0 (without loss of
generality we can assume k0 ≥ 1), we obtain the inequality∫

A(k)

{
|∇u|p(x)η′((|u| − k)+) + 〈a(x)|u|p(x) + b(u,∇u) sign u〉η((|u| − k)+)

}
dx

+ γ ·
∫

Γ∩A(k)

(
|u|
r

)p(x)−1

η((|u| − k)+)ds + β ·
∫

Σ0∩A(k)

(
|u|
r

)p(x)−1

η((|u| − k)+)ds

≤
∫

Γ∩A(k)
g(x, u) sign u · η((|u| − k)+)dS

+
∫

Σ0∩A(k)
h(x, u) sign u · η((|u| − k)+)dS +

∫
A(k)
| f (x)|η((|u| − k)+) dx. (3.6)

Now, we use the equality g(x, u)− g(x, 0) =
∫ 1

0
d

dτ g(x, τu)dτ; hence we obtain

g(x, u) sign u = g(x, 0) sign u + |u| ·
∫ 1

0

∂g(x, τu)
∂(τu)

dτ ≤ 0, by assumption (vv);

Similarly,

h(x, u) sign u = h(x, 0) sign u + |u| ·
∫ 1

0

∂h(x, τu)
∂(τu)

dτ ≤ 0.

From this and from (3.6), with regard to a(x) ≥ a0 > 0 and β > 0, γ > 0 (see assumptions
(iii), (v)), it follows that∫

A(k)

{
|∇u|p(x)η′((|u| − k)+) + 〈a0|u|p(x) + b(u,∇u) sign u〉η((|u| − k)+)

}
dx

≤
∫

A(k)
| f (x)|η((|u| − k)+) dx. (3.7)

Now we estimate from below a0|u|p(x) + b(u,∇u) sign u on A(k). Because of |u|A(k) > k0, for
µ > 0, by assumption (iv)a, we obtain〈

a0|u|p(x) + b(u,∇u) sign u
〉 ∣∣∣

A(k)
≥ (a0 − b0k−1

0 )|u|p(x) − µk−1
0 |∇u|p(x); (3.8)

for µ = 0, by assumption (iv)b, we obtain

b(u,∇u) sign u
∣∣∣

A(k)
≥ −µk−1

0 |∇u|p(x) − b0k−1
0 |u|

p(x),

therefore in this case we obtain again (3.8).
As a result from (3.7)–(3.8) we get the inequality∫

A(k)

{
|∇u|p(x)〈η′((|u| − k)+)− µk−1

0 η((|u| − k)+)〉+ ã0|u|p(x)η((|u| − k)+)
}

dx

≤
∫

A(k)
| f (x)|η((|u| − k)+) dx; where ã0 = a0 − b0k−1

0 > 0, (3.9)

if we choose
k0 >

b0

a0
. (3.10)

The inequality (3.9) coincides with the inequality (1.14) of [3]. The further proof is analogous
to the proof in [3]. It is necessary to inequality (1.36) of [3] to add the inequality (3.10).
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4 Comparison principle

In Gd
0 we consider the second order quasi-linear degenerate operator T of the form

T(u, η) ≡
∫

Gd
0

〈
Ai(x, ux)ηxi + b(x, u, ux)η(x)

〉
dx +

∫
Γd

0

γ(ω)

rp(x)−1
u|u|p(x)−2η(x)ds

+
∫

Σd
0

β(ω)

rp(x)−1
u|u|p(x)−2η(x)ds−

∫
Ωd

Ai(x, ux) cos(r, xi)η(x)dΩd

−
∫

Σd
0

h(x, u)η(x)ds−
∫

Γd
g(x, u)η(x)ds

(4.1)

for u(x) ∈ N
1,p(x)
−1,∞ (Gd

0) and for all non-negative η(x) belonging to N
1,p(x)
−1,∞ (Gd

0) under the fol-
lowing assumptions:
Ai(x, ξ), b(x, u, ξ) are Caratheodory functions, continuously differentiable with respect to the u, ξ

variables in M = G×R×Rn and satisfy in M the following inequalities:

(i) ∂Ai(x,ξ)
∂ξ j

ζiζ j ≥ κp|ξ|p(x)−2ζ2, ∀ζ ∈ Rn \ {0}; κp > 0; p(x) ≥ p− > 1;

(ii)

√
n
∑

i=1

∣∣∣∣ ∂b(x,u,ξ)
∂ξi

∣∣∣∣2 ≤ b1|u|−1|ξ|p(x)−1; ∂b(x,u,ξ)
∂u ≥ b2|u|−2|ξ|p(x); b1 ≥ 0, b2 ≥ 0;

(iii) ∂g(x,u)
∂u ≤ 0, ∂h(x,u)

∂u ≤ 0, γ(ω) > 0, β(ω) > 0.

Proposition 4.1. Let T satisfy assumptions (i)–(iii) and functions u, w ∈ N
1,p(x)
−1,∞ (Gd

0) satisfy the
inequality

T(u, η) ≤ T(w, η) (4.2)

for all non-negative η ∈ N
1,p(x)
−1,∞ (Gd

0). Assume also that the inequality

u(x) ≤ w(x) on Ωd (4.3)

holds. Then u(x) ≤ w(x) in Gd
0 .

Proof. Let us prove this proposition by the contradiction. Let us designate z = u−w and uτ =

τu + (1− τ)w, τ ∈ [0, 1]. We have

0 ≥ T(u, η)− T(w, η)

=
∫

Gd
0

〈
ηxi zxj

∫ 1

0

∂Ai(x, uτ
x)

∂uτ
xj

dτ + ηzxi

∫ 1

0

∂b(x, uτ, uτ
x)

∂uτ
xi

dτ + ηz
∫ 1

0

∂b(x, uτ, uτ
x)

∂uτ
dτ

〉
dx

−
∫

Ωd

(∫ 1

0

∂Ai(x, uτ
x)

∂uτ
xj

dτ

)
cos(r, xi) · zxj η(x)dΩd

+
∫

Γd
0

γ(ω)

rp(x)−1

(∫ 1

0

∂(uτ|uτ|p(x)−2)

∂uτ
dτ

)
z(x)η(x)ds

+
∫

Σd
0

β(ω)

rp(x)−1

(∫ 1

0

∂(uτ|uτ|p(x)−2)

∂uτ
dτ

)
z(x)η(x)ds

−
∫

Γd
0

(∫ 1

0

∂g(x, uτ)

∂uτ
dτ

)
z(x)η(x)ds−

∫
Σd

0

(∫ 1

0

∂h(x, uτ)

∂uτ
dτ

)
z(x)η(x)ds

(4.4)
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for all non-negative η ∈ N
1,p(x)
−1,∞ (Gd

0) .
Let us designate the sets

(Gd
0)

+ := {x ∈ Gd
0 | u(x) > w(x)} ⊂ Gd

0 ,

(Σd
0)

+ := {x ∈ Σd
0 | v(x) > w(x)} ⊂ Σd

0,

(Γd
0)

+ := {x ∈ Γd
0 | u(x) > w(x)} ⊂ Γd

0

and assume that (Gd
0)

+ 6= ∅, (Γd
0)

+ 6= ∅, (Σd
0)

+ 6= ∅. Let k ≥ 1 be any odd number. We
choose η = max{(u− w)k, 0} as a test function in the integral inequality (4.4). We have∫ 1

0

∂(uτ|uτ|p(x)−2)

∂uτ
dτ = (p(x)− 1)

∫ 1

0
|uτ|p(x)−2dτ > 0.

Then, by assumptions (i)–(iii) and η
∣∣∣
Ωd

= 0, we obtain from (4.4) that

∫
(Gd

0 )
+

{
kκpzk−1

(∫ 1

0
|∇uτ|p(x)−2dτ

)
|∇z|2 + b2zk+1

(∫ 1

0
|uτ|−2|∇uτ|p(x)dτ

)}
dx

≤ b1 ·
∫
(Gd

0 )
+

zk
(∫ 1

0
|uτ|−1|∇uτ|p(x)−1dτ

)
|∇z|dx. (4.5)

By the Cauchy inequality,

b1zk|∇z||uτ|−1|∇uτ|p(x)−1 =

(
|uτ|−1z

k+1
2 |∇uτ|

p(x)
2

)
·
(

b1z
k−1

2 |∇z||∇uτ|
p(x)

2 −1

)

≤ ε

2
|uτ|−2zk+1|∇uτ|p(x) +

b2
1

2ε
zk−1|∇z|2|∇uτ|p(x)−2, ∀ε > 0.

Hence, taking ε = 2b2, we obtain from (4.5) the inequality(
kκp −

b2
1

4b2

) ∫
(Gd

0 )
+

zk−1|∇z|2
(∫ 1

0
|∇uτ|p(x)−2dτ

)
dx ≤ 0. (4.6)

Choosing the odd number k ≥ max
(
1; b2

1
2b2κp

)
, and taking into account that z(x) ≡ 0 on ∂(Gd

0)
+,

we get from (4.6) that z(x) ≡ 0 in (Gd
0)

+. We got a contradiction to our definition of the set
(Gd

0)
+, this completes the proof.

Remark 4.2. For the p(x)-Laplacian assumption (i) is satisfied with

κp =

{
1, if p(x) ≥ 2;

p− − 1, if 1 < p− ≤ p(x) < 2.

4.1 Barrier function and eigenvalue problem (OEVP)

We shall study the barrier function w(r, ω) 6≡ 0 as a solution of the auxiliary problem:

−4p+w = µw−1|∇w|p+ , x ∈ Gd
0 ,[

∇w|p+−2 ∂w
∂−→n

]
Σd

0

+ β

|x|p+−1 w|w|p+−2 = 0, x ∈ Σd
0,

|∇w|p+−2 ∂w
∂−→n + γ

|x|p+−1 w|w|p+−2 = 0, x ∈ Γd
0,

0 < d ≤ d0 � 1.

(BFP)
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By direct calculations, we derive a solution of this problem in the form

w = w(r, ω) = rκψκ/λ(ω), κ =
p+ − 1

p+ − 1 + µ
λ, (BF)

where (λ, ψ(ω)) is the solution of the eigenvalue problem (OEVP). For this function we
calculate (we use our designation y(ω) = ψ′(ω)

ψ(ω)
):

∂w
∂r

= κrκ−1ψκ/λ(ω);
∂w
∂ω

=
κ
λ

rκψ
κ
λ−1(ω)ψ′(ω);

|∇w| = κ
λ

rκ−1ψ
κ
λ−1(ω)

√
λ2ψ2(ω) + ψ′2(ω) =

κ
λ

rκ−1ψ
κ
λ (ω)

√
λ2 + y2(ω).

(4.7)

Proposition 4.3 (see [2, Proposition 3.3]). w ∈ N
1,p(x)
−1,∞ (Gd

0).

5 The proof of the main Theorem 1.3

Let A > 1, and let w(r, ω) be the barrier function defined above. By the definition of the
operator Q in (II), we have

Q(Aw, η) ≡
∫

Gd
0

〈
Ap(x)−1|∇w|p(x)−2wxi ηxi + a(x)Ap(x)wp(x)η(x)

+ b (Aw, A∇w) η(x)
〉

dx + γ
∫

Γd
0

Ap(x)−1r1−p(x)wp(x)−1η(x)dS

+ β
∫

Σd
0

Ap(x)−1r1−p(x)wp(x)−1η(x)dS

−
∫

Ωd

Ap(x)−1|∇w|p(x)−2 ∂w
∂r

η(x)dΩd −
∫

Γd
0

g(x, Aw)η(x)dS

−
∫

Σd
0

h(x, Aw)η(x)dS

(5.1)

for all d ∈ (0, d0) and all non-negative η ∈ N
1,p(x)
−1,∞ (Gd

0). Integrating by parts and next calculat-
ing with regard to the problem (BFP) (see [2, Section 4]), from (5.1) it follows that

Q(Aw, η) = JGd
0
+ JΓd

0
+ JΣd

0
, (5.2)

where

JGd
0
≡
∫

Gd
0

〈
µAp(x)−1w−1|∇w|p(x) − Ap(x)−1|∇w|p+−2wxi

d|∇w|p(x)−p+

dxi

− ∂Ap(x)−1

∂xi
wxi |∇w|p(x)−2 + a(x)Ap(x)wp(x) + b (Aw, A∇w)

〉
η(x)dx;

JΓd
0
≡
∫

Γd
0

{
γ

(
Aw
r

)p(x)−1

·
〈

1−
(

r|∇w|
w

)p(x)−p+
〉

− Aw ·
∫ 1

0

∂g(x, τAw)

∂(τAw)
dτ + g(x, 0)

}
η(x)dS;
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JΣd
0
≡
∫

Σd
0

{
β

(
Aw
r

)p(x)−1

·
〈

1−
(

r|∇w+|
w

)p(x)−p+
〉

− Aw ·
∫ 1

0

∂h(x, τAw)

∂(τAw)
dτ + h(x, 0)

}
η(x)dS.

These integrals we estimate from below. At first, by Proposition 2.5 (see (2.15)) and the as-
sumption (vv) , we have inequalities

JΓd
0
≥ 0, JΣd

0
≥ 0. (5.3)

Therefore from (5.2)–(5.3) it follows

Q(Aw, η) ≥ JGd
0
. (5.4)

Because of a(x) ≥ a0 > 0 (the assumption (v)), for further details of the proof of Theorem 1.3,
we refer the reader to [2, Section 4].
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