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1 Introduction

Differential equations with impulses have a considerable importance in varied
applications as physics, engineering, biology, medicine, economics, neuronal
networks, social sciences, and so on. Many investigations have been car-
ried out concerning the existence, uniqueness, and asymptotic properties of
solutions. We refer to the monographs [7, 11, 29, 40] and the references
therein. It is well known that the study of controllability plays an important
role in the control theory. In recent years, some research dealing with the
study of controllability for impulsive systems [10, 16, 23, 32, 34, 41, 44, 47].
The most dynamical systems are analyzed in either the continuous or dis-
crete time domain. The population dynamical models in continuous time
are usually appropriate for organism that have overlapping generations. On
other hand, many biological populations are more accurately described by
non-overlapping generations. The dynamics of these populations often are
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more appropriately expressed by so-called difference equations. A hybrid
model, so-called sequential-continuous dynamical models, was developed by
Busenberg and Cooke [17] for models of vertically transmitted diseases (see
also [18]). The sequential-continuous systems are characterized by the fact
that they, during certain periods of time, are governed by continuous equa-
tions, and during the other periods, are governed by sequential equations.
A such sequential-continuous model can be formulated by the help of dy-
namical systems on time scales. For more details and results in this area
see [5], [6], [15] and [45]. S. Hilger [24] introduced the theory of time scales
in order to create a theory that can unify continuous and discrete analysis.
There has been significant growth in the theory of dynamic systems on time
scales, covering a variety of different qualitative aspects. We refer to the
books [13, 14, 30] and the references therein. We also refer to the papers
[1, 3, 19, 27, 28, 36, 42, 43, 46]. Some authors studied impulsive dynamic
systems on time scales [4, 11, 12, 26, 31, 33, 35]. The study of stability, con-
trollability and observability for dynamical systems on time scales has been
studied in few works [8, 9, 20, 21, 22, 25, 38, 39], but there has been no result
about the controllability and observability of piecewise linear time-varying
impulsive control systems. The main purpose of this paper is to derive nec-
essary and sufficient criteria for controllability and observability of a class of
such systems on time scales.

2 Preliminaries

Let R
n be the space of n-dimensional column vectors x = col(x1, x2, ...xn)

with a norm || · ||. A time scale T is a nonempty closed subset of R. The
notations [a, b], [a, b), and so on, will denote time scales intervals such as
[a, b] := {t ∈ T; a ≤ t ≤ b}, where a, b ∈ T. The set of all rd-continuous
functions f : T → R

n will be denoted by Crd(T, Rn). A function f : T → R
n

is piecewise rd-continuous (we write f ∈ Cprd(T, Rn)) if it is regulated and if
it is rd-continuous at all, except possibly at finitely many, right-dense points
t ∈ T.

We denote by C1
rd(T, Rn) the set of all functions f : T → R

n that are
differentiable on T and its delta-derivative f∆(t) ∈ Crd(T, Rn). The set
of rd-continuous (respectively rd-continuous and regressive) matrix-valued
functions A : T → Mn(R) is denoted by Crd(T, Mn(R)) (respectively by
CrdR(T, Mn(R))). We recall that a matrix-valued function A is said to be
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regressive if I + µ(t)A(t) is invertible for all t ∈ T
k, where I is the n × n

identity matrix. We refer to [13, 14] and also to the paper [1, 2] for more
information on analysis on time scales.

Consider the following impulsive dynamical system






x∆ = Ak(t)x + Bk(t)u, t ∈ [tk−1, tk),
x(t+k ) = (1 + ck)x(tk), k = 1, 2, ...,

x(t0) = x0,

(1)

where T is a unbounded above time scale with bounded graininess, [tk−1, tk) ⊂
T0 := [t0,∞) ∩ T, tk ∈ T are right-dense, 0 ≤ t0 < t1 < t2 < ... <

tk < ..., such that limk→∞ tk = ∞, x(t+k ) := limh→0+ x(tk + h), x(t−k ) :=
limh→0+ x(tk − h) and ck ∈ R are constants. In this paper, we assume that
Ak ∈ CrdR(T0, Mn(R)), Bk ∈ CrdR(T0, Mn×m(R)), x ∈ R

n is the state vari-
able, and u ∈ R

m is the control input.

Corresponding to impulsive system (1), consider the following dynamic
system on time scales

x∆ = Ak(t)x (2)

where k = 1, 2, ..., and t ∈ [tk−1, tk).
A matrix XAk

∈ CrdR(T, Mn(R)) is said to be a matrix solution of (2)
if each column of XAk

satisfies (2) for all t ∈ [tk−1, tk). A fundamental
matrix of (2) is a matrix solution XAk

of (2) such that det XAk
(t) 6= 0 for

all t ∈ [tk−1, tk). A transition matrix of (2) at initial time τ ∈ [tk−1, tk) is
a fundamental matrix such that XAk

(τ) = I. The transition matrix of (2)
at initial time τ ∈ [tk−1, tk) will be denoted by ΦAk

(t, τ). Therefore, the
transition matrix of (2) at initial time τ ∈ [tk−1, tk) is the unique solution of
the following matrix initial value problem

X∆ = Ak(t)X, X(τ) = I (3)

and x(t) = ΦAk
(t, τ)η for τ ∈ [tk−1, tk), is the unique solution of initial value

problem
x∆ = Ak(t)x, x(τ) = η.

If Ak(t) = Ak is a constant matrix, then we use the notation eAk
(t, τ) instead

of ΦAk
(t, τ).

Proposition 1 ( [13, Theorem 5.24]). If A ∈ CrdR(T, Mn(R)) and h ∈
Cprd(T, Rn), then for each (τ, η) ∈ T × R

n the initial value problem

x∆ = A(t)x + h(t), x(τ) = η
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has a unique solution given by

x(t) = ΦA(t, τ)η +

∫ t

τ

ΦA(t, σ(s))h(s)∆s, t ≥ τ. �

The following theorem shows that we can express the matrix exponential
as a finite sum of powers of the matrix A with infinitely rd-continuous delta
differentiable functions as coefficients.

Proposition 2 ([19, Theorem 5.1]). For the system (3) with A ∈ Mn(R)
constant, there exist scalar functions γ0(t, τ), ..., γn−1(t, τ) ∈ C∞

rd (T+, R) such
that the unique solution has representation

eA(t, τ) =
n−1
∑

i=0

γi(t, τ)Ai. (4)

�

Lemma 1. For any t ∈ (tk−1, tk], k = 1, 2, ..., the solution of the initial value
problem( 1) is given by

x(t) = ΦAk
(t, tk−1)

k−1
∏

i=1

(1 + ci)
1

∏

i=k−1

ΦAi
(ti, ti−1)x0

+
∫ t

tk−1
ΦAk

(t, σ(τ))Bk(τ)u(τ)∆τ +

k−1
∑

i=1

[

k−1
∏

j=i

(1 + cj)
∫ ti

ti−1
ΦAk

(t, tk−1)

×

i+1
∏

r=k−1

ΦAr
(tr, tr−1)ΦAi

(ti, σ(τ))Bi(τ)u(τ)∆τ ].

(5)

Proof. If t ∈ [t0, t1], then the unique solution of (1) is given by

x(t) = ΦA1
(t, t0)x0 +

∫ t

t0

ΦA1
(t, σ(τ))B1(τ)u(τ)∆τ , t ∈ [t0, t1].

For t ∈ (t1, t2] the initial value problem

{

x∆ = A2(t)x + B2(t)u,
x(t+1 ) = (1 + c1)x(t1),
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has the unique solution

x(t) = ΦA2
(t, t1)x(t+1 ) +

∫ t

t1

ΦA2
(t, σ(τ))B2(τ)u(τ)∆τ .

Since

x(t+1 ) = (1 + c1)x(t1) =

= (1 + c1)ΦA1
(t1, t0)x0 + (1 + c1)

∫ t1
t0

ΦA1
(t1, σ(τ))B1(τ)u(τ)∆τ

it follows that

x(t) = ΦA2
(t, t1)(1 + c1)ΦA1

(t1, t0)x0+

+(1 + c1)

∫ t1

t0

ΦA2
(t, t1)ΦA1

(t1, σ(τ))B1(τ)u(τ)∆τ

+
∫ t

t1
ΦA2

(t, σ(τ))B2(τ)u(τ)∆τ

and so, (5) is true for k = 2. Next, suppose that (5) is true for k = p, that
is, for t ∈ (tp−1, tp], we have

x(t) = ΦAp
(t, tp−1)

p−1
∏

i=1

(1 + ci)
1

∏

i=p−1

ΦAi
(ti, ti−1)x0

+
∫ t

tp−1
ΦAp

(t, σ(τ))Bp(τ)u(τ)∆τ +

p−1
∑

i=1

[

p−1
∏

j=i

(1 + cj)
∫ ti

ti−1
ΦAp

(t, tp−1)

×

i+1
∏

r=p−1

ΦAr
(tr, tr−1)ΦAi

(ti, σ(τ))Bi(τ)u(τ)∆τ ].

Then, for t ∈ (tp, tp+1], the initial value problem
{

x∆ = Ap+1(t)x + Bp+1(t)u,
x(t+p ) = (1 + cp)x(tp),

has the unique solution

x(t) = ΦAp+1
(t, tp)x(t+p ) +

t
∫

tp

ΦAp+1
(t, σ(τ))Bp+1(τ)u(τ)∆τ , t ∈ (tp, tp+1].
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Since

x(t+p ) = (1 + cp)x(tp) =

p
∏

i=1

(1 + ci)
1

∏

i=p

ΦAi
(ti, ti−1)x0

+(1 + cp)
∫ tp

tp−1
ΦAp

(tp, σ(τ))Bp(τ)u(τ)∆τ +

p−1
∑

i=1

[

p
∏

j=i

(1 + cj)
∫ ti

ti−1
ΦAp

(tp, tp−1)

×
i+1
∏

r=p−1

ΦAr
(tr, tr−1)ΦAi

(ti, σ(τ))Bi(τ)u(τ)∆τ ].

It follows that

x(t) = ΦAp+1
(t, tp)

p
∏

i=1

(1 + ci)

1
∏

i=p

ΦAi
(ti, ti−1)x0

+
∫ t

tp
ΦAp+1

(t, σ(τ))Bp+1(τ)u(τ)∆τ +

p
∑

i=1

[

p
∏

j=i

(1 + cj)
∫ ti

ti−1
ΦAp+1

(t, tp)

×
i+1
∏

r=p

ΦAr
(tr, tr−1)ΦAi

(ti, σ(τ))Bi(τ)u(τ)∆τ ],

and thus (5) is true for k = p + 1. Therefore, by induction, (5) is proved. �

3 Controllability

Definition 1. The impulsive system (1) is called controllable on [t0, tf ],
with tf > t0, if given any initial state x0 ∈ Rn there exists a piecewise
rd-continuous input signal u(·) : [t0, tf ] → Rm such that the corresponding
solution of (1) satisfies x(tf ) = 0.

We consider the following matrices:

Gi := G(t0, ti−1, ti) =

∫ ti

ti−1

Ψi(t0, σ(τ))Bi(τ)BT
i (τ)ΨT

i (t0, σ(τ))∆τ , (6)
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for i = 1, 2, ..., k − 1, and

Gk := G(t0, tk−1, tf) =

∫ tf

tk−1

Ψk(t0, σ(τ))Bk(τ)BT
k (τ)ΨT

k (t0, σ(τ))∆τ , (7)

where Ψ1(τ) := Ψ1(t0, σ(τ) = ΦA1
(t0, σ(τ)), for τ ∈ (t0, t1], and

Ψi(τ) := Ψi(t0, σ(τ)) =

i−1
∏

j=1

ΦAj
(tj−1, tj)ΦAi

(ti−1, σ(τ)), τ ∈ (ti−1, ti], (8)

for i = 2, 3, ..., k.
If Ak(t) = Ak and Bk(t) = Bk are constant matrices then

Gi := G(t0, ti−1, ti) =

∫ ti

ti−1

Ψi(t0, σ(τ))BiB
T
i ΨT

i (t0, σ(τ))∆τ , (9)

for i = 1, 2, ..., k − 1 and

Gk := G(t0, tk−1, tf) =

∫ tf

tk−1

Ψk(t0, σ(τ))BkB
T
k ΨT

k (t0, σ(τ))∆τ , (10)

where Ψ1(τ) := Ψ1(t0, σ(τ) = eA1
(t0, σ(τ)), for τ ∈ (t0, t1], and

Ψi(τ) := Ψi(t0, σ(τ)) =
i−1
∏

j=1

eAj
(tj−1, tj)eAi

(ti−1, σ(τ)), τ ∈ (ti−1, ti], (11)

for i = 2, 3, ..., k.
The Gramian matrix in the case of time scales was defined in [21]. The

above definition is adopted from [21] for impulsive case. Now we are formu-
lating the results for controllability.

Theorem 1. (i) If there exists at least l ∈ {1, 2, ..., k} such that rank(Gl) =
n, then the impulsive system (1) is controllable on [t0, tf ] (tf ∈ (tk−1, tk]).

(ii) Assume that ci 6= −1, i = 1, 2, ..., k − 1. If the impulsive system (1)
is controllable on [t0, tf ] (tf ∈ (tk−1, tk]), then

rank(G0 G1 ... Gk) = n. (12)

Proof. (i) Let l ∈ {1, 2, ..., k} be such that rank(Gl) = n, that is, G(t0, tl−1, tl)
is invertible. Then for a given x0 ∈ R

n, choose

u(t) =

{

alB
T
l (t)ΨT

l G−1
l x0 if t ∈ (tl−1, tl]

0 if t ∈ [t0, tf ] r (tl−1, tl],
(13)
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where al is a constant such that

k−1
∏

i=1

(1 + ci) + al

k−1
∏

j=l

(1 + cj) = 0.

Obviously, the control input u(·) is piecewise rd-continuous on [t0, tf ]. By
Lemma 1, we have

x(tf ) = ΦAk
(tf , tk−1)

k−1
∏

i=1

(1 + ci)

1
∏

i=k−1

ΦAi
(ti, ti−1)x0 + [

k−1
∏

j=l

(1 + cj)al×

∫ tl
tl−1

ΦAk
(tf , tk−1)

l+1
∏

r=k−1

ΦAr
(tr, tr−1)ΦAl

(tl, σ(τ))Bl(τ)BT
l (τ)ΨT

l (τ)G−1
l ∆τ ]x0.

Since

l+1
∏

r=k−1

ΦAr
(tr, tr−1)ΦAl

(tl, σ(τ))Ψ−1
l (τ) = ΦAk−1

(tk−1, tk−2)...ΦAl
(tl, σ(τ))

×ΦAl
(σ(τ), tl−1)ΦAl−1

(tl−1, tl−2)...ΦA1
(t1, t0) =

1
∏

i=k−1

ΦAi
(ti, ti−1),

it follows that

x(tf ) = ΦAk
(tf , tk−1)

k−1
∏

i=1

(1 + ci)
1

∏

i=k−1

ΦAi
(ti, ti−1)x0

+[

k−1
∏

j=l

(1 + cj)al

∫ tl
tl−1

ΦAk
(tf , tk−1)

l+1
∏

r=k−1

ΦAr
(tr, tr−1)ΦAl

(tl, σ(τ))Ψ−1
l (τ)

×Ψl(τ)Bl(τ)BT
l (τ)ΨT

l (τ)G−1
l ∆τ ]x0.

Therefore, we obtain

x(tf ) =

[

k−1
∏

i=1

(1 + ci) +
k−1
∏

j=l

(1 + cj)al

]

ΦAk
(tf , tk−1)

1
∏

i=k−1

ΦAi
(ti, ti−1) = 0,
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and so, the impulsive system (1) is controllable on [t0, tf ].
(ii) Suppose that (1) is controllable on [t0, tf ] and rank(G0 G1 ... Gk) < n.

Then, there exists nonzero xα ∈ R
n such that

0 = xT
αG(t0, ti−1, ti)xα =

∫ ti

ti−1

xT
αΨi(t0, σ(τ))Bi(τ)BT

i (τ)ΨT
i (t0, σ(τ))xα∆τ ,

for i = 1, 2, ..., k − 1, and

0 = xT
αG(t0, tk−1, tf)xα =

∫ tf

tk−1

xT
αΨk(t0, σ(τ))Bk(τ)BT

k (τ)ΨT
k (t0, σ(τ))xα∆τ .

Since xT
αΨi(t0, σ(τ))Bi(τ) are rd-continuous functions and

xT
αΨi(t0, σ(τ))Bi(τ)BT

i (τ)ΨT
i (t0, σ(τ))xα =

∥

∥xT
αΨi(t0, σ(τ))Bi(τ)

∥

∥

2
,

for τ ∈ (ti−1, ti], i = 1, 2, ..., k, then from the last equalities we obtain

xT
αΨi(t0, σ(τ))Bi(τ) = 0, τ ∈ (ti−1, ti], i = 1, 2, ..., k. (14)

However, the impulsive system (1) is controllable on [t0, tf ], and so choosing
x0 = xα, there exists a piecewise rd-continuous input u(·) such that

0 = x(tf ) = ΦAk
(tf , tk−1)

k−1
∏

i=1

(1 + ci)
1

∏

i=k−1

ΦAi
(ti, ti−1)xα

+
∫ tf

tk−1
ΦAk

(tf , σ(τ))Bk(τ)u(τ)∆τ +
k−1
∑

i=1

[
k−1
∏

j=i

(1 + cj)×

∫ ti
ti−1

ΦAk
(tf , tk−1)

i+1
∏

r=k−1

ΦAr
(tr, tr−1)ΦAi

(ti, σ(τ))Bi(τ)u(τ)∆τ ].

(15)

Multiplying by ΦA1
(t0, t1)ΦA2

(t1, t2)...ΦAk
(tk−1, tf) in (15) we obtain

k−1
∏

i=1

(1 + ci)xα = −
k−1
∑

[
i=1

k−1
∏

j=i

(1 + cj)ΦA1
(t0, t1)ΦA2

(t1, t2)...ΦAi
(ti−1, ti)

×

∫ ti

ti−1

ΦAi
(ti, σ(τ))Bi(τ)u(τ)∆τ ]

−ΦA1
(t0, t1)ΦA2

(t1, t2)...ΦAk
(tk−1, tf )

∫ tf

tk−1

ΦAk
(tf , σ(τ))Bk(τ)u(τ)∆τ.
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Now, using (14) and multiplying by xT
α to the both side of the above equality,

we obtain

k−1
∏

i=1

(1 + ci)x
T
αxα = −

k−1
∑

[
i=1

k−1
∏

j=i

(1 + cj)

∫ ti

ti−1

xT
αΨi(t0, σ(τ))Bi(τ)u(τ)∆τ ]

−

∫ tf

tk−1

xT
αΨk(t0, σ(τ))Bk(τ)u(τ)∆τ = 0.

Since
k
∏

j=1

(1 + cj) 6= 0, it follows that xαxT
α = 0. This contradicts xα 6= 0 and

so we conclude that rank(G0 G1 ... Gk) = n. �

If T = R, then we obtain the result of Theorem 1 in [47]. If Ak(t) = A(t),
Bk(t) = B(t), then we obtain the Theorem 1 in [36], and the Theorem 3.1
in [23] if T = R. The version of non impulsive case on time scales (ci = −1)
can be found in [8, Theorem 4], [21, Theorem 3.2] and [25, Theorem 3.7].

Theorem 2. Assume that ci 6= −1, i = 1, 2, ..., k − 1, and Ak(t) = Ak,
Bk(t) = Bk are constant matrices. Then the impulsive system (1) is control-
lable on [t0, tf ](tf ∈ (tk−1, tk]) if and only if

rank(W1 W2 ... Wk) = n, (16)

where Wi = Λi(Bi AiBi ... An−1
i Bi) for i = 1, 2, ..., k−1, Wk = Λk−1eAk

(tk−1, tf)
(Bk AkBk ... An−1

k Bk), and Λi = eA1
(t0, t1)eA2

(t1, t2)...eAi
(ti−1, ti).

Proof. Suppose that the impulsive system (1) is controllable on [t0, tf ]. If the
rank condition (16) does not hold, then there exists nonzero xα ∈ R

n such
that

xT
αΛiA

j
iBi = 0,
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for i = 1, 2, ..., k, j = 0, 1, ..., n − 1. Using (4), (9) and (10), we obtain that

xT
αG(t0, ti−1, ti) =

∫ ti

ti−1

xT
αΨi(t0, σ(τ))BiB

T
i Ψi(τ)∆τ

=

∫ ti

ti−1

xT
αΛi−1eAi

(ti−1, σ(τ))BiB
T
i Ψi(τ)∆τ

=

∫ ti

ti−1

xT
αΛi−1eAi

(ti−1, ti)eAi
(ti, σ(τ))BiB

T
i Ψi(τ)∆τ

=

∫ ti

ti−1

xT
αΛieAi

(ti, σ(τ))BiB
T
i Ψi(τ)∆τ

=

∫ ti

ti−1

[

n−1
∑

j=0

γij(ti, σ(τ))xT
αΛiA

j
iBi

]

BT
i Ψi(τ)∆τ = 0

for i = 1, 2, ..., k − 1. Similarly, xT
αG(t0, tk−1, tf ) = 0. It follows that rank(G0

G1 ... Gk) < n. This contradicts the conclusion (ii) of Theorem 1 and there-
fore, we can conclude that the condition (16) is true.

Conversely, suppose that (16) holds. If the impulsive system (1) is not
controllable on [t0, tf ] (tf ∈ (tk−1, tk]), then it follows from conclusion (i) of
Theorem 1 that the matrices G(t0, ti−1, ti) (i = 1, 2, ..., k−1) and G(t0, tk−1, tf)
are not invertible. Thus there exists nonzero xα ∈ R

n such that

0 = xT
αG(t0, ti−1, ti)xα =

∫ ti

ti−1

xT
αΨi(t0, σ(τ))BiB

T
i ΨT

i (t0, σ(τ))xα∆τ ,

for i = 1, 2, ..., k − 1, and

0 = xT
αG(t0, tk−1, tf)xα =

∫ tf

tk−1

xT
αΨk(t0, σ(τ))BkB

T
k ΨT

k (t0, σ(τ))xα∆τ .

Exactly as in proof of Theorem 1, it follows that

0 = xT
αΨi(t0, σ(τ))Bi = xT

αΛieAi
(ti, σ(τ))Bi, τ ∈ (ti−1, ti]

and

0 = xT
αΨk(t0, σ(τ))Bk = xT

αΛkeAk
(tf , σ(τ))Bk = 0, τ ∈ (tk−1, tf ].
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By continuity of eAi
(ti, ·) and density of σ((ti−1, ti]) in the interval

(σ(ti−1), σ(ti)] = (ti−1, ti] we obtain that

xT
αΛieAi

(ti, τ)Bi = 0 for all τ ∈ (ti−1, ti], i = 1, 2, ..., k − 1. (17)

Also, by continuity of eAk
(tf , ·) and density of σ((tk−1, tf ]) in the interval

(σ(tk−1), σ(tf)] = (tk−1, tf ] we obtain that

xT
αΛkeAk

(tf , τ)Bk = 0 for all τ ∈ (tk−1, tf ]. (18)

In particular, if we take τ = ti in (17) and τ = tf in (18), then, it follows
that xT

αΛiBi = 0 for i = 1, 2, ..., k. Since eAi
(ti, ·) is delta differentiable and

∂
∆τ

eAi
(ti, τ) = −eAi

(ti, σ(τ))Ai (see [13, Theorem 5.23]), then subsequent
derivatives and the density argument as above, gives

(−1)jxT
αΛieAi

(ti, τ)Aj
iBi = 0, τ ∈ (ti−1, ti] (19)

for j = 0, 1, ..., n − 1 and i = 1, 2, ..., k − 1. Similarly,

(−1)jxT
αΛkeAk

(tf , τ)Aj
kBk = 0 τ ∈ (tk−1, tf ] (20)

for j = 0, 1, ..., n − 1. If we take τ = ti in (19) and τ = tf in (20), then it
follows that xT

αΛiA
j
iBi = 0 for i = 1, 2, ..., k, j = 0, 1, ..., n − 1. Therefore,

xT
αΛi(Bi AiBi ... An−1

i Bi) = 0,

which implies that the rank condition (16) fails. This contradiction proves
that the impulsive system (1) is controllable on [t0, tf ] (tf ∈ (tk−1, tk]). �

If T = R, then we obtain the result of Theorem 2 in [47]. If Ak(t) = A(t),
Bk(t) = B(t), then we obtain the Theorem 2 in [36], and the Theorem 3.2
in [23] if T = R. The version for non impulsive case (ci = −1) of the above
theorem can be found in [8, Corollary 3], [21, Theorem 2.7] and [25, Theoem
3.3].

Example 1. Consider the following impulsive system on a time scale T:







x△(t) = Ak(t)x(t) + Bk(t)u(t), t ∈ [tk−1, tk),
x(t+k ) = 1

2
x(tk), t = tk : k = 1, 2, 3,

x(0) = x0,

(21)
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where

A1 =

[

2 0
1 3

]

, B1 =

[

e3(σ(t), 0)
0

]

A2 =

[

1 2
0 3

]

, B2 =

[

0
e3(σ(t), 1

2
)

]

A3 =

[

−3 −2
3 4

]

, B3 =

[

0
e−2(σ(t), 5

2
)

]

.

(22)

Then the exponential matrices corresponding to A1, A2, A3 are given by

eA1
(0, σ(t)) =

[

−e2(0, σ(t)) 0
e3(0, σ(t)) e3(0, σ(t))

]

eA2
(0, σ(t)) =

[

e1(0, σ(t)) −e1(0, σ(t))
0 e3(0, σ(t))

]

eA3
(0, σ(t)) =

[

3
5
e−2(0, σ(t)) 1

5
e−2(0, σ(t))

−1
5
e3(0, σ(t)) −2

5
e3(0, σ(t))

]

respectively. We have to compute the following matrices

Gi := G(0, ti−1, ti) =

∫ ti

ti−1

Ψi(t0, σ(τ))Bi(τ)BT
i (τ)ΨT

i (t0, σ(τ))△τ, (23)

where
Ψ1(0, σ(t)) = eA1

(0, σ(t)) t ∈ (0, t1],

and

Ψi(0, σ(t)) =

i−1
∏

j=1

eAj
(tj−1, tj)eAi

(ti−1,σ(t)) t ∈ (ti−1, ti], i = 2, 3.

If T = R then σ(t) = t, µ(t) = 0 and ep(t, τ) = ep(t−τ). Next, if we choose
tk = 4k−3

2
, k = 1, 2, 3, then we have

Ψ1(0, t)B1(t)B
T
1 (t)ΨT

1 (0, t) =

(

e2t −et

−et 1

)

, (24)

Ψ2(0, t)B2(t)BT
2 (t)ΨT

2 (0, t) =

(

e4t−4 e2t−7/2 − e4t−9/2

e2t−7/2 − e4t−9/2 e4t−5 − 2e2t−4 + e−3

)

,

(25)
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and

Ψ3(0, t)B3(t)B
T
3 (t)ΨT

3 (0, t) =

(

a b

b c

)

(26)

where

a =
1

25
(4e19−10t + 4e13/2−5t + e−6)

b =
1

25
(2e2−5t − 4e6−5t + 4e29/2−10t − 4e37/2−10t − e−13/2)

c =
1

25
(4e10−10t − 8e14−10t + 4e18−10t − 4e3/2−5t + 4e11/2−5t + e−7).

Substituting (24), (25) and (26) in (23), we obtain

G1 =

(

1
2
e − 1

2
1 − e1/2

1 − e1/2 1
2

)

,

G2 =

(

1
4
e6 − 1

4
e−2 1

2
e3/2 − 1

4
e−5/2 − 1

4
e11/2

1
2
e3/2 − 1

4
e−5/2 − 1

4
e11/2 11

4
e−3 − e + 1

4
e5

)

,

and

G3 =

(

a b

b c

)

,

where

a =
2

125
(8e−6 − 2e−16 − e−26)

b =
2

125
(2e−21/2 − 8e−13/2 + 2e−33/2 − e−41/2 + e−53/2 − e−61/2)

c =
2

125
(8e−7 − 4e−11 + e−15 − 2e−17 + 2e−21 − e−27 + 2e−31 − e−35).

Then we obtain

det G3 ≈ 1.371 2 × 10−12

det G2 ≈ 5.051 8

det G1 ≈ 8.7324 × 10−3.

It follows that rank(Gi) = 2, i = 1, 2, 3.
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Further, if we choose T = P1,1 =
∞
⋃

k=0

[2k, 2k + 1], then ep(t, t0) = (1 +

p)jep(t−t0)e−pj for t0 ∈ [2i, 2i + 1), t ∈ [2(i + j), 2(i + j) + 1] with j ≥ 0.

In this case, µ(t) = 0 if t ∈
∞
⋃

k=0

[2k, 2k + 1) and µ(t) = 1 if t ∈
∞
⋃

k=0

{2k + 1}.

Then it follows that

Ψ1(0, t)B1(t)B
T
1 (t)ΨT

1 (0, t) =

(

e2t −et

−et 1

)

t ∈ (0,
1

2
], (27)

Ψ2(0, t)B2(t)B
T
2 (t)ΨT

2 (0, t) =

=























(

e4t−4 e2t−7/2 − e4t−9/2

e2t−7/2 − e4t−9/2 e4t−5 − 2e2t−4 + e−3

)

, t ∈ (1
2
, 1]

(

4e4t−8 2e2t−11/2 − 4e4t−17/2

2e2t−11/2 − 4e4t−17/2 4e4t−9 − 4e2t−6 + e−3

)

, t ∈ [2, 5
2
],

(28)

and

Ψ3(0, t)B3(t)B
T
3 (t)ΨT

3 (0, t) =























(

a b

b c

)

, t ∈ (5
2
, 3]

(

d e

e f

)

, t ∈ [4, 9
2
]

(29)

where

a =
1

25
(e21−10t − e17/2−5t +

1

4
e−4)

b =
1

25
(
1

4
e6−5t + e8−5t −

1

2
e37/2−10t − e41/2−10t −

1

4
e−9/2)

c =
1

25
(
1

4
e16−10t + e18−10t + e20−10t −

1

2
e11/2−5t − e15/2−5t +

1

4
e−5)

d =
1

100
(
1

9
e31−10t −

2

3
e27/2−5t + e−4)

e =
1

100
(
1

6
e11−5t +

2

3
e13−5t −

1

18
e57/2−10t −

1

9
e61/2−10t − e−9/2)

f =
1

100
(

1

36
e26−10t +

1

9
e28−10t +

1

9
e30−10t −

1

3
e21/2−5t −

2

3
e25/2−5t + e−5).
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Substituting (27), (28) and (29) in (23) we obtain

G1 =

(

1
2
e − 1

2
1 − e1/2

1 − e1/2 1
2

)

,

G2 =

(

e2 − 1
4
e−2 − 3

4
7
4
e−1/2 − 1

2
e−3/2 − e3/2 − 1

4
e−5/2

7
4
e−1/2 − 1

2
e−3/2 − e3/2 − 1

4
e−5/2 e − 11

4
e−1 + e−2 + 7

4
e−3

)

,

and

G3 =

(

a b

b c

)

where

a = −
1

9000
(−54e−4 + 23e−9 + e−14 − 60e−13/2)

b = −
1

18000
(120e−7 + 30e−9 + 108e−9/2 − 46e−19/2 − 29e−23/2 −

−2e−29/2 − e−33/2)

c =
1

36000
(216e−5 + 36e−9 − 92e−10 − 116e−12 − 35e−14 − 4e−15 − 4e−17

−e−19 + 240e−15/2 + 120e−19/2).

Then

det G3 ≈ 1.4581 × 10−11

det G2 ≈ 0.12274

det G1 ≈ 8. 7324 × 10−3.

It follows that rank(Gi) = 2, i = 1, 2, 3. Therefore, the impulsive system (21)
is controllable in the both cases.

4 Observability

Consider the following impulsive dynamical system














x∆ = Ak(t)x + Bk(t)u, t ∈ [tk−1, tk),
x(t+k ) = (1 + ck)x(tk), k = 1, 2, ...,

y(t) = Ck(t)x + Dk(t)u,

x(t0) = x0,

(30)
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where T is a unbounded above time scale, [tk−1, tk) ⊂ T0 := [t0,∞) ∩ T,
tk ∈ T0 are right-dense, 0 ≤ t0 < t1 < t2 < ... < tk < ..., such that
limk→∞ tk = ∞, x(t+k ) := limh→0+ x(tk + h), x(t−k ) := limh→0+ x(tk − h) and
ck ∈ R are constants. Also, we assume that Ak ∈ CrdR(T0, Mn(R)), Bk ∈
CrdR(T0, Mn×m(R)), Ck ∈ CrdR(T0, Mp×n(R)), Dk ∈ CrdR(T0, Mp×m(R)), x ∈
R

n is the sate variable, u ∈ R
m is the control input, and y ∈ R

p is the output.

Definition 2. The impulsive system (30) is called state observable on [t0, tf ]
(tf > t0) if any initial state x(t0) = x0 ∈ Rn is uniquely determined by the
corresponding system input u(t) and system output y(t) for t ∈ [t0, tf ].

Theorem 3. Assume that 1 + ci ≥ 0, i = 1, 2, ..., k − 1. Then the impulsive
system (30) is observable on [t0, tf ](tf ∈ (tk−1, tk]) if and only if the matrix

M(t0, tf) := M(t0, t0, t1)+

k−1
∑

i=2

i−1
∏

j=1

(1+cj)M(t0, ti−1, ti)+

k−1
∏

j=1

(1+cj)M(t0, tk−1, tf)

is invertible, where

M(t0, ti−1, ti) =
∫ ti

ti−1
ΩT

i (τ, t0)C
T
i (τ)Ci(τ)Ωi(τ, t0)∆τ , i = 1, 2, ..., k − 1,

M(t0, tk−1, tf ) =
∫ tf

tk−1
ΩT

k (τ, t0)CT
k (τ)Ck(τ)Ωk(τ, t0)∆τ,

and
Ωi(τ, t0) = ΦAi

(τ, ti−1)ΦAi−1
(ti−1, ti−2)...ΦA1

(t1, t0)

for τ ∈ (ti−1, ti] and i = 1, 2, ..., k.
Proof . Suppose that M(t0, tf) is invertible. From (5) and (30) we obtain

y(t) = C1(t)ΦA1
(t, t0)x0 + C1(t)

∫ t

t0

ΦA1
(t, σ(τ))B1(τ)u(τ)∆τ + D1(t)u(t)

(31)
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for t ∈ [t0, t1] and

y(t) = Cl(t)x(t) + Dl(t)u(t)

= Cl(t)ΦAl
(t, tl−1)

l−1
∏

i=1

(1 + ci)
1
∏

i=l−1

ΦAi
(ti, ti−1)x0+

Cl(t)
l−1
∑

i=1

[

l−1
∏

j=i

(1 + cj)

∫ ti

ti−1

ΦAl
(t, σ(τ))

i+1
∏

r=l−1

ΦAr
(tr, tr−1)ΦAi

(ti, σ(τ))Bi(τ)u(τ)∆τ

]

+Cl(t)

∫ t

tl−1

ΦAl
(t, σ(τ))Bl(τ)u(τ)∆τ + Dl(t)u(t),

(32)
for t ∈ (tl−1, tl], l = 2, 3, ...k. It is easy to see from the Definition 2 that the
observability of system (30) is equivalent to the observability of y(t) given by

y(t) =



















C1(t)ΦA1
(t, t0)x0, t ∈ [t0, t1]

l−1
∏

i=1

(1 + ci)Cl(t)Ωl(t, t0)x0, t ∈ (tl−1, tl], l = 1, 2, ..., k,

(33)

as u(t) = 0. Now, multiplying ΩT
l (t, t0)C

T
l (t) to both sides of (33) and

integrating with respect to t from t0 to tf , we have

∫ tf

t0

ΩT
l (τ, t0)C

T
l (τ)y(τ)∆τ =

[
∫ t1

t0

ΦT
A1

(τ, t0)C
T
1 (τ)C1(τ)ΦA1

(τ, t0)∆τ

+
k−1
∑

i=2

i−1
∏

j=1

(1 + cj)

∫ ti

ti−1

ΩT
i (τ, t0)C

T
i (τ)Cl(τ) Ωi(τ, t0)∆τ

+
k−1
∏

j=1

(1 + cj)

∫ tf

tk−1

ΩT
k (τ, t0)CT

k (τ)Ck(τ)Ωk(τ, t0)∆τ

]

x0
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and so,
∫ tf

t0

ΩT
l (τ, t0)C

T
l (τ)y(τ)∆τ

= [M(t0, t0, t1) +
k−1
∑

i=2

i−1
∏

j=1

(1 + cj)M(t0, ti−1, ti)

+
k−1
∏

j=1

(1 + cj)M(t0, tk−1, tf )]x0.

(34)

Obviously, the left-hand side of (34) depend on y(t), t ∈ [t0, tf ]. Since the
matrix M(t0, tf) is invertible, so from linear algebraic equation (34) we de-
duce that x(t0) = x0 is uniquely determined by the corresponding system
output y(t) for t ∈ [t0, tf ].

Conversely, if we suppose that the matrix M(t0, tf) is not invertible, then
there exist nonzero xα ∈ R

n such that xT
αM(t0, tf)xα = 0. Since 1 + ci ≥ 0,

i = 1, 2....., k, M(t0, ti−1, ti), i = 1, 2, ....k− 1, and M(t0, tk−1, tf ) are positive
semidefinite matrices, we have

xT
αM(t0, ti−1, ti)xα = 0, i = 0, 1, ..., k − 1

xT
αM(t0, tk−1, tf )xα = 0.

(35)

Choose x0 = xα. Then, from (33) and (35), it follows that

∫ tf

t0

yT (τ)y(τ)∆τ =
k−1
∑

i=1

∫ ti

ti−1

yT (τ)y(τ)∆τ +

∫ tf

tk−1

yT (τ)y(τ)∆τ

=

∫ t1

t0

xT
αΦT

A1
(τ, t0)CT

1 (τ)C1(τ)ΦA1
(τ, t0)xα∆τ

+
k−1
∑

i=2

[

i−1
∏

j=1

(1 + cj)

]2
∫ ti

ti−1

xT
αΩT

i (τ, t0)CT
i (τ)Ci(τ)Ωi(τ, t0)xα∆τ

+

[

k−1
∏

j=1

(1 + cj)

]2
∫ tf

tk−1

xT
αΩT

k (τ, t0)C
T
k (τ)Ck(τ)Ωk(τ, t0)xα∆τ.
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Further, we have

∫ tf

t0

yT (τ)y(τ)∆τ

= xT
αM(t0, t0, t1)xα +

k−1
∑

i=1

[

i
∏

j=1

(1 + cj)

]2

xT
αM(t0, ti−1, ti)xα

+

[

k−1
∏

j=1

(1 + cj)

]2

xT
αM(t0, tk−1, tf )xα = 0

and so,
∫ tf

t0

‖y(τ)‖2 ∆τ = 0.

It follows that

0 = y(t) =











































C1(t)ΦA1
(t, t0)x0, t ∈ [t0, t1],

l−1
∏

j=1

(1 + cj)Cl(t)Ωl(t, t0)xα, t ∈ (tl−1, tl], l = 1, 2, ...k − 1,

k−1
∏

j=1

(1 + cj)Ck(t)Ωk(t, t0)xα, t ∈ (tk−1, tf ].

The last equality implies, by Definition 2, that the impulsive system is not
observable on [t0, tf ] (tf ∈ (tk−1, tk]). �

If T = R, then we obtain the result of Theorem 3 in [47]. If Ak(t) = A(t),
Bk(t) = B(t), then we obtain the Theorem 3 in [36], and the Theorem 3.3
in [23] if T = R. The version of non impulsive case on time scales (ci = −1)
can be found in [21, Theorem 3.2] and [25, Theorem 3.7].

In the following, we consider the sufficient and necessary criterion for
time-invariant case. For impulsive system (30), we denote
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S =













V1

·
·
·
Vk













and Vi =

















Ci

CiAi

.

.

.

CiA
n−1
i

















Υi (36)

where Υi = eAi
(ti, ti−1)...eA2

(t2, t1)eA1
(t1, t0) if i = 1, 2, ...k.

Theorem 4. Assume that 1 + ci ≥ 0 , i = 1, 2, ..., k and Ak(t) = Ak,

Ck(t) = Ck are constant matrices. Then impulsive system (30) is observable
on [t0, tf ] (tf ∈ (tk−1, tk]) if and only if rank(S) = n.

Proof. Suppose rank(S) = n and we have to show that system (30) is
observable on [t0, tf ](tf ∈ (tk−1, tk]). If otherwise, namely, system(30) is not
observable then, by Theorem 3, it follows that the matrix M(t0, tf) is not
invertible. Hence there exists a nonzero vector xα such that xT

αM(t0, tf)xα =
0. Similar to the proof of Theorem 3, we obtain

xT
αM(t0, ti−1, ti)xα =

∫ ti

ti−1

[xT
αΩT

i (τ, t0)C
T
i ][CiΩi(τ, t0)xα]∆τ

=

∫ ti

ti−1

[CiΩi(τ, t0)xα]T [CiΩi(τ, t0)xα]∆τ = 0, i = 1, 2, ..., k − 1

and

xT
αM(t0, tk−1, tf )xα =

∫ tf

tk−1

[CiΩk(τ, t0)xα]T [CiΩk(τ, t0)xα]∆τ = 0.

Since Ωi(τ, t0) = eAi
(τ, ti−1)...eA2

(t2, t1)eA1
(t1, t0) for i = 1, 2, ..., k, it follows

that
CieAi

(τ, ti−1)...eA2
(t2, t1)eA1

(t1, t0)xα = 0 (37)

for τ ∈ (ti−1, ti], i = 1, 2, ..., k − 1, and

CkeAk
(τ, tk−1)...eA2

(t2, t1)eA1
(t1, t0)xα = 0 (38)

for τ ∈ (tk−1, tf ]. Obviously, at τ = ti−1, we have CiΥi−1xα = 0, i = 1, 2, ..., k,
and differentiating in (37) and (38) j times and evaluating the result at
τ = ti−1, i = 1, 2, ..., k, we obtain

CiA
j
i Υi−1xα = 0, i = 1, 2, ..., k, j = 0, 1, 2, ...n − 1. (39)
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Therefore, by (36) and (39) it follows that Sxα = 0 and moreover, xα 6= 0
implies that rank(S) < n which leads to a contradiction with the assumption
that rank(S) = n. The proof of the sufficiency part is finished.

Conversely, we suppose that rank(S) < n. Then there exist xα 6= 0 such
that Sxα = 0, which leads to (39). By (4) and (39) we have

M(t0, ti−1, ti)xα =

∫ ti

ti−1

n−1
∑

j=0

γij(τ, ti−1)[CiΩi(τ, t0)]
T [CiA

j
i Υi−1]xα∆τ = 0

for i = 1, 2, ..., k − 1, and

M(t0, tk−1, tf)xα =

∫ tf

tk−1

n−1
∑

j=0

γij(τ, t0)[CkΩk(τ, t0)]T [CkA
j
kΥk−1]xα∆τ = 0,

and so, by (39), we obtain M(t0, tf)xα = 0. Since xα 6= 0 the matrix
M(t0, tf)xα is not invertible. Hence system (30) is not observable from The-
orem 3, and it contradicts with the assumption of observability. The proof
is completed. �

If T = R, then we obtain the result of Theorem 4 in [47]. If Ak(t) = A(t),
Bk(t) = B(t), then we obtain the Theorem 4 in [36], and the Theorem 3.4
in [23] if T = R. The version of non impulsive case on time scales (ci = −1)
can be found in [8, Theorem 4], [21, Theorem 3.7] and [25, Theorem 3.9].

Example 2. Consider the following impulsive system on a time scale T:














x△(t) = Ak(t)x(t) + Bk(t)u(t), t ∈ [tk−1, tk),
x(t+k ) = 1

2
x(tk), k = 1, 2, 3,

y(t) = Ck(t)x(t) + Dk(t)u(t),
x(0) = x0,

(40)

where

A1 =

[

2 0
1 3

]

, C1 =
[

0 e−3(0, t)
]

A2 =

[

1 2
0 3

]

, C2 =
[

0 e3(
1
2
, t)

]

A3 =

[

−3 −2
3 4

]

, C3 =
[

0 e3(
5
2
, t)

]

.

(41)
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Then the exponential matrices corresponding to A1, A2, A3 are given by

eA1
(t, t0) =

[

−e2(t, 0) 0
e2(t, 0) e3(t, 0)

]

eA2
(t, t0) =

[

e1(t, 0) e3(t, 0)
0 e3(t, 0)

]

eA3
(t, t0) =

[

2e−2(t, 0) e3(t, 0)
−e−2(t, 0) −3e3(t, 0)

]

respectively. We have to compute the following matrix

M(0,
9

2
) := M(0, 0,

1

2
) +

1

2
M(0,

1

2
,

5

2
) +

1

4
M(0,

5

2
,

9

2
),

where

M(0, 0, 1
2
) =

1/2
∫

0

ΩT
1 (τ, 0)CT

1 (τ)C1(τ) Ω1(τ, 0)∆τ

M(0, 1
2
, 5

2
) =

5/2
∫

1/2

ΩT
2 (τ, 0)CT

2 (τ)C2(τ) Ω2(τ, 0)∆τ

M(0, 5
2
, 9

2
) =

9/2
∫

5/2

ΩT
3 (τ, 0)CT

3 (τ)C3(τ) Ω3(τ, 0)∆τ,

(42)

and

Ωi(s, 0) = ΦAi
(s, ti−1)ΦAi−1

(ti−1, ti−2)...ΦA1
(t1, 0), s ∈ (ti−1, ti], i = 1, 2, 3.

If T = R then

M(0, 0, 1
2
) =

(

− 1
10

(−e5 + 1) − 1
11

(

−e11/2 + 1
)

− 1
11

(

−e11/2 + 1
)

− 1
12

(−e6 + 1)

)

,

M(0, 1
2
, 5

2
) =

(

2e2 2e5/2

2e5/2 2e3

)
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and

M(0, 5
2
, 9

2
) =

(

a1 a2

a2 a3

)

where

a1 = −
1

10

(

12e4 + e−6 − e6 − 2e−10 + 14e10 + e−14 − 193e14 − 12
)

a2 = −
1

10

(

−6e1/2 + 12e9/2 + e−11/2 − e−19/2 + 7e21/2 − 193e29/2
)

a3 =
1

10
e−5

(

−12e10 + 193e20 − 1
)

.

We obtain

det M(0,
9

2
) ≈ −1.7799 × 109.

Further, if T = P1,1 =
∞
⋃

k=0

[2k, 2k + 1], then

M(0, 0, 1
2
) =

(

− 1
10

(−e5 + 1) − 1
11

(

−e11/2 + 1
)

− 1
11

(

−e11/2 + 1
)

− 1
12

(−e6 + 1)

)

,

M(0, 1
2
, 5

2
) =

(

e2 e5/2

e5/2 e3

)

and

M(0,
5

2
,

9

2
) =

(

a1 a2

a2 a3

)
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where

a1 =
33

10
e3 −

9

10
e −

1

10
e−2 −

3

8
e−1 +

1

10
e−4 +

2

5
e4 −

1

40
e−6 −

56

5
e6

+
824

5
e8 + 12e7/2 − 24e11/2

a2 = 6e4 − 24e6 −
1

10
e−

3

2 −
9

20
e

3

2 +
1

20
e−7/2 +

33

10
e7/2 −

−
28

5
e13/2 +

824

5
e17/2

a3 =
33

10
e4 −

1

10
e−1 +

824

5
e9 − 24e13/2.

We obtain

det M(0,
9

2
) ≈ −9.4 × 105.

Therefore, the system (40) is observable in the both cases.

5 Applications

5.1. Consider the following application to population growth model with
impulse







N△(t) = rkN(t) + ckU(t), t 6= tk,

N(t+k ) = (rk+1 − rk)N(tk), t = tk,

N(0) = N0,

where N(t) is the number of population at the time t, rk is the rate of popu-
lation growth between two consecutive impulsive points and U(t) is a control
input. Such model can be describe the evaluation of cicada magicicada sep-
tendecim. In this case is need to consider the time scale T = P1,1 (see [13,
Example 1.39] ) Using the Theorem 2 it is easy to see that the system is
controllable.

5.2. Next application is a impulsive model in Nonelectronic [44, Example
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11.1.1], that is















θ△(t) = −γ
π
θ(t) + γ(a − b cos t), t 6= tk,

θ(t+k ) = −3π, t = tk,

θ(0) = θ0,

|θ(0)| < π.

Using the Theorem 2, with A = −γ
π
, B = γ and n = 1, it is easy to see

that the system is controllable if γ 6= 0 and γ 6= π. The controllability of this
system is independent of the choice of the time scale T.

6 Conclusion

In this paper, the issue on the controllability and observability criteria for
linear impulsive time-varying systems on time scales has been addressed. Sev-
eral sufficient and necessary criteria for state controllability and observability
of such systems have been established, respectively, by the variation of pa-
rameters for time-varying impulsive systems on time scales. In addition, two
examples and two applications have been presented to show the effectiveness
of proposed results. As it has been shown that a larger class of systems are
considered, the results generalize some known results in [8, 21, 23, 25, 36, 47].
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