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Abstract

For abstract linear nonautonomous boundary differential equations with an almost
automorphic forcing term, a Massera type criterion is established for the existence of
an almost automorphic solution with the help of the spectrum of monodromy operator,
which extends the classical theorem due to Massera on the existence of periodic solutions
for linear periodic ordinary differential equations.
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1 Introduction

A classical result of Massera in his landmark paper [1] says that a necessary and sufficient
condition for an ω-periodic linear scalar ordinary differential equation to have an ω-periodic
solution is that it has a bounded solution on the positive half line. Since then, there has been
an increasing interest in extending this classical result to various classes of functions (such
as anti-periodic functions [2], quasi-periodic functions [3], almost periodic functions [4, 5, 6],
almost automorphic functions [7, 8]) and also to various classes of dynamical systems (such as
ordinary differential equations [1], functional differential equations [9, 10], quasi-linear partial
differential equations [11], dynamic equations on time scale [12]).

Recently, there has been an increasing interest in the almost automorphy of dynamical
systems, which is first introduced by Bochner [13] and is more general than the almost peri-
odicity and attracts more and more attention. One can see [14, 15] for a complete background
on almost automorphic functions and see the important Memoirs [16] for almost automorphic
dynamics. Many different kinds of criteria are established for the existence of almost auto-
morphic solutions of various kinds of dynamical systems [14, 16, 17, 18, 19, 20, 21, 22, 23].
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Particularly, some Massera type criteria are derived for some neutral functional differential
equations [7], evolution equations [8], and differential equation with piecewise constant ar-
guments [24]. In this note, we will make an attempt to give an extension of the classical
result of Massera to almost automorphic solutions of nonautonomous boundary differential
equations (or sometimes, nonautonomous boundary Cauchy problems), which are an abstract
formulation of partial differential equations with boundary conditions modeling natural phe-
nomena such as retarded differential (difference) equations, dynamic population equations,
and boundary control problems, and has been widely studied (see [25] and references cited
therein).

The paper is organized as follows. Section 2 introduces some notations, assumptions and
preliminary results on almost automorphic functions and nonautonomous boundary Cauchy
problems. Section 3 investigates the almost automorphy of bounded solutions of a nonau-
tonomous boundary differential equations in a Banach spaces and establishes a necessary and
sufficient criterion of Massera type in term of spectral countability condition and boundedness
of solutions for the existence of almost automorphic solution.

2 Preliminaries

We begin in this section by fixing some notations, assumptions and recalling a few basic re-
sults on almost automorphic functions and nonautonomous inhomogeneous boundary Cauchy
problems.

2.1 Notations

Let N, Z, R, and C stand for the set of natural numbers, integers, real numbers, and complex
numbers, respectively. Let X, Y be two Banach spaces and L(X, Y ) denote the space of all
bounded linear operators from X to Y . C(R, X) stands for the set of continuous functions
from R to X with the supreme norm. l∞(Z, X) denotes the space of all bounded (two-
sided) sequences in a Banach space X with supreme norm, i.e., ‖u‖ := sup

n∈Z

‖u(n)‖ for u =

{u(n)}n∈Z ∈ l∞(Z, X). c0 denotes the Banach space of all numerical sequence x = {xn}∞n=1

satisfying lim
n→∞

xn = 0, endowed with the supreme norm. For A being a linear operator on

X, D(A), σ(A) and ρ(A) stand for the domain, the spectrum and the resolvent set of A,
respectively.

2.2 Almost automorphic functions and sequences

We recall the definition of almost automorphic functions and some of their properties.

Definition 2.1. (Bochner [13]) A function f ∈ C(R, X) is said to be almost automorphic
in Bochner’s sense if for every sequence of real numbers (σn)n∈N, there exists a subsequence
(sn)n∈N ⊂ (σn)n∈N such that g(t) := lim

n→∞
f(t+ sn) is well defined for each t ∈ R and lim

n→∞
g(t−

sn) = f(t) for each t ∈ R.

The collection AA(R, X) of all almost automorphic X-valued functions is a Banach space
under the supreme norm. In addition, if the convergence in the definition above is uniform
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in t ∈ R, then f ∈ AP (R, X), the space of all almost periodic functions with values in X. A
typical example [14] of almost automorphic function but not almost periodic reads

ϕ(t) = cos

(

1

2 + sin
√

2t + sin t

)

, t ∈ R.

Therefore, AP (R, X) ⊂ AA(R, X) with strict inclusion.

Lemma 2.1. [14] Let f, f1, f2 ∈ AA(R, X), then

• f1 + f2 ∈ AA(R, X).

• λf ∈ AA(R, X) for any λ ∈ R.

• fα ∈ AA(R, X), where fα : R → X is defined by fα(·) := f(· + α).

• the range ℜf := {f(t) : t ∈ R} is relatively compact in X, thus f is bounded in norm.

• if fn ∈ AA(R, X) and fn → f uniformly on R, then f ∈ AA(R, X).

Similarly as for functions, we define below the almost automorphy of sequences.

Definition 2.2. [23] A sequence u = (u(n))n∈Z ∈ l∞(Z, X) is said to be almost automorphic
if for every sequence of integers (κn)n∈N, there exists a subsequence (kn)n∈N ⊂ (κn)n∈N such
that v(p) = lim

n→∞
u(p + kn) is well defined for each p ∈ Z and u(p) = lim

n→∞
v(p − kn) for each

p ∈ Z.

The set aa(Z, X) of all almost automorphic sequences in X forms a closed subspace of
l∞(Z, X). It is well known that the range of an almost automorphic sequence is precompact.
Also, if the convergence in Definition 2.2 is uniform in p ∈ Z, then the almost automorphic
sequence is almost periodic. Moreover, if u is an almost automorphic function defined on R,
then u|Z is an almost automorphic sequence.

Consider the linear difference equation

u(n + 1) = Bu(n) + f(n), n ∈ Z, (2.1)

where B is a bounded linear operator.

Lemma 2.2. [23] Let X be a Banach space and not contain any subspace being isomorphic
to c0. If σΓ(B) := σ(B) ∩ {z ∈ C : |z| = 1} is countable and f ∈ aa(Z, X), then each bounded
solution of (2.1) is almost automorphic.

It is well known a uniformly convex Banach space or any finite-dimensional space does not
contain any subspace isomorphic to c0.
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2.3 Boundary differential equations

Definition 2.3. [25, 26] A family of linear densely defined operators (A(t), D(A(t)))t∈R is
called a stable family if there are constants M ≥ 1 and ω0 ∈ R such that (ω0,∞) ⊂ ρ(A(t))
for all t ∈ R and

∥

∥

∥

∥

∥

n
∏

i=1

R(λ, A(ti))

∥

∥

∥

∥

∥

≤ M

(λ − ω0)n

for λ > ω0 and any finite sequence (ti)
k
i=1 with t1 ≤ t2 ≤ · · · ≤ tk ∈ R and k ∈ N, where

R(λ, A(ti)) = (λ − A(ti))
−1 is the resolvent of A(ti) at the point λ.

Definition 2.4. [25, 27] A family of linear bounded operators U := {U(t, s) : t ≥ s, t, s ∈ R}
on a Banach space X is called a (strong continuous) evolution family if

(i) U(t, s) = U(t, r)U(r, s) and U(s, s) = I (I is the identity on X) for t ≥ r ≥ s and
t, r, s ∈ R;

(ii) the mapping {(τ, σ) ∈ R2 : τ ≥ σ} ∋ (t, s) → U(t, s) is strongly continuous.
Moreover, the evolution family is said to be q-periodic if there exists a positive constant q > 0
such that U(t + q, s + q) = U(t, s) for all t ≥ s.

Consider the linear inhomogeneous nonautonomous boundary Cauchy problem

{

u′(t) = Am(t)u(t) + f(t), t ∈ R,

L(t)u(t) = g(t), t ∈ R
(2.2)

where the first equation is defined in a Banach space X called state space and the second
equation is in a “boundary space” ∂X.

We now introduce the setting of our abstract boundary Cauchy problems. Let X, D, ∂X be
Banach spaces such that D is dense and continuously embedded in X. Consider the operators
Am(t) ∈ L(D, X), L(t) ∈ L(D, ∂X) for t ∈ R, subject to the following hypotheses:

(H1) R ∋ t → Am(t)x is 1-periodic continuous differential for all x ∈ D.
(H2) the family of operators (A(t))t∈R, A(t) := Am(t)|ker L(t) is stable with stability con-

stants (M, ω0).
(H3) the operator L(t) : D → ∂X is surjective for t ∈ R and t → L(t)x is 1-periodic

continuous differentiable for all x ∈ D.
(H4) there exist constants γ > 0 and ω ∈ R such that

‖L(t)x‖∂X ≥ γ−1(λ − ω)‖x‖, x ∈ ker(λ − Am(t)), λ > ω, t ∈ R.

(H5) there are positive constants c1 and c2 such that

c1‖x‖D ≤ ‖x‖ + ‖Am(t)x‖ ≤ c2‖x‖D, x ∈ D, t ∈ R.

(H6) f : R → X and g : R → ∂X are continuous.
Under the above assumptions, it follows that there exists a 1-periodic evolution family

U := {U(t, s) : t ≥ s, t, s ∈ R} generated by (A(t), D(A(t)))t∈R having exponential growth,
that is,

‖U(t, s)‖ ≤ Meω0(t−s), t ≥ s.

We emphasize that in this paper, for the sake of simplicity of the notations we assume
the 1-periodicity, and this does not mean any restriction on the period of the operators or
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evolution family. For the 1-periodic evolution family (U(t, s))t≥s, we have a family of 1-
periodic monodromy operators P (t) := U(t + 1, t), t ∈ R, i.e., P (t + 1) = P (t), t ∈ R. Denote
P := P (0) = U(1, 0), then σ(P (t))\{0} = σ(P )\{0}, i.e., the characteristic multipliers of the
monodromy operators are independent of t, and the resolvent R(λ, P (t)) is strongly continuous
for λ ∈ ρ(P ).

Other consequences of our assumptions will be needed in the sequel. For the proof, see
[25] and the references cited therein.

Lemma 2.3. [25] Under the above assumptions, we have the following properties for t ∈ R

and λ, µ ∈ ρ(A(t)):

• D = D(A(t)) ⊕ ker(λ − Am(t));

• L(t)|ker(λ−Am(t)) is an isomorphism from ker(λ−Am(t)) onto ∂X, and its inverse Lλ,t :=
(L(t)|ker(λ−Am(t)))

−1 : ∂X → ker(λ − Am(t)) satisfies the estimate ‖λLλ,t‖ ≤ γ;

• R(λ, A(t))Lµ,t = R(µ, A(t))Lλ,t;

• t → Lλ,t is 1-periodic and (λ − Am(t))Lλ,t = L(t)R(λ, A(t)) = 0, L(t)Lλ,t = Id∂X and
Lλ,tL(t) is the projection from D onto ker(λ − Am(t)).

Next, we introduce the following definition of a mild solution to the inhomogeneous bound-
ary Cauchy problem (2.2) given by the variation of constants formula.

Definition 2.5. A continuous function u : R → X is called a mild solution of (2.2) if it
satisfies the following equation

u(t) = U(t, s)u(s) +

t
∫

s

U(t, τ)f(τ)dτ + lim
λ→∞

t
∫

s

U(t, τ)λLλ,τg(τ)dτ, for t ≥ s, t, s ∈ R.

In [25], the wellposedness of nonautonomous boudary Cauchy problems (2.2) is well studied
and there is a unique mild solution of (2.2) under the above assumptions.

3 Massera type criteria for almost automorphy of (2.2)

In this section, we explore the almost automorphy of bounded solutions of (2.2) and establishes
a necessary and sufficient criterion of Massera type for the existence of almost automorphic
solution for (2.2).

Lemma 3.1. Assume that f(t) ∈ AA(R, X), g(t) ∈ AA(R, ∂X). Then

h(n) :=

n+1
∫

n

U(n + 1, τ)f(τ)dτ + lim
λ→∞

n+1
∫

n

U(n + 1, τ)λLλ,τg(τ)dτ

is almost automorphic, i.e., {h(n)}n∈Z ∈ aa(Z, X).
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Proof. Since f(t) ∈ AA(R, X), g(t) ∈ AA(R, ∂X), then for any sequence {sk} with sk ∈ Z,
there exists a subsequence {nk} ⊂ {sk} and functions f1, g1 such that

lim
k→∞

f(t + nk) = f1(t), lim
k→∞

f1(t − nk) = f(t), t ∈ R.

lim
k→∞

g(t + nk) = g1(t), lim
k→∞

g1(t − nk) = g(t), t ∈ R.

Define

h1(n) :=

n+1
∫

n

U(n + 1, τ)f1(τ)dτ + lim
λ→∞

n+1
∫

n

U(n + 1, τ)λLλ,τg1(τ)dτ, n ∈ Z. (3.1)

Using the fact that Lλ,t and (U(t, s))t≥s are 1-periodic, by Lemma 2.3, we have

‖h(n + nk) − h1(n)‖ =

∥

∥

∥

∥

∥

∥

1
∫

0

U(n + nk + 1, τ + nk + n)f(τ + nk + n)dτ −
1

∫

0

U(n + 1, τ + n)f1(τ + n)dτ

∥

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∥

lim
λ→∞

1
∫

0

U(n + nk + 1, τ + nk + n)λLλ,τ+nk+ng(τ + nk + n)dτ

− lim
λ→∞

1
∫

0

U(n + 1, τ + n)λLλ,τ+ng1(τ + n)dτ

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

1
∫

0

U(1, τ)f(τ + nk + n)dτ −
1

∫

0

U(1, τ)f1(τ + n)dτ

∥

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∥

lim
λ→∞

1
∫

0

U(1, τ)λLλ,τg(τ + nk + n)dτ − lim
λ→∞

1
∫

0

U(1, τ)λLλ,τg1(τ + n)dτ

∥

∥

∥

∥

∥

∥

≤
1

∫

0

‖U(1, τ)‖‖f(τ + nk + n) − f1(τ + n)‖dτ

+ γ

1
∫

0

‖U(1, τ)‖‖g(τ + nk + n) − g1(τ + n)‖dτ,

then by Lebesgue’s Dominated Convergence Theorem, one has

lim
k→∞

h(n + nk) = h1(n), n ∈ Z.

Similarly, we have lim
k→∞

h1(n − nk) = h(n), n ∈ Z. Therefore, {h(n)}n∈Z ∈ aa(Z, X).

Lemma 3.2. Assume that f(t) ∈ AA(R, X), g(t) ∈ AA(R, ∂X) and u is a bounded mild
solution of (2.2). Then u(t) ∈ AA(R, X) if and only if u(n) ∈ aa(Z, X).
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Proof. Necessity: if u(t) is almost automorphic function, then {u(n)}n∈Z is almost automorphic
sequence.

Sufficiency: For any sequence {sk}, we first assume that sk ∈ Z. By the almost automorphy
of f, g and u, there exists a subsequence {nk} ⊂ {sk} and functions f1(t), g1(t), t ∈ R and
{v(n)}, n ∈ Z such that

lim
k→∞

u(n + nk) = v(n), lim
k→∞

v(n − nk) = u(n), n ∈ Z,

lim
k→∞

f(t + nk) = f1(t), lim
k→∞

f1(t − nk) = f(t), t ∈ R,

lim
k→∞

g(t + nk) = g1(t), lim
k→∞

g1(t − nk) = g(t), t ∈ R.

(3.2)

Define

v(η) := U(η, [t])v([t]) +

η
∫

[t]

U(η, τ)f1(τ)dτ + lim
λ→∞

η
∫

[t]

U(η, τ)λLλ,τg1(τ)dτ, η ∈ [[t], [t] + 1),

where [·] is the integer part function. Then in this way, the function v(t) is well-defined on R.
We claim that

lim
k→∞

u(t + nk) = v(t).

In fact, u(t + nk) − v(t) := I1(k) + J1(k) + F1(k), where

I1(k) = U(t + nk, [t] + nk)u([t] + nk) − U(t, [t])v([t]),

J1(k) =

t+nk
∫

[t]+nk

U(t + nk, τ)f(τ)dτ −
t

∫

[t]

U(t, τ)f1(τ)dτ,

F1(k) = lim
λ→∞

t+nk
∫

[t]+nk

U(t + nk, τ)λLλ,τg(τ)dτ − lim
λ→∞

t
∫

[t]

U(t, τ)λLλ,τg1(τ)dτ.

Then by (3.2), one has

‖I1(k)‖ = ‖U(t, [t])u([t] + nk) − U(t, [t])v([t])‖
≤ ‖U(t, [t])‖‖u([t] + nk) − v([t])‖ → 0, k → ∞.

and

‖J1(k)‖ ≤

∥

∥

∥

∥

∥

∥

∥

t
∫

[t]

U(t + nk, τ + nk)f(τ + nk)dτ −
t

∫

[t]

U(t, τ)f1(τ)dτ

∥

∥

∥

∥

∥

∥

∥

≤
t

∫

[t]

‖U(t, τ)‖‖f(τ + nk)dτ − f1(τ)‖dτ → 0, k → ∞.

Using the fact that Lλ,t and (U(t, s))t≥s are 1-periodic, we have

‖F1(k)‖ =

∥

∥

∥

∥

∥

∥

∥

lim
λ→∞

t
∫

[t]

U(t + nk, τ + nk)λLλ,τ+nk
g(τ + nk)dτ − lim

λ→∞

t
∫

[t]

U(t, τ)λLλ,τg1(τ)dτ

∥

∥

∥

∥

∥

∥

∥
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=

∥

∥

∥

∥

∥

∥

∥

lim
λ→∞

t
∫

[t]

U(t, τ)λLλ,τg(τ + nk)dτ − lim
λ→∞

t
∫

[t]

U(t, τ)λLλ,τg1(τ)dτ

∥

∥

∥

∥

∥

∥

∥

≤ lim
λ→∞

t
∫

[t]

‖U(t, τ)‖‖λLλ,τ‖‖g(τ + nk) − g1(τ)‖dτ

≤ γ

t
∫

[t]

‖U(t, τ)‖‖g(τ + nk) − g1(τ)‖dτ.

By Lebesgue’s dominated convergence theorem, lim
k→∞

F1(k) = 0. Hence, lim
k→∞

u(t + nk) = v(t).

Similarly, we have
lim
k→∞

v(t − nk) = u(t).

Now, we assume that sk ∈ R. Note that sk − [sk] ∈ [0, 1), we choose a subsequence
{nk} ⊂ {[sk]} and a sequence {tk} ⊂ {sk − [sk]} such that lim

k→∞
tk = t0 ∈ [0, 1] and (3.2) holds.

We conclude that
lim
k→∞

u(t + tk + nk) = lim
k→∞

u(t + t0 + nk). (3.3)

The proof of this claim is divided into two cases.
Case 1. t + t0 > [t + t0]. Then, for some sufficiently large k, one has [t + tk] = [t + t0]. Set

u(t + tk + nk) − u(t + t0 + nk) := I2(k) + J2(k) + F2(k),

where I2(k), J2(k), F2(k) are defined below. By the 1-periodicity of (U(t, s))t≥s and the fact
that [t + tk] = [t + t0], we have

‖I2(k)‖ := ‖U(t + tk + nk, [t + tk] + nk)u([t + tk] + nk) − U(t + t0 + nk, [t + t0] + nk)u([t + t0] + nk)‖
= ‖U(t + tk, [t + t0])u([t + t0] + nk) − U(t + t0, [t + t0])u([t + t0] + nk)‖.

The strong continuity of (U(t, s))t≥s implies that lim
k→∞

I2(k) = 0.

‖J2(k)‖ :=

∥

∥

∥

∥

∥

∥

∥

t+tk+nk
∫

[t+tk]+nk

U(t + tk + nk, τ)f(τ)dτ −
t+t0+nk
∫

[t+t0]+nk

U(t + t0 + nk, τ)f(τ)dτ

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

t+tk
∫

[t+tk ]

U(t + tk + nk, τ + nk)f(τ + nk)dτ −
t+t0
∫

[t+t0]

U(t + t0 + nk, τ + nk)f(τ + nk)dτ

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

t+tk
∫

[t+t0]

U(t + tk, τ)f(τ + nk)dτ −
t+t0
∫

[t+t0]

U(t + t0, τ)f(τ + nk)dτ

∥

∥

∥

∥

∥

∥

∥

,

From the the strong continuity of (U(t, s))t≥s and the precompactness of the range of f , it
follows that lim

k→∞
J2(k) = 0.

‖F2(k)‖ :=

∥

∥

∥

∥

∥

∥

∥

lim
λ→∞

t+tk+nk
∫

[t+tk]+nk

U(t + tk + nk, τ)λLλ,τg(τ)dτ − lim
λ→∞

t+t0+nk
∫

[t+t0]+nk

U(t + t0 + nk, τ)λLλ,τg(τ)dτ

∥

∥

∥

∥

∥

∥

∥
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=

∥

∥

∥

∥

∥

∥

∥

lim
λ→∞

t+tk
∫

[t+tk ]

U(t + tk, τ)λLλ,τ+nk
g(τ + nk)dτ − lim

λ→∞

t+t0
∫

[t+t0]

U(t + t0, τ)λLλ,τ+nk
g(τ + nk)dτ

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

lim
λ→∞

t+tk
∫

[t+t0]

U(t + tk, τ)λLλ,τg(τ + nk)dτ − lim
λ→∞

t+t0
∫

[t+t0]

U(t + t0, τ)λLλ,τg(τ + nk)dτ

∥

∥

∥

∥

∥

∥

∥

,

then lim
k→∞

F2(k) = 0. Therefore, (3.3) holds.

Case 2. t + t0 = [t + t0], i.e., t + t0 is an integer. If t + tk ≥ t + t0, then [t + tk] = t + t0.
The rest is exactly the same as those for Case 1. If t + tk < t + t0, then [t + tk] = t + t0 − 1.
Set

u(t + tk + nk) − u(t + t0 + nk) := I3(k) + J3(k) + F3(k),

where I3(k), J3(k), F3(k) are defined below.

‖I3(k)‖ := ‖U(t + tk + nk, [t + tk] + nk)u([t + tk] + nk)

− U(t + t0 + nk, t + t0 − 1 + nk)u(t + t0 − 1 + nk)‖
= ‖U(t + tk, t + t0 − 1)u(t + t0 − 1 + nk) − U(t + t0, t + t0 − 1)u(t + t0 − 1 + nk)‖.

For J3(k) and F3(k), using the fact that Lλ,t and (U(t, s))t≥s are 1-periodic, one has

‖J3(k)‖ :=

∥

∥

∥

∥

∥

∥

∥

t+tk+nk
∫

[t+tk]+nk

U(t + tk + nk, τ)f(τ)dτ −
t+t0+nk
∫

t+t0−1+nk

U(t + t0 + nk, τ)f(τ)dτ

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

t+tk
∫

[t+tk ]

U(t + tk + nk, τ + nk)f(τ + nk)dτ −
t+t0
∫

t+t0−1

U(t + t0 + nk, τ + nk)f(τ + nk)dτ

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

t+tk
∫

t+t0−1

U(t + tk, τ)f(τ + nk)dτ −
t+t0
∫

t+t0−1

U(t + t0, τ)f(τ + nk)dτ

∥

∥

∥

∥

∥

∥

,

and

‖F3(k)‖ :=

∥

∥

∥

∥

∥

∥

∥

lim
λ→∞

t+tk+nk
∫

[t+tk]+nk

U(t + tk + nk, τ)λLλ,τg(τ)dτ − lim
λ→∞

t+t0+nk
∫

t+t0−1+nk

U(t + t0 + nk, τ)λLλ,τg(τ)dτ

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

lim
λ→∞

t+tk
∫

[t+tk ]

U(t + tk, τ)λLλ,τ+nk
g(τ + nk)dτ − lim

λ→∞

t+t0
∫

t+t0−1

U(t + t0, τ)λLλ,τ+nk
g(τ + nk)dτ

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

lim
λ→∞

t+tk
∫

t+t0−1

U(t + tk, τ)λLλ,τg(τ + nk)dτ − lim
λ→∞

t+t0
∫

t+t0−1

U(t + t0, τ)λLλ,τg(τ + nk)dτ

∥

∥

∥

∥

∥

∥

.

From the strong continuity of (U(t, s))t≥s, it follows that lim
k→∞

I3(k) = lim
k→∞

J3(k) = lim
k→∞

F3(k) =

0. Therefore, (3.3) is valid. Therefore,

lim
k→∞

u(t + t0 + (sk − t0)) = lim
k→∞

u(t + tk + nk) = lim
k→∞

u(t + t0 + nk) = v(t + t0).
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Similarly, we have

lim
k→∞

v(t + t0 − (sk − t0)) = lim
k→∞

v(t + t0 − nk) = u(t + t0).

The proof is complete.

Theorem 3.1. Assume that f(t) ∈ AA(R, X), g(t) ∈ AA(R, ∂X), and X dose not contain
any subspace isomorphic to c0 and σΓ(P ) is countable. Then (2.2) has an almost automorphic
mild solution on R if and only if it admits a bounded mild solution on R.

Proof. We only need to prove the sufficiency. Consider the difference equation

u(n + 1) = U(n + 1, n)u(n) +

n+1
∫

n

U(n + 1, τ)f(τ)dτ + lim
λ→∞

n+1
∫

n

U(n + 1, τ)λLλ,τg(τ)dτ. (3.4)

From the 1-periodicity of (U(t, s))t≥s, (3.4) rewrites

u(n + 1) = Pu(n) + h(n), n ∈ Z, (3.5)

where

P = U(1, 0), h(n) =

n+1
∫

n

U(n + 1, τ)f(τ)dτ + lim
λ→∞

n+1
∫

n

U(n + 1, τ)λLλ,τg(τ)dτ, n ∈ Z.

By Lemma 3.1, h(n) ∈ aa(Z, X). Since {u(n)}n∈Z is a bounded solution of (3.5), X dose
not contain any subspace isomorphic to c0, and σΓ(P ) is countable, by Lemma 2.2, u(n) ∈
aa(Z, X). Then, by Lemma 3.2, u(t) ∈ AA(R, X).

4 Application

In this section, we provide example to illustrate our main results.

Example 4.1. Consider the boundary differential equation











∂v

∂t
(t, x) = δ(t)

∂2v

∂x2
(t, x) + β(t)v(t, x) + f(t), t ≥ 0, x ∈ [0, 1],

∂v

∂x
(t, 0) = g1(t);

∂v

∂x
(t, 1) = g2(t), t ≥ 0,

(4.1)

where β(·), δ(·) are strictly positive 1-periodic functions in C1([0, 1], R+), the functions f :
R+ → R, g1 : R+ → R and g2 : R+ → R are almost automorphic functions.

We take X := L1(0, 1) the Banach space of integrable functions in [0, 1] endowed with the
norm

‖h‖ =

∫ 1

0

|h(x)|dx,

and let D be the subspace of X given by D := W 2,1(0, 1) = {h ∈ L1(0, 1) : h′, h′′ ∈ L1(0, 1)}
endowed with the norm

‖h‖D = ‖h‖ + ‖h′‖ + ‖h′′‖.

EJQTDE, 2011 No. 73, p. 10



Then (D, ‖ · ‖D) is a Banach space continuously embedded and dense in (X, ‖ · ‖).
For t ≥ 0, let Am(t) : D ⊂ X → X be the family of operators defined by

Am(t)h = δ(t)h′′ + β(t)h for h ∈ D.

Let L : D → R2 be the operator defined by

Lh = (h′(0), h′(1))T for h ∈ D.

Consider the almost automorphic functions f(t) and g(t) = (g1(t), g2(t))
T , t ≥ 0, then the

boundary differential equation (4.1) take the abstract form (2.2). The assumptions (H1)-(H6)
are satisfied, see [28].

In [28], the evolution family generated by (A(t))t≥0 is given by

U(t, s) = exp

(
∫ t

s

β(τ)dτ

)

T∆

(
∫ t

s

δ(τ)dτ

)

for t ≥ s ≥ 0,

where (T∆(t))t≥0 denotes the semigroup generated by the Laplacian ∆ with Neuman boundary

conditions on L1(0, 1), then P := U(1, 0) = exp
(

∫ 1

0
β(τ)dτ

)

T∆

(

∫ 1

0
δ(τ)dτ

)

. By using the

spectral mapping theorem and the spectrum of the Laplacian operator, one has

σ(P ) =

{

exp

(
∫ 1

0

β(t)dt− n2π2

∫ 1

0

δ(t)dt

)

, n ∈ N

}

.

for more details, see [28]. By Theorem 3.1, we claim that if σΓ(P ) := σ(P )∩{z ∈ C : |z| = 1}
is countable, then (4.1) has an almost automorphic mild solution on R+ if and only if it admits
a bounded mild solution on R

+.
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