
Electronic Journal of Qualitative Theory of Differential Equations
2020, No. 48, 1–16; https://doi.org/10.14232/ejqtde.2020.1.48 www.math.u-szeged.hu/ejqtde/

Algebraic traveling waves for the modified
Korteweg–de Vries–Burgers equation

Claudia VallsB

Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa,
1049-001 Lisboa, Portugal

Received 29 January 2020, appeared 22 July 2020

Communicated by Vilmos Komornik

Abstract. In this paper we characterize all traveling wave solutions of the General-
ized Korteweg–de Vries–Burgers equation. In particular we recover the traveling wave
solutions for the well-known Korteweg–de Vries–Burgers equation.

Keywords: traveling wave, modified Korteweg–de Vries–Burgers equation, Korteweg–
de Vries–Burgers equation.

2010 Mathematics Subject Classification: Primary 34A05. Secondary 34C05, 37C10.

1 Introduction and statement of the main results

Looking for traveling waves to nonlinear evolution equations has long been the major problem
for mathematicians and physicists. These solutions may well describe various phenomena in
physics and other fields and thus they may give more insight into the physical aspects of
the problems. Many methods for obtaining traveling wave solutions have been established
[4–6,19,20,25,26] with more or less success. When the degree of the nonlinearity is high most
of the methods fail or can only lead to a kind of special solution and the solution procedures
become very complex and do not lead to an efficient way to compute them.

In this paper we will focus on obtaining algebraic traveling wave solutions to the modified
Korteweg–de Vries–Burgers equation (mKdVB) of the form

auxxx + buxx + dunux + ut = 0 (1.1)

where n = 1, 2 and a, b, d are real constants with abd 6= 0. When n = 1 is the well-known
Korteweg–de Vries–Burgers equation (KdVB) that has been intensively investigated. When
n = 2 we will call it modified Korteweg–de Vries–Burgers equation (mKdVB). These equations
are widely used in fields as solid-states physics, plasma physics, fluid physics and quantum
field theory (see, for instance [12, 31] and the references therein). They mainly appear when
seeking the asymptotic behavior of complicated systems governing physical processes in solid
and fluid mechanics.
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An special attention is done to the KdVB, often considered as a combination of the Burgers
equation and KdV equation since in the limit a → 0, the equation reduces to the Burgers
equation (named after its use by Burgers [2] for studying the turbulence in 1939), and taking
the limit as b → 0 we get the KdV equation (first suggested by Korteweg and de Vries [18]
who used it as a nonlinear model to study the change of forms of long waves advancing in a
rectangular channel).

The KdVB equation is the simplest form of the wave equation in which the nonlinear
term uux, the dispersion uxxx and the dissipation uxx all occur. It arises from many physical
context such as the undulant bores in a shallow water [1, 16], the flow of liquids containing
gas bubbles [27], the propagation of waves in an elastic tube filled with a viscous fluid [15],
weakly nonlinear plasma waves with certain dissipative effects [9, 11], the cascading down
process of turbulence [7] and the atmospheric dynamics [17].

It is nonintegrable in the sense that its spectral problem is nonexistent. The existence of
traveling wave solutions for the (KdVB) was obtained by the first time in [29] and after that
many other papers computing the traveling wave of the KdVB appeared (see for instance
[10, 13, 14, 21, 25, 28, 30]), but most of them did not obtain all the possible traveling wave
solutions. However, regardless the attention done to the (KdVB), nothing is known for the
existence of traveling wave solutions for the (mKdVB). This is due to the presence of high
nonlinear terms. In this paper we will fill in this gap. We will use a method that will supply
the already known traveling wave solution for the (KdVG) and will allows us to prove that
there are no traveling wave solutions for the KdVG (i.e., equation (1.1) with n = 2).

As explained above, there are various approaches for constructing traveling wave solu-
tions, but these methods become more and more useless as the degree of the nonlinear terms
increase. However, in [8] the authors gave a technique to prove the existence of traveling
wave solutions for general n-th order partial differential equations by showing that traveling
wave solutions exist if and only if the associated n-dimensional first order ordinary differen-
tial equation has some invariant algebraic curve. In this paper we will consider only the case
of 2-nd order partial differential equations.

More precisely, consider the 2-nd order partial differential equations of the form

∂2u
∂x2 = F

(
u,

∂u
∂x

,
∂u
∂t

)
, (1.2)

where x and t are real variables and F is a smooth map. The traveling wave solutions of
system (1.2) are particular solutions of the form u = u(x, t) = U(x− ct) where U(s) satisfies
the boundary conditions

lim
s→−∞

U(s) = A and lim
s→∞

U(s) = B, (1.3)

where A and B are solutions, not necessarily different, of F(u, 0, 0) = 0. Note that U(s) has to
be a solution, defined for all s ∈ R, of the 2-nd order ordinary differential equation

U
′′
= F(U, U′,−cU′) = F̃(U, U′), (1.4)

where U(s) and the derivatives are taken with respect to s. The parameter c is called the speed
of the traveling wave solution.

We say that u(x, t) = U(x − ct) is an algebraic traveling wave solution if U(s) is a non-
constant function that satisfies (1.3) and (1.4) and there exists a polynomial p such that
p(U(s), U′(s)) = 0.
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As pointed out in [8] the term algebraic traveling wave means that the waves that we will
find correspond to the algebraic curves on the phase plane and do not refer to traveling waves
that approach to the constant boundary conditions (1.3) algebraically fast. The traveling wave
solutions correspond to homoclinic (when A = B) or heteroclinic (when A 6= B) solutions of
the associated two-dimensional system of ordinary differential equations. In many cases the
critical points where this invariant manifolds start and end are hyperbolic. To motivate the
definition of algebraic traveling wave solutions initiated in [8] and used in the present paper,
we recall that when F is sufficiently regular, using normal form theory, in a neighborhood of
these critical points, this manifold can be parameterized as ϕ(eλs) for some smooth function
ϕ, where λ is one of the eigenvalues of the critical points.

Note that this definition of algebraic traveling wave revives the interest in the well-known
and classic problem of finding invariant algebraic curves. Invariant algebraic curves are the
main objects used in several subjects with special emphasis in integrability theory. The search
and computation of these objects have been intensively investigated. However to determine
the properties and number of them for a given planar vector field is very difficult in particular
because there is no bound a priori on the degree of such curves. However in the present
paper we will be able to characterize completely the algebraic traveling wave solutions of
the Korteweg–de Vries–Burgers equation and of the Generalized Korteweg–de Vries–Burgers
equation under some additional assumptions on the constants. We recall that for irreducible
polynomials we have the following algebraic characterization of invariant algebraic curves:
Given an irreducible polynomial of degree n, g(x, y), we have that g(x, y) = 0 is an invariant
algebraic curve for the system x′ = P(x, y), y′ = Q(x, y) for P, Q ∈ C[x, y], if there exists a
polynomial K = (x, y) of degree at most n− 1, called the cofactor of g such that

P(x, y)
∂g
∂x

+ Q(x, y)
∂g
∂y

= K(x, y)g. (1.5)

The main result that we will use is the following theorem, see [8] for its proof.

Theorem 1.1. The partial differential equation (1.2) has an algebraic traveling wave solution if and
only if the first order differential system {

y′1 = y2,

y′2 = Gc(y1, y2),

where
Gc(y1, y2) = F̃(y1, y2)

has an invariant algebraic curve containing the critical points (A, 0)and (B, 0) and no other critical
points between them.

The main result is, with the techniques in [8], obtain all algebraic traveling wave solutions
of the (KdVB) and (mKdVB), i.e., all explicit traveling wave solutions of the equation (1.1)
when n = 1 and when n = 2.

Theorem 1.2. The following holds for system (1.1):

(i) If n = 1 (KdVB), it has the algebraic traveling wave solution

u(x, t) = − 12b2

25da

( 1
1 + κ1eb(x−vt)/(5a)

)2
+

6b2

25da
+

v
d

,
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where

v2 =
36b4 − 1250da3κ2

625a2 ,

being κ1, κ2 arbitrary constants with κ1 > 0.

(ii) If n = 2 (mKdVB), it has no algebraic traveling wave solutions.

The proof of Theorem 1.2 is given in Section 3 when n = 1 and in Section 4 when n = 2. In
section 2 we have included some preliminary results that will be used to prove the results in
the paper. The technique used in the paper is very powerful and has been used successfully
in the papers [23, 24].

2 Preliminary results

In this section we introduce some notions and results that will be used during the proof of
Theorem 1.2.

The first result based on the previous works of Seidenberg [22] was stated and proved
in [3]. In the next theorem we included only the results from [3] that will be used in the paper.

Theorem 2.1. Let g(x, y) = 0 be an invariant algebraic curve of a planar system with corresponding
cofactor K(x, y). Assume that p = (x0, y0) is one of the critical points of the system. If g(x0, y0) 6= 0,
then K(x0, y0) = 0. Moreover, assume that λ and µ are the eigenvalues of such critical point. If either
µ 6= 0 and λ and µ are rationally independent or λµ < 0, or µ = 0, then either K(x0, y0) = λ, or
K(x0, y0) = µ, or K(x0, y0) = λ + µ (that we write as K(x0, y0) ∈ {λ, µ, λ + µ}).

A polynomial g(x, y) is said to be a weight homogeneous polynomial if there exist s =

(s1, s2) ∈N2 and m ∈N such that for all µ ∈ R \ {0},

g(µs1 x, µs2 y) = αmg(x, y),

where R denotes the set of real numbers, and N the set of positive integers. We shall refer to
s = (s1, s2) to the weight of g, m the weight degree and x = (x1, x2) 7→ (αs1 x, αs2 y) the weight
change of variables.

We first note that if there exists a solution of the form u(x, t) = U(x− ct) then substituting
in (1.1) and performing one integration yield

U′′ = −βU′ − γUn+1 + δU + θ,

where β = b/a, γ = d/(a(n + 1)), δ = c/a and θ is the integration constant. Therefore, we
will look for the invariant algebraic curves of the system

x′ = y,

y′ = −βy− γxn+1 + δx + θ,
(2.1)

where x(s) = U(s) and β, γ, δ, θ ∈ R with βγδ 6= 0.
When n = 1, the solution of γx2 − δx− θ = 0, that is,

x1,2 =
δ

2γ
∓
√

δ2 + 4γθ

2γ
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must be real, otherwise there would be no algebraic traveling wave solutions. Therefore,
δ2 + 4γθ ≥ 0. Set x = x + x1, and y = y. Then we rewrite system (2.1) with n = 1 in the
variables (x, y) as

x′ = y,

y′ = −βy− γ(x + x1)
2 + δ(x + x1) + θ

= −βy− γx2 − 2γx1x− γx2
1 + δx + δx1 + θ

= −βy− γx2 + δx,

(2.2)

where δ = δ− 2γx1 =
√

δ2 + 4γθ.
When n = 2, the solution of γx3− δx− θ = 0 has at least one real solution, that we denote

by x1. Set x = x + x1, and y = y. Then we rewrite system (2.1) with n = 2 in the variables
(x, y) as

x′ = y,

y′ = −βy− γ(x + x1)
3 + δ(x + x1)− θ

= −βy− γx3 − 3γx1x2 − 3γx2
1x− γx3

1 + δx + δx1 − θ

= −βy− γx3 − γx2 + δx,

(2.3)

where γ = 3γx1 and δ = δ− 3γx2
1.

3 Proof of Theorem 1.2 with n = 1

In this section we consider system (2.1) with n = 1. By the results in Section 2 this is equivalent
to work with system (2.2).

Theorem 3.1. System (2.2) has an invariant algebraic curve g(x, y) = 0 if and only if

β = ±5
√

δ√
6

.

Moreover, if β = 5
√

δ/
√

6 then

g(x, y) =
y2

2
−
√

2√
3

√
δ

γ
(δ− γx)y +

x
3γ

(δ− γx)2,

and if β = −5
√

δ/
√

6 then

g(x, y) =
y2

2
+

√
2√
3

√
δ

γ
(δ− γx)y +

x
3γ

(δ− γx)2.

System (2.2) with δ = γ is system (15) in [24]. Proceeding exactly as in the proof of
Theorem 2 in [24] (with δ instead of γ when needed) we get the proof of Theorem 3.1. So, the
proof of Theorem 3.1 will be omitted.

Proof of Theorem 1.2. Consider first the case β = 5
√

δ√
6

. It follows from Theorem 3.1 that the
invariant algebraic curve is

g(x, y) =
y2

2
−
√

2√
3

√
δ

γ
(δ− γ)y +

x
3γ

(δ− γx)2.
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The branch of g(x, y) = 0 that contains the origin is

y =

√
2√

3γ
(δ− γx)

(√
δ−

√
δ− γx

)
.

Since x′ = y we obtain

x′ =
√

2√
3γ

(δ− γx)
(√

δ−
√

δ− γx
)
=

√
2δ

3/2

√
3γ

(
1− γ

δ
x
)(

1−
√

1− γ

δ
x
)

.

Set U(s) = x(s) = x(s) + x1 and take W(s) =
√

1− γ

δ
(U(s)− x1) Then

W ′(s) = −γ

δ

U′(s)

2
√

1− γ

δ
(U(s)− x1)

= −
√

δ√
6

W(s)(1−W(s)).

Its non-constant solutions that are defined for all s ∈ R are

W(s) =
1

1 + κe
√

δs/
√

6
, κ > 0.

Hence,

U(s) = x1 +
δ

γ

(
1−

(
1

1 + κe
√

δs/
√

6

)2
)

, κ > 0.

This, together with the definition x1, δ, δ, γ and β, yields the traveling wave solution in the
statement of the theorem.

If we take the branch of g(x, y) = 0 that does not contain the origin then

y =

√
2√

3γ
(δ− γx)

(√
δ +

√
δ− γx

)
Proceeding exactly as above we get that

W(s) =
1

1− κe
√

δs/
√

6
, κ > 0,

which is not a global solution. So, in this case there are no traveling wave solutions.

Now take β = − 5
√

δ√
6

. It follows from Theorem 3.1 that the invariant algebraic curve is

g(x, y) =
y2

2
+

√
2√
3

√
δ

γ
(δ− γ)y +

x
3γ

(δ− γx)2.

The branch of g(,y) = 0 that contains the origin is

y = −
√

2√
3γ

(δ− γx)
(√

δ−
√

δ− γx
)

Since x′ = y we obtain

x′ = −
√

2√
3γ

(δ− γx)
(√

δ−
√

δ− γx
)
= −
√

2δ
3/2

√
3γ

(
1− γ

δ
x
)(

1−
√

1− γ

δ
x
)
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Set U(s) = x(s) = x(s) + x1 and take W(s) =
√

1− γ

δ
(U(s)− x1). Then

W ′(s) =
γ

δ

U′(s)

2
√

1− γ

δ
(U(s)− x1)

=

√
δ√
6

W(s)(1−W(s)).

Its nonconstant solutions that are defined for all s ∈ R are

W(s) =
1

1 + κe−
√

δs/
√

6
, κ > 0.

Hence

U(s) = x1 +
δ

γ

(
1−

(
1

1 + κe−
√

δs/
√

6

)2
)

, κ > 0.

This, together with the definition x1, δ, δ, γ and β, yields the traveling wave solution in the
statement of the theorem.

If we take the branch of g(x, y) = 0 that does not contain the origin then

y = −
√

2√
3γ

(δ− γx)
(√

δ +
√

δ− γx
)

.

Proceeding exactly as above we get that

W(s) =
1

1− κe−
√

δs/
√

6
, κ > 0,

which is not a global solution. So, in this case there are no traveling wave solutions and
concludes the proof of the theorem.

4 Proof of Theorem 1.2 with n = 2

In this section we consider system (2.1) with n = 2. By the results in Section 2 this is equivalent
to work with system (2.3).

The proof of Theorem 1.2 with n = 2 follows directly from the following theorem that
states that system (2.3) has no invariant algebraic curves.

Theorem 4.1. System (2.3) has no invariant algebraic curve.

Proof of Theorem 4.1. Let g = g(x, y) = 0 be an invariant algebraic curve of system (2.3) with
cofactor K. We write both g and K in their power series in the variable y as

K(x, y) =
2

∑
j=0

Kj(x)yj, g =
`

∑
j=0

gj(x)y`,

for some integer ` and where Kj is a polynomial in x of degree j. Without loss of generality,
since g 6= 0 we can assume that g` = g`(x) 6= 0. Moreover, note that if system (2.3) has an
invariant algebraic curve then

y
∂g
∂x
−
(

βy + γx3 + γx2 − δx
)∂g

∂y
= Kg. (4.1)
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We compute the coefficient of y2+` in (4.1) and we get

g`K2 = 0, that is K2 = 0

because g` 6= 0. So, K(x) = K0(x) + K1(x)y. Computing the coefficient of y`+1 in (4.1) we
obtain

g′`(x) = K1g`

which yields g` = κe
∫

K1(x) dx, for κ ∈ C \ {0}. Since g` must be a polynomial then K1 = 0.
This implies that K(x) = K0(x) that we write as

K(x) = K0(x) =
2

∑
j=0

k jxj, k j ∈ R.

Now, equation (1.5) writes as

y
∂g
∂x
− (βy + γx3 + γx2 − δx)

∂g
∂y

=
m

∑
j=0

k jxjg.

We introduce the weight-change of variables of the form

x = µ−2X, y = µ−4Y, t = µ2τ.

In this form, system (2.3) becomes

X′ = Y,

Y′ = −γX3 − µ2βY− µ2γX2 + δµ4X,

where the prime denotes derivative in τ. Now let

G(X, Y) = µN g(µ−2X, µ−4Y)

and
K = µ2K = µ2(k0 + k1µ−2X + µ−4X2) = µ2k0 + k1X + µ−2X2,

where N is the highest weight degree in the weight homogeneous components of g in the
variables x and y, with weight (2, 4).

We note that G = 0 is an invariant algebraic curve of system (2.3) with cofactor µ2K.
Indeed

dG
dτ

= µN dg
dτ

= µNµ2Kg = µNKG.

Assume that G = ∑`
i=0 Gi where Gi is a weight homogeneous polynomial in X, Y with weight

degree `− i for i = 0, . . . , ` and ` ≥ N. Obviously

g = G|µ=1.

From the definition of invariant algebraic curve we have

Y
`

∑
i=0

µi ∂Gi

∂X
−
(
γX3 + µ2βY + µ2γX2 − δµ4X

) `

∑
i=0

∂Gi

∂Y

= (µ2k0 + k1X + µ−2k2X2)
`

∑
i=0

µiGi.

(4.2)
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Computing the terms with µ−2 we get that k2 = 0. Now the terms with µ0 in (4.2) become

L[G0] = k1G0, L = Y
∂

∂X
− γX3 ∂

∂Y
. (4.3)

The characteristic equations associated with the first linear partial differential equation of
system (2.3) are

dX
dY

= −γ
Y
X3 .

This system has the general solution u = Y2/2+ γX4/4 = κ, where κ is a constant. According
with the method of characteristics we make the change of variables

u =
Y2

2
+

γ

4
X4, v = X. (4.4)

Its inverse transformation is

Y = ±
√

2u− 2γv4/2, X = v. (4.5)

In the following for simplicity we only consider the case Y = +
√

2u− γv4/2. Under changes
(4.4) and (4.5), equation (4.3) becomes the following ordinary differential equation (for fixed u)√

2u− γv4/2
dG0

dv
= k1G0,

where G0 is G0 written in the variables u, v. In what follows we always write θ to denote a
function θ = θ(X, Y) written in the (u, v) variables, that is, θ = θ(u, v). The above equation
has the general solution

G0 = u`F0(u) exp
(

k1√
2u

2F1

(
1
2

,
1
4

,
5
4

,
γv4

4u

))
,

where F0 is an arbitrary smooth function in the variable u and

2F1(a, b, c, y) =
∞

∑
k=0

a(a + 1) · · · (a + k− 1)
b(b + 1) · · · (b + k− 1)c(c + 1) · · · (c + k− 1)

xk

k!
(4.6)

is the hypergeometric function that is well defined if b, c are not negative integers. In particu-
lar, it is a polynomial if and only if a is a negative integer. Note that in this case 2F1 is never a
polynomial. Since

G0(X, Y) = F0(u) = F0(Y2/2 + γX4/4)

in order that G0 is a weight homogeneous polynomial of weight degree `, since X and Y have
weight degrees 2 and 4, respectively, we get that G0 should be of weight degree N = 8` and
that k1 = 0. Hence,

G0 = a`

(
Y2

2
+ γ

X4

4

)`

, a` ∈ R \ {0}.

Computing the terms with µ in (4.2) using G0 we get

L[G1] = 0.
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By the transformations in (4.4) and (4.5) and working in a similar way as we did to solve G0

we get the following ordinary differential equation√
2u− γv4/2

dG1

dv
= 0,

that is G1 = G1(u). Since G1 is a weight homogeneous polynomial of weight degree N − 1 =

8`− 1 and u has even weight degree, we must have G1 = 0 and so G1 = 0.
Computing the terms with µ2 in (4.2) using the expression of G0 and the fact that G1 = 0

we get

L[G2] = βa``Y2
(

Y2

2
+ γ

X4

4

)`−1

+ γa``X2Y
(

Y2

2
+ γ

X4

4

)`−1

+ k0a`

(
Y2

2
+ γ

X4

4

)`

= βa``
(

2
(

Y2

2
+ γ

X4

4

)
− 2

3
γX4

)(
Y2

2
+ γ

X4

4

)`−1

+ γa``X2Y
(

Y2

2
+ γ

X4

4

)`−1

+k0a`

(
Y2

2
+ γ

X4

4

)`

= a`(2β`+ k0)

(
Y2

2
+ γ

X4

4

)`

− 1
2

βa``γX4
(

Y2

2
+ γ

X4

4

)`−1

+ γa``X2Y
(

Y2

2
+ γ

X4

4

)`−1

.

By the transformations in (4.4) and (4.5) and working in a similar way to solve G0 we get the
following ordinary differential equation√

2u− γv4/2
dG2

dv
= a`(2β`+ k0)u` − 1

2
βa``γv4u`−1 + γa``v2

√
2u− γv4/2u`−1.

Integrating this equation with respect to v we get

G2 = F2(u) +
β`u`−1

6
v
√

2u− γv4/2 +
γa``

3
v3u`−1

+
1

3
√

2
u`−1/2v(4β`+ 3k0) 2F1

(
1
2

,
1
4

,
5
4

,
γv4

8u

)
,

where F2 is a smooth function in the variable u and 2F1 is the hypergeometric function in-
troduced in (4.6). Here, 2F1 is never a polynomial. Since G2 should be a polynomial in the
variable X we must have that

4β`+ 3k0 = 0, that is k0 = −4β`

3
.

Now we apply Theorem 2.1. We recall that k0 is a constant, k0 6= 0, and that in view of
Theorem 2.1, g must vanish in the critical points of system (2.3), which are (0, 0) and (ψ+, 0)
and (ψ−, 0) where

ψ± =
−γ±

√
γ2 + 4δγ

2γ
.

Moreover, the critical point (0, 0) has the eigenvalues

λ+ = −β

2
+

√
β2 + 4δ

2
and λ− = −β

2
−

√
β2 + 4δ

2
,
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the critical point (ψ+, 0) has the eigenvalues

µ+ = −β

2
+

√
β2 + 4T+

2
and µ− = −β

2
−
√

β2 + 4T+

2

being

T+ =

(
γ−

√
γ2 + 4δγ

)√
γ2 + 4δγ

2γ
,

and the critical point (ψ−, 0) has the eigenvalues

ν+ = −β

2
+

√
β2 + 4T−

2
and ν− = −β

2
−
√

β2 + 4T−
2

being

T− =

(
−γ−

√
γ2 + 4δγ

)√
γ2 + 4δγ

2γ

We consider different cases.

Case 1: δγ > 0 and γ < 0. In this case both (ψ+, 0) and (ψ−, 0) are saddles. In view of
Theorem 2.1 we must have that

k0 ∈ {µ+, µ−, µ+ + µ−} = {µ+, µ−,−β} and k0 ∈ {ν+, ν−, ν+ + ν−} = {ν+, ν−,−β}.

Note that if k0 = −β then

−4β`

3
= −β, that is β

3− 4`
3

= 0,

which is not possible because β 6= 0 and ` is an integer with ` ≥ 1. So, k0 ∈ {µ+, µ−} and
k0 ∈ {ν+, ν−}. The only possibility is that γ = 0. In this case

−4β`

3
= −β

2
±

√
β2 − 8δ

2

which yields

β = ±3
√
−δ√
14

.

Moreover the eigenvalues on (0, 0) are λ+ and λ−. If β2 + 4δ < 0 then λ+ and λ− would
be rationally independent and in view of Theorem 2.1, then k0 ∈ {λ+, λ−, λ+ + λ−} =

{λ+, λ−,−β}. But then this would imply that√
−δ(i
√

47± (8`+ 3)) = 0,

which is not possible. Hence, β2 + 4δ > 0. However

β2 + 4δ =
47δ

14
< 0

and so this case is not possible.
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Case 2: δγ > 0 and γ > 0. In this case (0, 0) is a saddle. In view of Theorem 2.1 we must
have that k0 ∈ {λ+, λ−, λ+ + λ−} = {λ+, λ−,−β}. As in Case 1 we cannot have k0 = −β. So,
imposing that k0 ∈ {λ+, λ−} we conclude that

β = ± 3
√

δ

2
√
`(3 + 4`)

.

Moreover if β2 + 4T+ < 0 we would have that µ+ and µ− are rationally independent and so
k0 ∈ {µ+, µ−,−β}. However, µ+ = λ+ (respectively µ− = λ−) if and only if

γ =
3i
√

δγ
√

2
,

which is not possible. So β2 + 4T+ > 0. Equivalently, if β2 + 4T− < 0 we would have that ν−

and ν− are rationally independent and so k0 ∈ {ν+, ν−,−β}. However, ν+ = λ+ (respectively
ν− = λ−) if and only if

γ =
3i
√

δγ
√

2
,

which is not possible. So β2 + 4T− > 0. This implies that

9δ

2`(3 + 4`)
>

2
γ

√
γ2 + 4δγ

(
γ +

√
γ2 + 4δγ

)
and

9δ

2`(3 + 4`)
>

2
γ

√
γ2 + 4δγ

(
−γ +

√
γ2 + 4δγ

)
or, in short,

9δ

2`(3 + 4`)
>

2
γ

√
γ2 + 4δγ

(
|γ|+

√
γ2 + 4δγ

)
= 8δ +

2
γ

(
|γ|
√

γ2 + 4δγ + γ2
)

,

being |γ| the absolute value of γ. Note that this in particular implies that

−δ(64`2 + 48`− 9)
2`(3 + 4`)

>
2
γ

(
|γ|
√

γ2 + 4δγ + γ2
)
> 0,

which is not possible because δ > 0 and ` ≥ 1. So, this case is not possible.

Case 3: δγ < 0 and γ < 0. In this case (0, 0) is a saddle. In view of Theorem 2.1 we must
have that k0 ∈ {λ+, λ−, λ+ + λ−} = {λ+, λ−,−β}. As in case 1 we cannot have k0 = −β. So,
imposing that k0 ∈ {λ+, λ−} we conclude that

β = ± 3
√

δ

2
√
`(3 + 4`)

.

Now we assume that γ ≤ 0 (otherwise we will do the argument with T− instead of T+). Since
T+ is a saddle we must have k0 ∈ {µ+, µ−, µ+ + µ−} = {µ+, µ−,−β}. Proceeding as in Case 2,
we cannot have k0 = −β and equating it to either µ+ or µ− we obtain that

γ =
3i
√

δγ
√

2
= −

3
√
|δγ|
√

2
,
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Now proceeding as in Case 1 we have that µ+ = ν+ (respectively µ− = ν−) if and only if γ = 0,
which in this case is not possible because then δ = δ and δγ 6= 0. So, β2 + 4T− > 0, otherwise
we would have that ν+ and ν− would be rationally independent and so k0 ∈ {ν+, ν−,−β}
which we already shown that it is not possible. So, β2 + 4T− > 0. However, using that
µ+ = λ+ and µ− = λ− (that is, T+ = δ) we get that

γ

√
γ2 + 4δγ = 2γδ + γ2 + 4δγ

and so

β2 + 4T− =
9δ

4(`(3 + 4`))
− 4

2γ
(2γ2 + 10δγ) =

9δ

4(`(3 + 4`))
+

2
γ
|δγ|

=
9δ

4(`(3 + 4`))
− 2δ =

δ

4(`(3 + 4`))
(9− 24`− 32`2) < 0,

because ` ≥ 1. In short, this case is not possible.

Case 4: δγ < 0 and γ > 0. We consider the case γ ≥ 0 because the case γ < 0 is the
same working with T− instead of T+. Since γ ≥ 0 we have that T+ is a saddle. In view of
Theorem 2.1 we must have that k0 ∈ {λ+, λ−, λ+ + λ−} = {λ+, λ−,−β}. As in Case 1 we
cannot have k0 = −β. So, imposing that k0 ∈ {λ+, λ−} we conclude that

β = ± 3
√

T+

2
√
`(3 + 4`)

.

Now proceeding as in Case 1, it follows from Theorem 2.1 that we have either µ+ = ν+

(respectively µ− = ν−) in the case in which β2 + 4T− < 0 (because they will be rationally
independent), or β2 + 4T− > 0. In the first case, proceeding as in Case 1 we must have γ ≥ 0.
Assume first that γ > 0. Then,

β2 + 4T− =
1

4`(3 + 4`)
(9T+ + 16`(3 + 4`)T−)

=
1

8γ`(3 + 4`)

(
γ

√
γ2 + 4δγ(9− 16`(3 + 4`)

)
−
(√

γ2 + 4δγ

)2

(9 + 16`(3 + 4`))) < 0,

which is not possible. So, γ = 0. Then

β = ± 3
√
−4δ√

2
√
`(3 + 4`)

.

Note that

β2 + 4δ =
9

2`(3 + 4`)
|δ| − 4|δ| = |δ|

2`(3 + 4`)
(9− 8`(3 + 4`)) < 0.

So, again proceeding as in Case 1 we must have k0 ∈ {λ+, λ−}. Imposing it we conclude that
δ = 0 which is not possible because δ = δ 6= 0 whenever γ = 0. This concludes the proof of
the theorem.
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5 Conclusions

In this paper we have characterized completely the algebraic traveling wave solutions of
the Korteweg–de Vries–Burgers equation and of the Generalized Korteweg–de Vries–Burgers
equation under some additional assumptions on the constants. The importance of this method
is that can be used to completely characterize the algebraic traveling wave solutions of other
well-known partial differential equations of any order provided that we are able to obtain the
so-called Darboux polynomials. We emphasize that all the methods up to moment are not
definite in the sense that if they do not work we cannot conclude that the system does not
have traveling wave solutions, whereas in this method, if it fails, we can guarantee that there
are not.

The cases of the Generalized Korteweg–de Vries–Burgers equation with n ≥ 3 is unap-
proachable right now due to the fact that we are not able to compute the resulting Darboux
polynomials, so these cases remain open.
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