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Abstract. We study the following class of double-phase nonlinear eigenvalue problems

−div [φ(x, |∇u|)∇u + ψ(x, |∇u|)∇u] = λ f (x, u)

in Ω, u = 0 on ∂Ω, where Ω is a bounded domain from RN with smooth boundary
and the potential functions φ and ψ have (p1(x); p2(x)) variable growth. The main
results of this paper are to prove the existence of a continuous spectrum consisting in
a bounded interval in the near proximity of the origin, the fact that the multiplicity of
every eigenvalue located in this interval is at least two and to establish the existence
of infinitely many solutions for our problem. The proofs rely on variational arguments
based on the Ekeland’s variational principle, the mountain pass theorem, the fountain
theorem and energy estimates.

Keywords: double-phase differential operator, continuous bounded spectrum, variable
exponent, multiplicity of eigenvalues, multiple types of solutions.
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1 Introduction

The recent study of various mathematical models described by variational problems with non-
standard variable growth conditions is motivated by many phenomena that arise in applied
sciences. For instance, in some cases, to describe the behavior of some materials which are not
homogeneous the classical theory of Lp(Ω) and W1,p(Ω) Lebesgue and Sobolev spaces has
proven its limitation.

An example of such type of materials are the thermorheological and electrorheological
fluids. For a good description from the partial differential equations point of view of these
types of materials we refer to V. Rădulescu [23] and V. Rădulescu, D. Repovš [24]. We remark
also that the variable exponent analysis for some nonlinear problems plays a crucial role in
the development of robotics, aircraft and airspace and the image restoration.
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In this paper we are interested in the study of a class of non-autonomous eigenvalue
problems with a variable (p1(x); p2(x))-grow rate condition, which are described by the fact
that the associated energy density changes its ellipticity and growth properties according to
the point.

Our study is based on some new type of non-homogeneous differential operators devel-
oped by I. H. Kim and Y. H. Kim [12], which allow us to analyze some problems that imply
the possibility of lack of uniform convexity. In this paper we extend the results of I. H. Kim
and Y. H. Kim by studying a double-phase problem. Moreover, for the best of our knowledge
for this type of operators it is not established yet the possibility of existence and multiplic-
ity for some eigenvalues in the near proximity of the origin, even in the simpler case when
the differential operator is driven by only one potential function. This paper also aim to ex-
tend the spectral analysis for this kind of problems made by S. Baraket, S. Chebbi, N. Chorfi,
V. Rădulescu in [2].

Therefore we consider the following double-phase nonlinear eigenvalue problem:{
−div [φ(x, |∇u|)∇u + ψ(x, |∇u|)∇u] = λ f (x, u), in Ω,

u = 0, on ∂Ω,
(Pλ)

where Ω is a bounded domain in RN with Lipschitz boundary and λ ∈ R is a real parameter.
The study of these types of problems was motivated by the fact that we may need to model

a composite that changes its hardening exponent according to the point. For more details
about integral functionals with nonstandard (p, q)-growth conditions, we refer to P. Marcellini
[13, 14]. These types of problems was also studied by G. Mingione et al. [3, 6, 7], where the
associated energies are of type

u 7→
∫

Ω

(
|∇u|p1(x) + a(x)|∇u|p2(x)

)
dx (1.1)

and
u 7→

∫
Ω

[
|∇u|p1(x) + a(x)|∇u|p2(x) log(e + |x|)

]
dx, (1.2)

where p1(x) ≤ p2(x), p1 6= p2, for all x ∈ Ω and a(x) ≥ 0.
These problems describe the behavior of two materials with variable power hardening

exponents p1(x) and p2(x) and the coefficient a(x) dictates the geometry of a composite of
the two materials.

As we mentioned before our nonhomogeneous differential operator corresponds to the
type of double-phase operators, fact that is induced by the presence of the potential functions
φ and ψ. In order to make a better connection with the work of Mingione et al., we remark
that our potential functions φ and ψ may behave as it follows

• φ(x, t) = tp(x)−2, case in which we can also embed the description given by (1.1) for the
fact that our operators extends the case when

−div [φ(x, |∇u|)∇u + ψ(x,∇u)∇u]=−div
[

a(x)|∇u|p1(x)−2∇u + b(x)|∇u|p2(x)−2∇u
]

,

for some functions a(x), b(x) ∈ L∞(Ω)+;

• φ(x, t) = (1 + |t|2)
p(x)−2

2 , case in which we obtain the generalized mean curvature opera-
tor;
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• φ(x, t) =
(
1 + tp(x)

√
1+t2p(x)

)
tp(x)−2, case in which we obtain the corresponding differential

operator that describe the capillary phenomenon.

For this cases, in order to obtain the description given by (1.2) we have to analyze the
following differential operator:

−div [φ(x, |∇u|)∇u + a(x)ψ(x, |∇u|) log(e + |x|)∇u] .

As we mentioned before the main results of this paper is to establish the fact that for
every λ > 0 small enough we have two different solutions and the fact that our problem
(Pλ) admits a sequence of solutions with higher and higher energies provided only by the
restriction λ > 0. The first solution is obtained as a local minimum near the origin. To this
end we refer to [9,17] and [24, Chapter 2] for more details about the method used to point out
this type of solutions. Our second solution is obtained as a mountain pass critical point. For
a comprehensive study of this type of solutions we refer to the following works of P. Pucci,
J. Serrin [21, 22], P. Pucci, V. Rădulescu [19]. The third type of solutions is obtained as high
energy solutions by employing the fountain theorem. For more details about this critical point
technique we refer to the following works: [10, 12, 25, 28].

Also more details about existence and nonexistence results related to variable exponent
equations can be found in the following works [4, 11], while more critical point techniques
and qualitative analysis for double-phase operators can be found in [1, 5, 20].

Moreover, we make a parallel between the techniques used to point out our results and be-
tween our methods and some other techniques used so far to describe some spectral properties
of these types of operators. For more details we mention the following works [2, 12, 26, 27].

Also in the final part of this paper are given some examples and remarks in order to
illustrate the validity of the general results obtained throughout this work.

2 The functional framework

Throughout this section we will introduce the necessary information about the functional
framework that we will need in the study of problem (Pλ). To this end we will give a brief
description of variable exponent Lebesgue and Sobolev spaces. Most of the following proper-
ties and results can be found in the following books by J. Musielak [18], L. Diening, P. Hästö,
P. Harjulehto, M. Růžička [8], V. Rădulescu, D. Repovš [24].

First we assume that Ω ⊆ RN is a bounded domain with smooth boundary. Let

C+(Ω) =

{
p ∈ C(Ω) : min

x∈Ω
p(x) > 1

}
,

and for any continuous function p : Ω→ (1,+∞), we have

p− = inf
x∈Ω

p(x) and p+ = sup
x∈Ω

p(x).

For any p ∈ C+(Ω), with p < +∞ we define the variable exponent Lebesgue space as if
follows

Lp(x)(Ω) =

{
u : Ω→ R a measurable function :

∫
Ω
|u(x)|p(x)dx < ∞

}
,
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which endowed with the following Luxemburg norm

|u|p(x) = inf

{
µ > 0 :

∫
Ω

∣∣∣∣u(x)
µ

∣∣∣∣p(x)

dx ≤ 1

}

becomes a Banach space. For any 1 < p(x) < +∞ as defined before, Lp(x)(Ω) is reflexive, uni-
formly convex Banach space, and moreover for any measurable bounded exponent p, Lp(x)(Ω)

is separable.

Remark 2.1. This space is a special case of an Orlicz–Musielak space and its dual space is
defined as Lp′(x)(Ω), where p′(x) is the conjugate exponent of p(x), in the sense that 1

p(x) +
1

p′(x) = 1.

If p and q are two variable exponents and p(x) ≤ q(x) for almost all x ∈ Ω, with |Ω| < ∞,
then there exists the following continuous embedding

Lq(x)(Ω) ↪→ Lp(x)(Ω),

where by |Ω| we denote the Lebesgue measure of Ω.
Let u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω) then the following Hölder type inequality occurs:∣∣∣∣∫Ω

uv dx
∣∣∣∣ ≤ ( 1

p−
+

1
p′−

)
|u|p(x)|v|p′(x) ≤ 2|u|p(x)|v|p′(x). (2.1)

A crucial role in manipulating the variable exponent Lebesgue spaces is played by the
modular function associated to these types of spaces. We define the modular of Lp(x)(Ω) by
the function ρp(x) : Lp(x)(Ω)→ R such that

ρp(x)(u) =
∫

Ω
|u(x)|p(x)dx.

If p(x) 6≡ constant in Ω and u, (un)n ∈ Lp(x)(Ω), then the following relations hold true:

|u|p(x) < 1⇒ |u|p
+

p(x) ≤ ρp(x)(u) ≤ |u|
p−

p(x), (2.2)

|u|p(x) > 1⇒ |u|p
−

p(x) ≤ ρp(x)(u) ≤ |u|
p+

p(x), (2.3)

|u|p(x) = 1⇒ ρp(x)(u) = 1, (2.4)

|un − u|p(x) → 0⇔ ρp(x)(un − u)→ 0. (2.5)

We define in what follows the variable exponent Sobolev space W1,p(x)(Ω) by

W1,p(x)(Ω) =
{

u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)
}

.

On W1,p(x)(Ω) we can define the following equivalent norms:

‖u‖p(x) = |u|p(x) + |∇u|p(x)

and

‖u‖ = inf

{
µ > 0 :

∫
Ω

(∣∣∣∣∇u(x)
µ

∣∣∣∣p(x)

+

∣∣∣∣u(x)
µ

∣∣∣∣p(x)
)

dx ≤ 1

}
.
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Since our problem necessitates that the function u = 0 on ∂Ω, we define the associated
space W1,p(x)

0 (Ω) as the closure of C∞
0 (Ω) with respect to the norm ‖ · ‖p(x) as it follows

W1,p(x)
0 (Ω) =

{
u; u|∂Ω = 0, u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)

}
.

Taking account of [12] for p ∈ C+(Ω) it holds true the following Poincaré type inequality

|u|p(x) ≤ C|∇u|p(x), (2.6)

for C > 0 a constant which depends on p and Ω.

Remark 2.2. If Ω ⊂ RN is a bounded domain, and the function p which dictates the variable
exponent is global log-Hölder continuous the norm |∇u|p(x) is equivalent with ‖u‖p(x) on

W1,p(x)
0 (Ω).

Remark 2.3. If p− > 1, the spaces W1,p(x)(Ω) and W1,p(x)
0 (Ω) are reflexive, uniformly convex

Banach spaces. Furthermore if p is measurable and bounded then our spaces are separable.

Remark 2.4 ([24]). If p, q, r ∈ C+(Ω) with p+ < N, and p(x) < r(x) < q(x) < p∗(x) = Np(x)
N−p(x) ,

for any x ∈ Ω, then the following embeddings hold true

W1,r(x)
0 (Ω) ↪→W1,p(x)

0 (Ω) (continuous embedding),

W1,p(x)
0 (Ω) ↪→ Lq(x)(Ω) (continuous and compact embedding).

3 Basic hypotheses and auxiliary results

In this section we will establish the main conditions imposed on the potential functions φ and
ψ which drive us to our double-phase differential operator from the problem (Pλ) and some
auxiliary results that will help us pointing out our solutions.

We assume that:

(S1) φ, ψ : Ω× [0, ∞)→ [0, ∞) and

– φ(·, t), ψ(·, t) are measurable on Ω for all t ≥ 0;

– φ(x, ·), ψ(x, ·) are locally absolutely continuous on [0, ∞) for almost all x ∈ Ω.

(S2) There exist some functions v1 and v2 such that v1 ∈ Lp′1(x)(Ω) and v2 ∈ Lp′2(x)(Ω) and a
constant ξ > 0 such that

– |φ(x, |t|)t| ≤ v1(x) + ξ|t|p1(x)−1,

– |ψ(x, |t|)t| ≤ v2(x) + ξ|t|p2(x)−1

for almost all x ∈ Ω, and all t ∈ RN .

(S3) There is a strictly positive constant c such that the following statements are verified for
almost all x ∈ Ω and all t > 0:

– φ(x, t) ≥ ctp1(x)−2 and t ∂φ
∂t + φ(x, t) ≥ ctp1(x)−2,

– ψ(x, t) ≥ ctp2(x)−2 and t ∂ψ
∂t + ψ(x, t) ≥ ctp2(x)−2.
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Let us now impose some conditions on the reaction term (right-hand side) of the problem
(Pλ). We define f : Ω×R → R as a Carathéodory function (i.e. f (·, z) is measurable for all
z ∈ R and f (x, ·) is continuous for almost all x ∈ Ω) satisfying the following hypotheses:

(R1) z f (x, z) ≥ 0 for almost all (x, z) ∈ Ω×R, and there exists a function m ∈ L∞(Ω) \ {0},
m(x) ≥ m− > 0, where m− is a constant, for all x ∈ Ω such that

| f (x, z)| ≤ m(x)|z|q(x)−1 for almost all x ∈ Ω, all z ∈ R.

(R2) There exist some strictly positive constants A and η such that

0 < ηF(x, z) ≤ z f (x, z) for almost all x ∈ Ω, z ∈ R \ {0},

where F(x, z) =
∫ z

0
f (x, t)dt, η > p+2 and |z| > A.

By hypothesis (R1) we obtain that

(R3) F(x, z) ≤ m(x)
q(x)

|z|q(x) for all (x, z) ∈ Ω×R.

(R4) There exists a constant CF > 0 such that

|z|q(x) ≤ CFF(x, z), for all (x, z) ∈ Ω×R.

Now we assume that p1, p2, q ∈ C+(Ω). Our variable exponents exhibits the following
behavior {

1 < q− < p−1 ≤ p1(x) ≤ p+1 < p−2 ≤ p2(x) ≤ p+2 ,

p+2 < p∗1(x) and q+ < p∗1(x),
(3.1)

where p∗1(x) = Np1(x)
N−p1(x) is the critical Sobolev exponent, for all x ∈ Ω.

Remark 3.1. At this point we do not have any information on the behavior of the quantity
sup
x∈Ω

q(x), beside the fact that it is a subcritical exponent.

Remark 3.2. Taking account on the relation (3.1) and the embedding theorems for variable
exponent Lebesgue and Sobolev spaces we will choose W = W1,p2(x)

0 (Ω) as functional space
for the solutions of problem (Pλ), and for the simplicity of the writing by ‖ · ‖ we will denote
the norm associated to W1,p2(x)

0 (Ω) (‖ · ‖p2(x)).

Definition 3.3. We say that u ∈W \ {0} is a weak solution of the problem (Pλ) if∫
Ω
[φ(x, |∇u|)∇u∇ϕ + ψ(x, |∇u|)∇u∇ϕ] dx = λ

∫
Ω

f (x, u)ϕdx

for all ϕ ∈W.

In order to establish the desired spectral properties for our problem we define the energy
functional associated to the problem (Pλ) as it follows

Tλ : W → R,

Tλ(u) = S(u)− λR(u),
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where

S(u) =
∫

Ω
S0(x, |∇u|)dx, with S0(x, t) =

∫ t

0
φ(x, s)sds +

∫ t

0
ψ(x, s)sds

and
R(u) =

∫
Ω

F(x, u)dx.

An important role in the analysis made by using the energy functional Tλ is played by the
fact that the part of the functional driven by our double-phase operator (left-hand side of the
problem) satisfy the following hypothesis

(S4) For all x ∈ Ω, all t ∈ RN , the following estimate holds true:

0 ≤ [φ(x, |t|) + ψ(x, |t|)] |t|2 ≤ ωS0(x, |t|),

for a constant ω > 1.

Remark 3.4. We can observe that the functional Tλ is of class C1(W, R) (for more details we
refer to [12, Lemmas 3.2, 3.4] and [2, Section 4]).

In order to reveal the eigenvalues associated to our differential operator we will point out
that the critical points of the energy functional Tλ are weak solutions for the problem (Pλ), so
they are eigenfunctions to their corresponding eigenvalues denoted by λ.

Firstly we need to prove some useful properties related by the geometry of the energy
functional Tλ.

Proposition 3.5. There exists λφ,ψ > 0 such that for any 0 < λ < λφ,ψ there exist two strictly
positive constants r and δ such that Tλ(u) ≥ δ > 0 for any u ∈W with ‖u‖ = r.

Proof. We will compute first the part of the energy functional driven by the differential oper-
ator in the left-hand side of the problem (Pλ).

S(u) =
∫

Ω
S0(x, |∇u|)dx

≥ 1
ω

∫
Ω

φ(x, |∇u|)|∇u|2 + ψ(x, |∇u|)|∇u|2dx

≥ 1
ω

∫
Ω

c
(
|∇u|p1(x) + |∇u|p2(x)

)
dx

≥ c
ω

(∫
Ω
|∇u|p1(x)dx +

∫
Ω
|∇u|p2(x)dx

)
. (3.2)

Taking account of the relation (3.1) we have the following continuous embeddings

W = W1,p2(x)
0 (Ω) ↪→W1,p1(x)

0 (Ω)

W1,p1(x)
0 (Ω) ↪→ Lq(x)(Ω).

Therefore we have the following inequalities

|u|q(x) < C1‖u‖p1(x) (3.3)

‖u‖p1(x) < C2‖u‖, (3.4)
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where C1 > 0, C2 > 0 are some constants.
Combining (3.3) and (3.4) we obtain

|u|q(x) < C1‖u‖p1(x) < C1 · C2‖u‖.

Now, let r ∈ (0, 1) be fixed such that r < min
{

1
C1C2

, 1
C1

}
, therefore we have that

‖u‖p1(x) < 1,

|u|q(x) < 1,
for all u ∈W, with ‖u‖ = r. (3.5)

Moreover, using the properties described by relations (2.2) and (3.2), we obtain that

S(u) ≥ c
ω

(
‖u‖p+1

p1(x) + ‖u‖
p+2
)

≥ c
ω
‖u‖p+2 . (3.6)

We proceed now to compute the second part of our energy functional, driven by the
reaction term, using assumptions (R1) and (R3) we obtain that:

R(u) =
∫

Ω
F(x, u)dx

≤
∫

Ω

m(x)
q(x)

|u|q(x)dx

≤ ‖m‖∞

q−

∫
Ω
|u|q(x)dx. (3.7)

Taking account of relation (3.5) and the property described by (2.2) we have that∫
Ω
|u|q(x)dx < |u|q

−

q(x).

Using the continuous embedding for variable exponent Lebesgue and Sobolev spaces dic-
tated by hypothesis (3.1) and relation (3.7) we obtain that

R(u) ≤ ‖m‖∞

q−
(C1 · C2)

q−‖u‖q− . (3.8)

Hence taking account of (3.6) and (3.8) we have that:

Tλ(u) = S(u)− λR(u)

≥ c
ω
‖u‖p+2 − λ

‖m‖∞

q−
(C1 · C2)

q−‖u‖q−

=
c
ω

rp+2 − λ
‖m‖∞

q−
Cq−

3 rq−

= rq−
(

c
ω

rp+2 −q− − λ
‖m‖∞

q−
Cq−

3

)
, (3.9)

where C3 = C1 · C2.
Using the inequality (3.9) we find that for every

λ ∈
(

0,
c
ω

rp+2 −q− · q−

Cq−
3 ‖m‖∞

)
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we can find a constant δ = δ
(

c
ω rp+2 −q− · q−

Cq−
3 ‖m‖∞

)
> 0 such that

Tλ(u) ≥ δ > 0

for any u ∈W, with ‖u‖ = r.
Hence the proposition is proved.

Remark 3.6. So, further on we will denote λφ,ψ by the quantity

λφ,ψ =
c
ω

rp+2 −q− · q−

Cq−
3 ‖m‖∞

. (3.10)

Remark 3.7. We also can observe that our energy functional satisfies one of the geometric
hypotheses of the mountain pass theorem, that is the existence of a mountain near the origin.

Proposition 3.8. There exists h ∈W, with h > 0 such that

Tλ(th) < 0,

provided by a t > 0 sufficiently small.

Proof. We proceed first to compute the part of the energy functional which is driven by the
double-phase operator from the left-hand side of the problem (Pλ).

Using (S2), Hölder’s inequality for variable exponent Lebesgue and Sobolev spaces and
the fact that t ∈ (0, 1) is sufficiently small, we have that

S(th) ≤ 2Cφ|v1|p′1(x)‖th‖
p−1
p1(x) +

ξ

p−1
‖th‖p−1

p1(x) + 2Cψ|v2|p′2(x)‖th‖p−2 +
ξ

p−2
‖th‖p−2

≤ tp−1 C̃1, (3.11)

where Cφ, Cψ > 0 are two constants that depend on the potential functions φ, ψ and on the
continuous embeddings

W1,p1(x)
0 (Ω) ↪→ Lp1(x)(Ω)

W1,p2(x)
0 (Ω) ↪→W1,p1(x)

0 (Ω),

and

C̃1 =

(
2Cφ|v1|p′1(x) +

ξ

p−1

)
‖h‖p−1

p1(x) +

(
2Cψ|v2|p′2(x) +

ξ

p−2

)
‖h‖p−2 . (3.12)

In what follows we will compute the second part of the energy functional.
Using hypotheses (R1), (R3) and (R4) there exists a constant CF > 0 such that F(x, u) ≥

1
CF
|u|q(x), with CF ≥ q+

m− , where m− = min{m(x) : x ∈ Ω, m(x) 6= 0}.
Let us consider CF = q+

m− + 1, and so we have that

F(x, u) ≥ m−

q+ + m−
|u|q(x). (3.13)

Hypothesis (3.1) implies the fact that q− < p−1 . Let α0 > 0 be such that

q− + α0 < p−1 .
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Since q ∈ C(Ω) we obtain the fact that there exists an open set Ω0 ⊂ Ω such that

|q(x)− q−| < α0 for all x ∈ Ω0,

therefore we can say that

q(x) < q− + α0 < p−1 for all x ∈ Ω0.

Consider h ∈ C∞
0 (Ω) be such that supp(h) ⊃ Ω0, h(x) = 1 for all x ∈ Ω0 and 0 ≤ h ≤ 1

in Ω.
Now taking account of relation (3.13) one have that

R(th) =
∫

Ω
F(x, th)dx

≥ m−

q+ + m−

∫
Ω

tq(x)|h|q(x)dx

≥ m−

q+ + m−
tq−+α0

∫
Ω0

|h|q(x)dx. (3.14)

Now combining relations (3.11) and (3.14) we obtain that

Tλ(th) ≤ C̃1tp−1 − λtq−+α0
m−

q+ + m−

∫
Ω0

|h|q(x)dx. (3.15)

Hence, taking account of relation (3.15) we obtain that

Tλ(th) < 0

provided by t < s
1

p−1 −q−−α0 , where

0 < s < min
{

1,
λC̃2

C̃1

}
with C̃2 = m−

q++m−
∫

Ω0
|h|q(x)dx and C̃1 as defined by relation (3.12).

Now taking account of the fact that∫
Ω0

|h|q(x)dx ≤
∫

Ω
|h|q(x)dx ≤

∫
Ω
|h|q−dx,

and by the continuous embedding W ↪→ Lq−(Ω), and the properties of the modular function
for variable exponent Lebesgue space (relations (2.2)–(2.5)) we can affirm that

‖h‖ > 0 and
∫

Ω
|∇h|p1(x)dx > 0,

∫
Ω
|∇h|p2(x)dx > 0,

and this completes the proof of our proposition.

Remark 3.9. We can observe that our energy functional does not satisfy the second geometrical
condition of the mountain pass theorem, in the sense that there exists a valley near the origin,
but it is not as far away as required. Hence the mountain pass theorem can not be applied at
this moment, but it can be applied if we impose some additional conditions on the growing
behavior of the reaction term. We will analyze this fact later on this paper.
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4 Multiple types of solutions

We can state now our first result.

Theorem 4.1. Assume that condition (3.1) is satisfied and hypotheses (S1)–(S4), (R1), (R3), (R4)

hold true. Then for p+2 < N, for all x ∈ Ω, there exists λφ,ψ > 0 such that any λ with 0 < λ < λφ,ψ

is an eigenvalue for problem (Pλ).

Proof. We proceed now to prove our first result. Let λφ,ψ be as declared in relation (3.10) and
consider λ ∈ (0, λφ,ψ). In what follows we will denote by B(0, r) = {u ∈ W : ‖u‖ < r} the
ball centered in the origin with r radius from W.

Using Proposition 3.5, we have that

inf
u∈∂B(0,r)

Tλ(u) > 0. (4.1)

Also by Proposition 3.8 we have that there exists h ∈W such that Tλ(th) < 0, provided by
t > 0 sufficiently small. Furthermore by relation (3.3), (3.4) and (2.2) we have that

Tλ(u) ≥
c
ω
‖u‖p+2 − λ

‖m‖∞

q−
Cq−

3 ‖u‖
q− .

Therefore we can say that there exists a constant c0 such that

−∞ < c0 := inf
B(0,r)

Tλ < 0.

Taking account of the above relations let ε > 0 be such that ε < inf∂B(0,r) Tλ − infB(0,r) Tλ, by
applying the Ekeland’s variational principle ([9]) to the functional Tλ : B(0, r)→ R we obtain
the existence of a function uε ∈ B(0, r) such that

Tλ(uε) ≤ inf
B(0,r)

Tλ + ε

Tλ(uε) ≤ Tλ(u) + ε‖u− uε‖, u 6= uε.

Therefore we have that

Tλ(uε) ≤ inf
B(0,r)

Tλ + ε ≤ inf
B(0,r)

Tλ + ε < inf
∂B(0,r)

Tλ,

thus we have obtained that ‖uε‖ < r. Now, let E be the energy functional defined on B(0, r)
as it follows

E : B(0, r)→ R

E(u) = Tλ(u) + ε‖u− uε‖. (4.2)

Now using relation (4.2) we have that

E(uε) = Tλ(uε) < Tλ(u) + ε‖u− uε‖ = E(u), u 6= uε. (4.3)

So far, taking a look at relation (4.3) it turns out that uε is a minimum point for E, therefore,
using arguments from [2, 12, 17] we have that

E(uε + tϕ)− E(uε)

t
≥ 0 (4.4)
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for t > 0 small and every ϕ, with ‖ϕ‖ < 1.
Relation (4.4) yields the fact that

Tλ(uε + tϕ)− Tλ(uε)

t
+ ε‖ϕ‖ ≥ 0.

We let t→ 0 and we obtain that

〈T′λ(uε), ϕ〉 > −ε‖ϕ‖
〈T′λ(uε), ϕ〉 > −ε

which yields to the fact that ‖T′λ(uε)‖ ≤ ε.
Therefore we get the existence of a sequence (vn)n ⊂ B(0, r) such that

Tλ(vn)→ c0 and T′λ(vn)→ 0. (4.5)

Since (vn)n ⊂ B(0, r) it yields that

‖vn‖ ≤ r, for every n ∈N, (4.6)

hence the sequence (vn)n is bounded in W. As a consequence we can find an element v0 such
that (passing eventually to a subsequence)

vn ⇀ v0 in W.

By the fact that W is compactly embedded in Lq(x)(Ω) we get that vn → v0 in Lq(x)(Ω).
Using [24, Lemma 21, Chapter 3] and some arguments from the proof of [12, Lemma 3.5] we
have that R′(u) is compact therefore we have that

lim
n→∞

R(vn) = R(v0)

lim
n→∞
〈R′(vn), vn − v0〉 = 0

(4.7)

It only remains to show that
lim
n→∞

S(vn) = S(v0).

Using relation (4.5) we have that

lim
n→∞
〈T′λ(vn), vn − v0〉 = 0. (4.8)

Using (4.7) and (4.8) we can obtain that

lim
n→∞
〈S′(vn)− S′(v0), vn − v0〉 ≤ lim

n→∞
〈T′λ(vn), vn − v0〉 = 0,

thus using [12, Lemma 3.4] we get that

vn → v0 in W. (4.9)

Hence by relations (4.9) and (4.7) combined with relation (4.5) we obtain the fact that

Tλ(v0) = c0 < 0 and T′λ(v0) = 0.

We conclude by pointing out that v0 is a nontrivial weak solution of problem (Pλ) and
every λ ∈ (0, λφ,ψ) is an eigenvalue of our problem.
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Let us assume now that the hypotheses of Theorem 4.1 are fulfilled and moreover we have
more knowledge about the variable growth of the reaction term; namely the following relation
holds true:

1 < q− < p−1 ≤ p1(x) ≤ p+1 < p−2 ≤ p2(x) ≤ p+2 < q+ < p∗1(x), (4.10)

for all x ∈ Ω.

Remark 4.2. Taking account of the relation (4.10) we still can not prove the fact that our energy
functional Tλ is coercive, so we can not apply the so called Direct Method in the Calculus of
Variations in order to point out our eigenvalues. This method have been applied on this types
of operators in the following works: [2, 12, 27].

Using the new information given by relation (4.10) about the growth behavior of the reac-
tion term we can obtain the following property for our energy functional.

Proposition 4.3. Suppose that hypotheses (S1)–(S4), (R1)–(R4) and (4.10) hold true, then we can
find some element θ ∈W such that

Tλ(tθ) < 0,

provided by t sufficiently large.

Proof. Using similar arguments as in the proof of Proposition 3.8 and keeping in mind that t
is sufficiently large we obtain that

S(tθ) =
∫

Ω
S0(x, |∇(tθ)|)dx

≤ 2Cφ|v1|p′1(x)‖tθ‖
p+1
p1(x) +

ξ

p−1
‖tθ‖p+1

p1(x) + 2Cψ|v2|p′2(x)‖tθ‖p+2 +
ξ

p−2
‖tθ‖p+2

≤ C̃θtp+2 , (4.11)

where C̃θ =
(
2Cφ|v1|p′1(x) +

ξ
p−1

)
‖θ‖p+1

p1(x) +
(
2Cψ|v2|p′2(x) +

ξ
p−2

)
‖θ‖p+2 .

Hypothesis (4.10) implies that p+2 < q+. Thinking similarly as in the proof of Proposi-
tion 3.8 we obtain the existence of a constant α1 > 0 such that p+2 + α1 < q+. By the fact that
p2, q ∈ C(Ω) it follows that there exists an open set Ω1 ⊂ Ω such that |q+ − q(x)| < α1 for all
x ∈ Ω1. Therefore we obtain that

p+2 < q+ − α1 < q(x) (4.12)

for all x ∈ Ω1.
Now let θ ∈ C∞

0 (Ω) by such that supp(θ) ⊃ Ω1, θ(x) = 1 for all x ∈ Ω1 and 0 ≤ θ ≤ 1 in
Ω, taking account of relation (3.13) combined with hypothesis (R2) we have that

F(x, tθ) ≥ m−

η + m−
|tθ|q(x).

Therefore by relation (4.12) and the properties of θ described before we obtain that

R(tθ) ≥ m−

η + m−

∫
Ω

tq(x)|θ|q(x)dx

≥ m−

η + m−
tq+−α1

∫
Ω1

|θ|q(x)dx. (4.13)
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Hence taking use of relations (4.11) and (4.13) we obtain that

Tλ(tθ) ≤ tp+2 C̃θ −
m−

η + m−
tq+−α1

∫
Ω1

|θ|q(x)dx.

Letting t→ ∞ and keeping in mind that p+2 < q+ − α1 we have that

lim
t→∞

Tλ(tθ) = −∞.

Reasoning as in the end of the proof of Proposition 3.8 we have that ‖θ‖ > 0, ‖θ‖p1(x) > 0
and so our proof is complete.

Remark 4.4. Comparing the results of Proposition 3.8 and Proposition 4.3, we can observe
that for the new growth conditions imposed by relation (4.10) the energy functional Tλ fulfills
the second geometrical condition of the mountain pass theorem, namely we can find a valley
far away of the origin as required.

In order to obtain our second result we need to require a slightly more restrictive condition
(S4), namely:

(S′4) 0 ≤ [φ(x, |t|) + ψ(x, |t|)] |t|2 ≤ p+2 S0(x, |t|), for all x ∈ Ω, all t ∈ RN .

Of course we can observe that (S′4) implies (S4).
We state now our second result.

Theorem 4.5. Assume that condition (4.10) holds true and hypotheses (S1)–(S3), (S′4), (R1)–(R4)

are fulfilled. Then for every λ ∈ (0, λφ,ψ) the problem (Pλ) has a mountain pass type solution.

Proof. Taking account of Propositions 3.5 and 4.3, we have that our energy functional has a
mountain pass geometry.

Since Tλ(0) = 0, employing the mountain pass theorem we obtain the existence of a
sequence (wn)n ⊂W such that

Tλ(wn)→ c1 > 0 and T′λ(wn)→ 0 in W−1,p′2(x)(Ω) as n→ ∞, (4.14)

namely a Palais–Smale sequence for the energy level c1.
By the fact that R′ is compact and S′ is of type (S+), using the fact that the space W is

reflexive it suffices to prove that (wn)n is bounded in W. To this end we argue by contradiction
and suppose that ‖wn‖ → ∞ (passing eventually to a subsequence).

Using hypotheses (S′4), (R2) and the fact that we assumed ‖wn‖ → ∞ we obtain that

Tλ(wn)−
1
η
〈T′λ(wn), wn〉 =

∫
Ω

S0(x, |∇wn|)−
1
η
[φ(x, |∇wn|)∇wn + ψ(x, |∇wn|)∇wn]∇wndx

+ λ
∫

Ω

[
1
η

f (x, wn)wn − F(x, wn)

]
dx

≥
∫

Ω

(
1− p+2

η

)
S0(x, |∇wn|)dx + λ

∫
Ω

[
1
η

f (x, wn)wn − F(x, wn)

]
dx.

Let us define now

CA = sup
{∣∣∣∣ 1η f (x, z)z− F(x, z)

∣∣∣∣ : x ∈ Ω, |z| ≤ A
}

.
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Hence by assumption (R2) we have that(
1− p+2

η

) ∫
Ω

S0(x, |∇wn|)dx ≤ Tλ(wn)−
1
η
〈T′λ(wn), wn〉

− λ
∫
{x∈Ω: |wn(x)|>A}

[
1
η

f (x, wn)wn − F(x, wn)

]
dx + λCA|Ω|

≤ Tλ(wn)−
1
η
〈T′λ(wn), wn〉+ λCA|Ω|,

where by |Ω| we denotes the Lebesgue measure of the domain Ω.
Since we supposed that ‖wn‖ → ∞, for a sufficiently large n we get that ‖wn‖ > 1, and by

assumptions (S3), (S′4) and relation (2.3) we have that(
1− p+2

η

)
c

p+2
‖wn‖p−2 ≤ Tλ(wn) +

1
η
‖T′λ(wn)‖W−1,p′2(x)(Ω)

· ‖wn‖+ λCA|Ω|.

Now by the fact that η > p+2 and p−2 > 1 we obtain a contradiction.
Therefore we have proved that there exists a Palais–Smale sequence for the energy level

c1 > 0, which is bounded. So passing eventually to a subsequence (labeled for the ease
of writing with the same notation) (wn)n and taking account the fact that the space W is
reflexive we can find an element w0 such that wn ⇀ w0 in W. Now, with the same arguments
as in the final part of the proof for Theorem 4.1 we have that

Tλ(w0) = c1 > 0 and T′λ(w0) = 0.

Hence for every λ ∈ (0, λφ,ψ) we can find a mountain pass type solution of the problem
(Pλ).

In the final part of this section we will present our last existence result, that is, the existence
of infinitely many high-energy weak solutions of the problem (Pλ).

In order to prove our last result we first remind the following result.

Lemma 4.6 ([10]). Let W be a reflexive and separable Banach space, then there are {ej} ⊂ W and
{e∗j } ⊂W∗ such that

W = span{ej : j = 1, 2, . . . } and W∗ = span{e∗j : j = 1, 2, . . . }

with

〈e∗i , ej〉 =
{

1, if i = j

0, if i 6= j.

For the simplicity of the notation we will take use of the following:

Wj = span{ej}, Yk =
k
⊕
j=1

Wj, Zk =
∞
⊕
j=k

Wj.

We state now our multiplicity result.

Theorem 4.7. Suppose that hypotheses (S1)–(S3), (S′4), (R1)–(R4) and relation (4.10) hold true. If
f (x,−z) = − f (x, z) for almost all x ∈ Ω, all z ∈ R and λ > 0, then the problem (Pλ) admits a
sequence of solutions (±un)n such that Tλ(un)→ ∞ as n→ ∞.
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Proof. In order to point out the sequence of solutions for the problem (Pλ) we will reveal the
fact that our energy functional Tλ possesses a sequence (±un)n ⊂ W of critical points with
higher and higher energies. To this end we have to prove the fact that functional Tλ is an even
functional, and there are some constants γk > ϑk > 0 such that for k ∈N large enough:

(i) inf{Tλ(u) : u ∈ Zk, ‖u‖ = ϑk} → ∞ as k→ ∞

(ii) max{Tλ(u) : u ∈ Yk, ‖u‖ = γk} ≤ 0

(iii) Tλ satisfies the Palais–Smale condition for every c > 0.

As the energy functional Tλ is even and with the same arguments as in the proof of
Theorem 4.5 we can prove that Tλ satisfies the Palais–Smale condition for c > 0, it only
remains to verify condition (i) and (ii).

Verification of (i): Let ak := sup{|u|q(x) : ‖u‖ = 1, u ∈ Zk}. From a straightforward compu-
tation, taking use of [25, proof of Theorem 3.2] we obtain that ak → 0 as k→ ∞.

Let u ∈ Zk with ‖u‖ = ϑk > 1, where ϑk will be specified later. By hypothesis (S3), (S′4)
and (2.3) we obtain that

Tλ(u) =
∫

Ω
S0(x, |∇u|)dx− λ

∫
Ω

F(x, u)dx

≥ c
p+2

(∫
Ω
|∇u|p1(x)dx + ‖u‖p−2

)
− λ

∫
Ω

F(x, u)dx

≥ c
p+2
‖u‖p−2 − λ‖m‖∞

q−

∫
Ω
|u|q(x)dx

(using hypothesis (R3))

≥ c
p+2
‖u‖p−2 − λ‖m‖∞

q−
max

{
|u|q

−

q(x), |u|
q+

q(x)

}
.

Taking account of the continuous embedding W ↪→ Lq(x)(Ω), we obtain that:

Tλ(u) ≥
c

p+2
‖u‖p−2 − λ‖m‖∞

q−
max

{
Cq−

3 ‖u‖
q− , Cq+

3 ‖u‖
q+
}

≥ c
p+2
‖u‖p−2 −

λ‖m‖∞Cq
3

q−
‖u‖q+

(
where Cq

3 = max
{

Cq−
3 , Cq+

3

})
≥ c

p+2
‖u‖p−2 −

λ‖m‖∞Cq
3

q−
aq+

k ‖u‖
q+ .

Due to a straightforward computation, we can choose

ϑk =

(
λ‖m‖∞Cq

3
q−

· p+2
c

ap+2
k

) 1
p−2 −q+

. (4.15)

It is easy to remark that by the fact that p−2 < q+ and ak → 0 as k→ ∞ we obtain ϑk → ∞.
Now taking ϑk as defined in relation (4.15) we obtain that

Tλ(u)→ ∞ as k→ ∞,
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and so condition (i) is verified.
Verification of (ii): Let u ∈ Yk and ‖u‖ = γk > 1, where γk will be defined later. Using

hypothesis (S2) we get that

Tλ(u) ≤ 2Cγ,φ|v1|p′1(x) max
{
‖u‖p−1

p1(x), ‖u‖
p+1
p1(x)

}
+

ξ

p−1
max

{
‖u‖p−1

p1(x), ‖u‖
p+1
p1(x)

}
+ 2Cγ,ψ|v2|p′2(x)‖u‖p+2 +

ξ

p−2
‖u‖p+2 − λ

∫
Ω

F(x, u)dx,

where Cγ,φ > 0 and Cγ,ψ > 0 are some constants.
Taking account of relation (3.4) we obtain that

Tλ(u) ≤ C̃γ‖u‖p+2 − λ
∫

Ω
F(x, u)dx, (4.16)

where C̃γ =
(

2Cγ,φ|v1|p′1(x)Cp1 +
ξ

p−1
Cp1

)
+
(

2Cγ,ψ|v2|p′2(x) +
ξ

p−2

)
and Cp1 = max

{
Cp−1

2 , Cp+1
2

}
.

Using hypothesis (R2) we can find two constants C4 > 0 and C5 > 0 such that

F(x, z) ≥ C4|z|η − C5. (4.17)

In what follows using relations (4.16) and (4.17) we obtain that

Tλ(u) ≤ C̃γ‖u‖p+2 − λC4

∫
Ω
|u|ηdx + λC5|Ω|.

Taking use by the fact that we work on a finite dimensional space (dim Yk < ∞), by the
fact that the assumption (R2) implies that η > p+2 and |Ω| < ∞ we obtain:

Tλ(u) ≤ C̃γ‖u‖p+2 + C6|Ω| − C7‖u‖η

for some constants C6 > 0, C7 > 0.
Now letting ‖u‖ → ∞ we have that

lim
‖u‖→∞

Tλ(u) = −∞. (4.18)

Choosing γk > ϑk > 0 and keeping in mind relation (4.18) we obtain that

max{Tλ(u) : u ∈ Yk, ‖u‖ = γk} ≤ 0,

for every γk large enough.
In order to complete our proof we only have to apply the fountain theorem (for more

details we refer to [10, Theorem 4.8], [25, Theorem 6.1], [28, Lemma 3.3]) and the proof is
fulfilled.

As the definition of our double-phase differential operator is general, in what follows we
will give some specific examples in order to illustrate our results.
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Example 4.8. Consider the following weight coefficient functions a, b : Ω → R, with a, b ∈
L∞(Ω)+ for all x ∈ Ω. Suppose there exist a constant Ca,b > 0 such that a(x), b(x) ≥ Ca,b for
all x ∈ Ω. Let f : Ω ×R → R be a Carathéodory function which satisfy the assumptions
(R1) − (R4), (4.10) then the results of Theorems 4.1, 4.5 hold true for the following class of
Dirichlet problems:−div

[
a(x)|∇u|p1(x)−2∇u + b(x)|∇u|p2(x)−2∇u

]
= λ f (x, u), in Ω,

u = 0, on ∂Ω.

It is easy to check the fact that our differential operator satisfy hypotheses (S1)–(S3),
(S′4). Moreover if the reaction function f is odd in respect to the second argument (that
is, f (x,−z) = − f (x, z)) then Theorem 4.7 holds also true.

Example 4.9. As we stated in the first section of this paper our potential functions φ and ψ

generalize the following type of differential operator

A(x, |z|) =

1 +
|z|p(x)√

1 + |z|2p(x)

 |z|p(x)−2 (4.19)

corresponding to the differential operator which describes the capillary phenomenon, so we
obtain the following class of double-phase problems:

−div

[(
|∇u|p1(x)−2 + |∇u|2p1(x)−2

(1+|∇u|2p1(x))
1/2

)
∇u

+

(
|∇u|p2(x)−2 + |∇u|2p2(x)−2

(1+|∇u|2p2(x))
1/2

)
∇u

]
= λ f (x, u), in Ω,

u = 0, on ∂Ω.

If hypotheses (4.10), (R1)–(R4) hold true, then the results of Theorems 4.1 and 4.5 hold
true for this class of problems. Moreover if the reaction term is odd in respect with the second
argument (that is, f (x,−z) = − f (x, z)) for all (x, z) ∈ Ω × R then this class of problems
admits infinitely many nontrivial weak solutions with higher and higher energies.

By simple computations we could verify that the potential function of type A from relation
(4.19) satisfies the assumptions (S1)–(S3), (S′4). For a thorough proof of the validity of our
example we can associate the following energy functional to our problem Eλ : W1,p(x)

0 (Ω)→ R

defined by

Eλ(u) =
∫

Ω

1
p1(x)

[
|∇u|p1(x) +

(
1 + |∇u|2p1(x)

)1/2
]

dx

+
∫

Ω

1
p2(x)

[
|∇u|p2(x) +

(
1 + |∇u|2p2(x)

)1/2
]

dx− λ
∫

Ω
F(x, u)dx

and recalculate the computations for this functional energy.

In what follows we will construct an example of a reaction function for our problems. As
we can observe by relation (4.10) the reaction term variable growth is very general and in
order to use an explicit defined nonlinearity in the right-hand side of the problem (Pλ) we
have to impose some eloquent conditions.
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By relation (4.10) we have that 1 < q(x) < p∗1(x) for all x ∈ Ω. Similarly with the details
used in the proof of Proposition 3.8 and 4.3 we may find some functions r1 : Ω0 → (1, ∞) such
that r1(x) = q(x) for all x ∈ Ω0 and r2 : Ω1 → (1, ∞) such that r2(x) = q(x) for all x ∈ Ω1

(where Ω0 ∩Ω1 = ∅). So by relation (4.10) we can state that

1 < r−1 ≤ r+1 < p−1 ≤ p+1 < p−2 ≤ p+2 < r−2 ≤ r+2 < p∗1(x)

for all x ∈ Ω, where
r−1 = min

x∈Ω0

r1(x) and r+1 = max
x∈Ω0

r1(x)

and
r−2 = min

x∈Ω1

r2(x) and r+2 = max
x∈Ω1

r2(x).

So our reaction function may be defined as

f (x, z) =

{
m(x)|z|r1(x)−2z, if x ∈ Ω0,

m(x)|z|r2(x)−2z, if x ∈ Ω1.

We can deduce the fact that f (x, z) has a |z|r1(x)−1 growth near the origin and |z|r2(x)−1

growth near +∞. For more details we refer to the proof of Proposition 3.8 and 4.3 and to
[15, Lemma 2]. Also some good examples of this type of reaction nonlinearity can be find
in [16]. This last restriction is necessary in order that our function to satisfy the Ambrosetti–
Rabinowitz type condition (R2) (for example we could take η = r−2 ).

We also need to impose some particular conditions on the weight function m : Ω→ [0, ∞):

(m1) m ∈ L∞(Ω);

(m2) there exist a constant m− such that m(x) ≥ m− > 0 for all x ∈ Ω0 ∪Ω1 and m(x) = 0
for all x ∈ Ω \

(
Ω0 ∪Ω1

)
.

Remark 4.10. For this particular restrictions we can observe that function f defined as above
satisfies hypotheses (R1)–(R4) and so, our existence theorems hold true.

5 Final remarks

(i) For every λ ∈ (0, λφ,ψ) problem (Pλ) has at least two different solutions. Indeed, suppose
that solutions given by Theorem 4.1 and Theorem 4.5 coincide (v0 = w0), we get that

Tλ(w0) = c1 > 0 > c0 = Tλ(v0),

which is a contradiction. So the multiplicity of every eigenvalue λ ∈ (0, λφ,ψ) is at least
two.

(ii) We point out that hypothesis (R2) plays a crucial role in the proof of our results. This
hypothesis is an Ambrosetti–Rabinowitz type condition which implies that our reaction
function f (x, ·) has at least a (η − 1)-polynomial growth near +∞.

(iii) Theorems 4.5 and 4.7 have a strong dependency on hypothesis (R2) whilst the results of
Theorem 4.1 hold true using only the weaker hypothesis (R3).
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We may consider the following functions:

• f1(x, z) = |z|η−1

• f2(x, z) = |z|p+2 −1 ln(1 + |z|)
• f3(x, z) = |z|q(x)−2z

Only the function f1 satisfy the Ambrosetti–Rabinowitz condition. We can also remark
the fact that the results of Theorem 4.1 hold true if f (x, u) = m(x)|u|q(x)−2u, with m
defined as in relation (R1).

(iv) For our results to hold true we can not use superlinear nonlinearities with slower growth
near +∞. This type on nonlinearity is represented by function f2.

(v) It is easy to observe the fact that we have a strong connection between the first and the
second type of solutions, whilst the third type of solutions (high-energy solutions) does
not depend on the condition that parameter λ ∈ (0, λφ,ψ) but only on the fact that λ > 0.

(vi) Moreover using hypothesis (4.10) instead of (3.1) we can find some information about
the existence of some ground state solutions of problem (Pλ) (that is, solutions which
minimizes the functional of the action in the set of all weak solutions), which lie on some
Nehari manifold. To this end we refer to [1, 26].
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