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Abstract. In this paper, we study the existence of ground state solutions for the fol-
lowing nonlinearly coupled systems of Choquard type with lower critical exponent by
variational methods{

−∆u + V(x)u = (Iα ∗ |u|
α
N +1)|u|

α
N−1u + p|u|p−2u|υ|q, in RN ,

−∆υ + V(x)υ = (Iα ∗ |υ|
α
N +1)|υ|

α
N−1υ + q|υ|q−2υ|u|p, in RN .

Where N ≥ 3, α ∈ (0, N), Iα is the Riesz potential, p, q ∈
(
1,
√

N
N−2

)
and Np +

(N + 2)q < 2N + 4, N+α
N is the lower critical exponent in the sense of Hardy–

Littlewood–Sobolev inequality and V ∈ C(RN , (0, ∞)) is a bounded potential function.
As far as we have known, little research has been done on this type of coupled systems
up to now. Our research is a promotion and supplement to previous research.
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1 Introduction and main result

We are interested in the following nonlinearly coupled systems of Choquard type with lower
critical exponent{

−∆u + V(x)u = (Iα ∗ |u|
α
N +1)|u| α

N−1u + p|u|p−2u|υ|q, in RN ,

−∆υ + V(x)υ = (Iα ∗ |υ|
α
N +1)|υ| α

N−1υ + q|υ|q−2υ|u|p, in RN .
(1.1)

Where the dimension N ≥ 3 of RN is given and function Iα : RN \ {0} → R is a Riesz potential
of order α ∈ (0, N) defined for each x ∈ RN \ {0},

Iα(x) =
Γ(N−α

2 )

Γ( α
2 )π

N
2 2α|x|N−α

,
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Γ denotes the classical Gamma function, ∗ represents the convolution product on RN , p, q ∈(
1,
√

N
N−2

)
and Np + (N + 2)q < 2N + 4, V ∈ C(RN , (0, ∞)) is a bounded potential function.

More precisely, we make the following assumptions on V,

(V1) V0 := inf
x∈RN

V(x) > 0;

(V2) V(x) < lim
|y|→∞

V(y) = V∞ < ∞.

For the following Choquard equation

− ∆u + V(x)u = (Iα ∗ |u|p)|u|p−2u, in RN , (1.2)

when N = 3, α = 2, p = 2 and V is a positive constant, this equation appears in several physi-
cal contexts, such as standing waves for the Hartree equation, the description of the quantum
physics of a polaron at rest by S. I. Pekar in [13] and the modeling of an electron trapped in its
own hole in 1976 in the work of Choquard, as a certain approximation to Hartree–Fock theory
of one–component plasma (see [4]). In some particular cases, this equation is also known as
the Schrödinger–Newton equation, which was introduced by R. Penrose [14] in his discussion
on the selfgravitational collapse of a quantum mechanical wave function. The existence and
uniqueness of positive solutions for equation (1.2) with N = 3, V(x) ≡ 1, α = 2 and p = 2 was
firstly obtained by E. H. Lieb in [4]. Later, P. L. Lions [6, 7] got the existence and multiplicity
results of normalized solution on the same topic. Since then, the existence and qualitative
properties of solutions for equation (1.2) have been widely studied by variational methods in
the recent decades. For related topics, we refer the reader to the recent survey paper [12].

To study equation (1.2) variationally, the well-known Hardy–Littlewood–Sobolev inequal-
ity is the starting point. Particularly, V. Moroz and J. Van Schaftingen [9] established the exis-
tence, qualitative properties and decay estimates of ground state solutions for the autonomous
case of equation (1.2) with N+α

N < p < N+α
N−2 and V(x) ≡ 1. In view of the Pohožaev identity

[9–11], Choquard equation (1.2) with V is a positive constant has no nontrivial smooth H1 so-
lution when either p ≤ N+α

N or p ≥ N+α
N−2 . Usually, N+α

N is called the lower critical exponent and
N+α
N−2 is the upper critical exponent for Choquard equation in the sense of Hardy–Littlewood–
Sobolev inequality. The upper critical exponent plays a similar role as the Sobolev critical
exponent in the local semilinear equations. C. O. Alves, S. Gao, M. Squassina and M. Yang[1]
established the existence of ground states for a type of critical Choquard equation with con-
stant coefficients and also studied the existence and multiplicity of semi–classical solutions
and characterized the concentration behavior by variational methods. G. Li and C. Tang [8]
obtained a positive ground state solution for Choquard equation with upper critical exponent
when the nonlinear perturbation satisfies the general subcritical growth conditions. The lower
critical exponent seems to be a new feature for Choquard equation, which is related to a new
phenomenon of “bubbling at infinity” (for more details see [10]).

J. Van Schaftingen and J. Xia [15] studied the ground state solutions of the following
Choquard equation with lower critical exponent and coercive potential V,

− ∆u + V(x)u = (Iα ∗ |u|
α
N +1)|u| α

N−1u, in RN . (1.3)

Later, J. Van Schaftingen and J. Xia [16] also obtained a ground state solution for the following
Choquard equation with lower critical exponent and a local nonlinear perturbation

− ∆u + u = (Iα ∗ |u|
α
N +1)|u| α

N−1u + f (x, u), in RN . (1.4)
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For the autonomous case f (x, u) = f (u) satisfies some superlinear assumptions, the existence
and symmetry of ground state for equation (1.4) were also got. Furthermore, they derived
a ground state solution of equation (1.4) for the nonautonomous case f (x, u) = K(x)|u|q−2u
with q ∈ (2, 2 + 4

N ) and K ∈ L∞(RN) satisfying infx∈RN K(x) = K∞ = lim|x|→∞ K(x) > 0.
As we mentioned above, all the results in the literature are concerned with a single equa-

tion. More recently, P. Chen and X. Liu [2] obtained the existence of ground state solu-
tions for the following linearly coupled systems of Choquard type with subcritical exponent
p ∈ (N+α

N , N+α
N−2 ), {

−∆u + u = (Iα ∗ |u|p)|u|p−2u + λυ, in RN ,

−∆υ + υ = (Iα ∗ |υ|p)|υ|p−2υ + λu, in RN .

Later, M. Yang, J. de Albuquerque, E. Silva and M. Silva [19] obtained the existence of positive
ground state solutions for the following linearly coupled systems of Choquard type{

−∆u + u = (Iα ∗ |u|p)|u|p−2u + λυ, in RN ,

−∆υ + υ = (Iα ∗ |υ|q)|υ|q−2υ + λu, in RN .
(1.5)

when the exponents satisfy one of case 1, case 2 and case 3, and also obtained that there is no
nontrivial solution for system (1.5) in case 4, where

case 1, N+α
N < p < N+α

N−2 and q = N+α
N−2 ,

case 2, p = N+α
N and N+α

N < q < N+α
N−2 ,

case 3, p = N+α
N and q = N+α

N−2 ,

case 4, p, q ≤ N+α
N or p, q ≥ N+α

N−2 .

Motivated by [2, 15, 16, 19], in this paper, we will study the existence of ground state solu-
tions for system (1.1). Our main result reads as followed.

Theorem 1.1. Let N ≥ 3, α ∈ (0, N), p, q ∈
(
1,
√

N
N−2

)
, Np + (N + 2)q < 2N + 4 and V satisfies

(V1), (V2), then system (1.1) admits at least one ground state solution.

Remark 1.2. The assumption Np + (N + 2)q < 2N + 4 is mainly used to get the energy
estimate of c0 in Lemma 2.6. In particular, p, q ∈

(
1, N+2

N+1

)
satisfy our assumptions on p, q.

The method used to prove Theorem 1.1 is as follows. Firstly, we establish the variational
framework for system (1.1). Let H1(RN) denote the normal Sobolev space equipped with the
norm

‖u‖ :=
( ∫

RN
(|∇u|2 + |u|2)dx

) 1
2
.

Define X = H1(RN)× H1(RN) equipped with norm

‖(u, v)‖ = (‖u‖2 + ‖v‖2)
1
2 .

Similar to H1(RN), X is a Hilbert space and satisfies

X ↪→ Lp(RN)× Lp(RN), p ∈ [2, 2∗], where 2∗ =
2N

N − 2
.



4 A. Li, P. Wang and C. Wei

By Hardy–Littlewood–Sobolev inequality and Sobolev embedding theorem, the energy func-
tional associated to system (1.1)

JV(u, v) =
1
2

∫
RN

(|∇u|2 + V(x)|u|2)dx +
1
2

∫
RN

(|∇v|2 + V(x)|v|2)dx

− N
2(N + α)

∫
RN

(Iα ∗ |u|
α
N +1)|u| α

N +1dx− N
2(N + α)

∫
RN

(Iα ∗ |v|
α
N +1)|v| α

N +1dx

−
∫

RN
|u|p|v|qdx

is C1(X, R) and

〈J′V(u, v), (φ, ϕ)〉 =
∫

RN
(∇u∇φ + V(x)uφ)dx +

∫
RN

(∇v∇ϕ + V(x)vϕ)dx

−
∫

RN
(Iα ∗ |u|

α
N +1)|u| α

N−1uφ)dx−
∫

RN
(Iα ∗ |v|

α
N +1|v| α

N−1vϕ)dx

− p
∫

RN
|v|q|u|p−2uφdx− q

∫
RN
|u|p|v|q−2vϕdx, for (φ, ϕ) ∈ X.

Thus, any critical point of JV is a weak solution of system (1.1). As usual, a nontrivial solution
(u, v) ∈ X of system (1.1) is called a ground state solution if

JV(u, v) = cV
g := inf{JV(u, v) : (u, v) ∈ X \ {(0, 0)} and J′V(u, v) = 0}.

Secondly, in the process of finding ground state solutions for system (1.1), the following
limiting problem plays a significant role{

−∆u + V∞u = (Iα ∗ |u|
α
N +1)|u| α

N−1u + p|u|p−2u|υ|q, in RN ,

−∆v + V∞υ = (Iα ∗ |υ|
α
N +1)|υ| α

N−1υ + q|υ|q−2υ|u|p, in RN .
(1.6)

Compared with the autonomous system (1.6), the potential V in system (1.1) breaks down
the invariance under translations in RN , then we cannot use the translation-invariant
concentration–compactness argument. The strategy to prove Theorem 1.1 is a comparison of
the energy of the functional JV with the functional JV∞ associated to system (1.6). On the one
hand, we construct a Palais–Smale sequence {(un, vn)} of JV∞ at the level c0 defined in (2.4),
that is, a sequence {(un, vn)} in X such that JV∞(un, vn) → c0 and J′V∞

(un, vn) → 0 as n → ∞.
On the other hand, we prove that up to translations the sequence {(un, vn)} converges to a
nontrivial solution (u, v) of system (1.6). Then, in the same way we obtain a (PS)cV sequence of
JV . Furthermore, by the equivalent characterization of c0, we can show that cV < c0 under the
assumptions on the potential V. Based on cV < c0, the compactness maintains and a ground
state solution for system (1.1) is obtained.

The rest of the paper is organized as follows. We give some preliminaries in Section 2. We
obtain a ground state solution for system (1.6) in Section 3. Theorem 1.1 is proved in Section 4.

2 Preliminary

In this section, we first provide some preliminary results.
The following well-known Hardy–Littlewood–Sobolev inequality will be frequently used

in this paper.
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Lemma 2.1 (Hardy–Littlewood–Sobolev inequality, [5]). Let p, q > 1, α ∈ (0, N), 1 ≤ r < s < ∞
and s ∈ (1, N

α ) such that
1
p
+

1
q
= 1 +

α

N
,

1
r
− 1

s
=

α

N
.

(i) Let f ∈ Lp(RN) and g ∈ Lq(RN), we have∣∣∣ ∫
RN

∫
RN

f (x)g(y)
|x− y|N−α

dxdy
∣∣∣ ≤ C(N, α, p)‖ f ‖Lp(RN)‖g‖Lq(RN).

(ii) For any f ∈ Lr(RN), Iα ∗ f ∈ Ls(RN) and

‖Iα ∗ f ‖Ls(RN) ≤ C(N, α, r)‖ f ‖Lr(RN).

By Hardy–Littlewood–Sobolev inequality mentioned above and the classical Sobolev em-
bedding theorem, we obtain∫

RN
(Iα ∗ |u|

α
N +1)|u| α

N +1dx ≤ C(N, α)
( ∫

RN
|u|2dx

) α
N +1

. (2.1)

This inequality can be restated as the following minimization problem

S = inf
{∫

RN
|u|2dx : u ∈ H1(RN) and

∫
RN

(Iα ∗ |u|
α
N +1)|u| α

N +1dx = 1
}

.

By Theorem 4.3 in [5], the infimum S is achieved by a function u ∈ H1(RN) if and only if

u(x) = A
(

ε

ε2 + |x− a|2

) N
2

, x ∈ RN , (2.2)

for some given constants A ∈ R, and a ∈ RN , ε ∈ (0, ∞). The form of the minimizers in (2.2)
suggests that a loss of compactness in equation (1.3) with V is a positive constant may occur
by both of translations and dilations.

First, we recall that pointwise convergence of a bounded sequence implies weak conver-
gence.

Lemma 2.2 ([18, Proposition 5.4.7]). Let N ≥ 3, q ∈ (1, ∞) and {un} be a bounded sequence in
Lq(RN). If un(x)→ u(x) almost everywhere in RN as n→ ∞, then un ⇀ u weakly in Lq(RN).

Similarly as in [3], we can get the following lemma.

Lemma 2.3. Assume that {un} ⊂ H1(RN) is a sequence satisfying that un ⇀ u in H1(RN), then
for any ϕ ∈ H1(RN),

lim
n→∞

∫
RN

(Iα ∗ |un|
α
N +1)|un|

α
N−1un ϕdx =

∫
RN

(Iα ∗ |u|
α
N +1)|u| α

N−1uϕdx.

Proof. For the reader’s convenience, we give a complete proof here. Up to a subsequence, {un}
is bounded in H1(RN), un ⇀ u in H1(RN) and un(x) → u(x) a.e. in RN . By Sobolev’s em-
bedding theorem, {un} is bounded in L2(RN) ∩ L2∗(RN), the sequence {|un|

N+α
N } is bounded

in L
2N

N+α (RN). Then by Lemma 2.2

|un|
α
N +1 ⇀ |u| α

N +1, in L
2N

N+α (RN).
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|un|
α
N−1un ϕ→ |u| α

N−1uϕ, in L
2N

N+α (RN), for any ϕ ∈ H1(RN).

By Lemma 2.1, the Riesz potential defines a linear continuous map from L
2N

N+α (RN) to
L

2N
N−α (RN). We know that,

Iα ∗ (|un|
α
N−1un ϕ)→ Iα ∗ (|u|

α
N−1uϕ), in L

2N
N−α (RN).

Thus, ∫
RN

(Iα ∗ |un|
α
N +1)|un|

α
N−1un ϕdx−

∫
RN

(Iα ∗ |u|
α
N +1)|u| α

N−1uϕdx

=
∫

RN
|un|

α
N +1(Iα ∗ (|un|

α
N−1un ϕ)dx−

∫
RN
|u| α

N +1(Iα ∗ (|u|
α
N−1uϕ)dx

=
∫

RN
|un|

α
N +1(Iα ∗ (|un|

α
N−1un ϕ)− Iα ∗ (|u|

α
N−1uϕ))dx

+
∫

RN
(|un|

α
N +1 − |u| α

N +1)(Iα ∗ (|u|
α
N−1uϕ))dx

→ 0, as n→ ∞.

(2.3)

The proof is complete.

Lemma 2.4 ([17, Lemma 1.21]). Let r0 > 0 and s ∈ [2, 2∗). If {un} is bounded in H1(RN) and

sup
y∈RN

∫
B(y,r0)

|un|s → 0, as n→ ∞,

then un → 0 in Lt(RN) for t ∈ (2, 2∗).

Lemma 2.5. The functional JV∞ satisfies the following properties:

(1) there exists ρ > 0 such that inf(u,v)∈X, ‖(u,v)‖=ρ JV∞(u, v) > 0;

(2) for any (u, v) ∈ X\{(0, 0)}, it holds limt→∞ JV∞(tu, tv) = −∞.

Proof. (1) By (2.1) and the classical Sobolev inequality, we can deduce that

JV∞(u, v) ≥ 1
2

min{1, V∞}(‖u‖2 + ‖v‖2)− N
2(N + α)

∫
RN

(Iα ∗ |u|
α
N +1)|u| α

N +1dx

− N
2(N + α)

∫
RN

(Iα ∗ |v|
α
N +1)|v| α

N +1dx−
∫

RN
|u|p|v|qdx

≥ 1
2

min{1, V∞}‖(u, v)‖2 − C1(‖u‖
2α
N +2 + ||v|| 2α

N +2)−
∫

RN
(|u|2p + |v|2q)dx

≥ 1
2

min{1, V∞}‖(u, v)‖2 − C1‖(u, v)‖ 2α
N +2 − C2‖(u, v)‖2p − C3‖(u, v)‖2q,

where C1, C2 are positive constants. Since p, q > 1 and α > 0, we have that

inf
(u,v)∈X, ‖(u,v)‖=ρ

JV∞(u, v) > 0,

provided that ρ > 0 is sufficiently small.
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(2) For any (u, v) ∈ X\{(0, 0)}, we have

JV∞(tu, tv) ≤ t2

2
max{1, V∞}(‖u‖2 + ‖v‖2)− Nt

2α
N +2

2(N + α)

∫
RN

(Iα ∗ |u|
α
N +1)|u| α

N +1dx

− Nt
2α
N +2

2(N + α)

∫
RN

(Iα ∗ |v|
α
N +1)|v| α

N +1dx− tp+q
∫

RN
|u|p|v|qdx

≤ t2

2
max{1, V∞}‖(u, v)‖2 − Nt

2α
N +2

2(N + α)
(
∫

RN
(Iα ∗ |u|

α
N +1)|u| α

N +1dx

+
∫

RN
(Iα ∗ |v|

α
N +1)|v| α

N +1dx).

Then the conclusion (2) follows.

By the classical Mountain Pass theorem [17], we have a minimax description at the energy
level c0 defined by

c0 = inf
γ∈Γ

max
t∈[0,1]

JV∞(γ(t)), (2.4)

where
Γ = {γ ∈ C([0, 1], X) : γ(0) = (0, 0), JV∞(γ(1)) < 0}.

Lemma 2.6. Let N ≥ 3, α ∈ (0, N), p, q ∈
(
1,
√

N
N−2

)
and Np + (N + 2)q < 2N + 4, then

c0 < c∗ := α
2(N+α)

(V∞S)
N
α +1.

Proof. We first show that c0 ≤ c1, where

c1 = inf
(u,v)∈X\{(0,0)}

max
t≥0

JV∞(tu, tv).

Indeed, for any (u, v) ∈ X\{(0, 0)}, by Lemma 2.5 (2), there exists tu,v > 0 such that

JV∞(tu,vu, tu,vv) < 0.

Hence, by (2.4), we have

c0 ≤ max
τ∈[0,1]

JV∞(τtu,vu, τtu,vv) ≤ max
t≥0

JV∞(tu, tv). (2.5)

It leads to c0 ≤ c1.
By the representation formula (2.2) for the optimal functions of Hardy–Littlewood–Sobolev

inequality, for each ε > 0, we set

U(x) = A(1 + |x|2)− N
2 , x ∈ RN ,

Uε(x) = ε
N
2 U(εx) and Vε(x) = ε

N+β
2 U(εx), where β ∈

(N(p+q−2)
2−q , 4−N(p+q−2)

q

)
. For each ε > 0

the function Uε satisfies∫
RN
|Uε|2dx = S and

∫
RN

(Iα ∗ |Uε|
α
N +1)|Uε|

α
N +1dx = 1.

Through direct computations, we have that∫
RN
|Vε|2dx = εβ

∫
RN
|U|2dx,

∫
RN

(Iα ∗ |Vε|
α
N +1)|Vε|

α
N +1dx = ε

β(N+α)
N ,
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∫
RN
|∇Uε|2dx = ε2

∫
RN
|∇U|2dx,

∫
RN
|∇Vε|2dx = εβ+2

∫
RN
|∇U|2dx.

For every ε > 0, we now consider the function ξε : [0, ∞)→ R defined by

ξε(t) := JV∞(tUε, tVε) = g(t) + hε(t) + fε(t), t ∈ [0, ∞),

where the functions g, hε, fε : [0, ∞)→ R are defined by

g(t) =
1
2

V∞St2 − N
2(N + α)

t
2α
N +2,

hε(t) =
t2

2

∫
RN
|∇Vε|2dx +

t2

2
V∞

∫
RN
|Vε|2dx− Nt

2(N+α)
N

2(N + α)

∫
RN

(Iα ∗ |Vε|
α
N +1)|Vε|

α
N +1dx,

fε(t) =
t2

2

∫
RN
|∇Uε|2dx− tp+q

∫
RN
|Uε|p|Vε|qdx.

Since ξε(t) > 0 whenever t > 0 is small enough, limt→0 ξε(t) = 0 and limt→∞ ξε(t) = −∞, for
each ε > 0 there exists tε > 0 such that

ξε(tε) = max
t≥0

ξε(t).

By the definition of the function g, we have

c1 ≤ max
t≥0

ξε(t) = ξε(tε) = g(tε) + hε(tε) + fε(tε) ≤ g(t∗) + hε(tε) + fε(tε), (2.6)

where t∗ = (V∞S)
N
2α satisfies that

g(t∗) = max
t≥0

g(t) =
α

2(N + α)
V

N
α +1

∞ S
N
α +1 = c∗.

Since ξ ′ε(tε) = 0, we have

ε2
∫

RN
|∇U|2dx + εβ+2

∫
RN
|∇U|2dx + εβ

∫
RN
|U|2dx + V∞S

= t
2α
N
ε + t

2α
N
ε

∫
RN

(Iα ∗ |Vε|
α
N +1)|Vε|

α
N +1dx + (p + q)tp+q−2

ε

∫
RN
|Uε|p|Vε|qdx

≥ t
2α
N
ε .

(2.7)

Hence, we have lim supε→0 t
2α
N
ε ≤ V∞S, which is equivalent to lim supε→0 tε ≤ V

N
2α

∞ S
N
2α . Notice

that
t

2α
N
ε

∫
RN

(Iα ∗ |Vε|
α
N +1)|Vε|

α
N +1dx + (p + q)tp+q−2

ε

∫
RN
|Uε|p|Vε|qdx

= ε
β(N+α)

N t
2α
N
ε + (p + q)ε

N(p+q−2)+βq
2 tp+q−2

ε

∫
RN
|U|p+qdx,

we can obtain that

lim
ε→0

(
t

2α
N
ε

∫
RN

(Iα ∗ |Vε|
α
N +1)|Vε|

α
N +1dx + (p + q)tp+q−2

ε

∫
RN
|Uε|p|Vε|qdx

)
= 0. (2.8)

Then (2.7) and (2.8) imply lim infε→0 t
2α
N
ε ≥ V∞S. Therefore, limε→0 t

2α
N
ε = V∞S. It leads to

limε→0 tε = t∗.
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We now observe that

fε(tε) + hε(tε) ≤
1
2

εβ+2t2
ε

∫
RN
|∇U|2dx +

1
2

ε2t2
ε

∫
RN
|∇U|2dx

+
1
2

εβt2
ε V∞

∫
RN
|U|2dx− ε

N(p+q−2)+βq
2 tp+q−2

ε

∫
RN
|U|p+qdx.

Since p, q ∈
(
1,
√

N
N−2

)
, Np + (N + 2)q < 2N + 4 and β ∈

(N(p+q−2)
2−q , 4−N(p+q−2)

q

)
, through

direct computations, we can get that N(p+q−2)+βq
2 < min{β, 2}. Thus

fε(tε) + hε(tε) < 0, when ε > 0 is small enough.

Then it follows from (2.6) that c1 < c∗ and thus c0 < c∗ in view of (2.5).

3 Existence of ground state solutions for the limiting problem (1.6)

In this section, we will prove that the limiting problem (1.6) admits at least one ground state
solution.

Before giving a complete proof, we state the following lemmas, which will be frequently
used in the sequel proofs. Set

‖(u, v)‖V∞ =

(∫
RN

(|∇u|2 + V∞u2)dx +
∫

RN
(|∇v|2 + V∞v2)dx

) 1
2

.

Define
cV∞

g := inf{JV∞(u, v) : (u, v) ∈ X \ {(0, 0)} and J′V∞
(u, v) = 0}.

Lemma 3.1. If {(un, vn)} is a sequence in X such that

lim inf
n→∞

‖(un, vn)‖V∞ > 0, and lim
n→∞
〈Φ′(un, vn), (un, vn)〉 = 0,

where the functional Φ : X → R is defined by

Φ(u, v) =
1
2
‖(u, v)‖2

V∞
− N

2(N + α)

(∫
RN

(Iα ∗ |u|
α
N +1)|u| α

N +1dx +
∫

RN
(Iα ∗ |v|

α
N +1)|v| α

N +1dx
)

,

then lim infn→∞ Φ(un, vn) ≥ c∗.

Proof. From lim
n→∞
〈Φ′(un, vn), (un, vn)〉 = 0, we observe that

‖(un, vn)‖2
V∞

=
∫

RN
(Iα ∗ |un|

α
N +1)|un|

α
N +1dx +

∫
RN

(Iα ∗ |vn|
α
N +1)|vn|

α
N +1dx + on(1).

By the assumption lim infn→∞ ‖(un, vn)‖V∞ > 0 and (2.1), we can deduce that

lim inf
n→∞

∫
RN

(|un|2 + |vn|2)dx > 0.

It follows from the definition of S that∫
RN

(Iα ∗ |un|
α
N +1)|un|

α
N +1dx +

∫
RN

(Iα ∗ |vn|
α
N +1)|vn|

α
N +1dx + on(1)

≥
∫

RN
(V∞|un|2 + V∞|vn|2)dx

≥ V∞S

[(∫
RN

(Iα ∗ |un|
α
N +1)|un|

α
N +1dx

) N
N+α

+

(∫
RN

(Iα ∗ |vn|
α
N +1)|vn|

α
N +1dx

) N
N+α

]

≥ V∞S
(∫

RN
(Iα ∗ |un|

α
N +1)|un|

α
N +1dx +

∫
RN

(Iα ∗ |vn|
α
N +1)|vn|

α
N +1dx

) N
N+α

,
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which leads to

lim inf
n→∞

‖(un, vn)‖2
V∞

= lim inf
n→∞

(∫
RN

(Iα ∗ |un|
α
N +1)|un|

α
N +1dx +

∫
RN

(Iα ∗ |vn|
α
N +1)|vn|

α
N +1dx

)
≥ (V∞S)

N
α +1.

(3.1)

Therefore,

Φ(un, vn) = Φ(un, vn)−
N

2(N + α)
〈Φ′(un, vn), (un, vn)〉+ on(1)

=
α

2(N + α)
‖un, vn‖2

V∞
+ on(1).

(3.2)

Then combine (3.1) with (3.2),

lim inf
n→∞

Φ(un, vn) = lim inf
n→∞

α

2(N + α)
‖un, vn‖2

V∞
≥ α

2(N + α)
(V∞S)1+ N

α = c∗.

The proof is complete.

Lemma 3.2. Let {(un, vn)} be a bounded (PS)c sequence with c ∈ (0, c∗) for functional JV∞ , then up to
a subsequence and translations, the sequence {(un, vn)} converges weakly to some (u, v) ∈ X\{(0, 0)}
such that

J′V∞
(u, v) = 0 and JV∞(u, v) ∈ (0, c].

Proof. First we show that

lim sup
n→∞

1
2

∫
RN

(|un|2p + |vn|2q)dx > 0. (3.3)

Otherwise, up to a subsequence, we have

lim sup
n→∞

∫
RN
|un|p|vn|qdx ≤ lim sup

n→∞

∫
RN

(|un|2p + |vn|2q)dx = 0. (3.4)

Since lim
n→∞
〈J′V∞

(un, vn), (un, vn)〉 = 0, we have

‖(un, vn)‖2
V∞

=
∫

RN
(Iα ∗ |un|

α
N +1)|un|

α
N +1dx +

∫
RN

(Iα ∗ |vn|
α
N +1)|vn|

α
N +1dx + on(1).

While, JV∞(un, vn)→ c > 0, n→ ∞, together with (3.4) and (2.1), imply that

lim inf
n→∞

‖(un, vn)‖V∞ > 0.

Then we deduce from Lemma 3.1 that

c = lim inf
n→∞

JV∞(un, vn)

= lim inf
n→∞

Φ(un, vn)− lim sup
n→∞

∫
RN
|un|p|vn|qdx

= lim inf
n→∞

Φ(un, vn)

≥ c∗,
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which contradicts with the fact c ∈ (0, c∗). Thus (3.3) holds. It implies that

lim sup
n→∞

∫
RN
|un|2pdx > 0, or lim sup

n→∞

∫
RN
|vn|2qdx > 0.

By the Lions inequality (Lemma 1.21 in [17]),

∫
RN
|un|sdx ≤ C

(∫
RN
|∇un|2 + |un|2

)
dx

(
sup

y∈RN

∫
B1(y)
|un|sdx

)1− 2
s

,

∫
RN
|vn|sdx ≤ C

(∫
RN
|∇vn|2 + |vn|2

)
dx

(
sup

y∈RN

∫
B1(y)
|vn|sdx

)1− 2
s

,

where s ∈ (2, 2∗). Then there exists sequences of points {yn} ∈ RN such that

lim sup
n→∞

∫
B1(yn)

|un|2pdx > 0, or lim sup
n→∞

∫
B1(yn)

|vn|2qdx > 0.

Thus we have
lim sup

n→∞

∫
B1(yn)

(|un|2p + |vn|2q)dx > 0. (3.5)

Define ũn := un(· + yn), ṽn := vn(· + yn). Since the functional JV∞ is invariant under
translations, the sequence {(ũn, ṽn)} ⊂ X is also a bounded (PS)c sequence of JV∞ . Then by
(3.5) there exists some (u, v) ∈ X\{(0, 0)} such that

(ũn, ṽn) ⇀ (u, v) in X.

ũn ⇀ u, ṽn ⇀ v in H1(RN),

ũn → u, ṽn → v in Lr
loc(R

N), r ∈ [1, 2∗),

ũn(x)→ u(x), ṽn(x)→ v(x), a.e. x ∈ RN .

Since 1 < p, q <
√

N
N−2 implies that 2 < 2p, 2q, 2pq < 2∗, we have

∫
RN
|ṽn|2q|ũn|2(p−1)dx ≤

( ∫
RN
|ṽn|2pqdx

) 1
p
( ∫

RN
|ũn|2pdx

) p−1
p

< ∞.

That is to say {|ṽn|q|ũn|p−2ũn} is bounded in L2(RN). Then by Proposition 5.4.7 in [18],

|ṽn|q|ũn|p−2ũn ⇀ |ṽ|q|ũ|p−2ũ, in L2(RN).

Since φ ∈ H1(RN) ⊂ L2(RN),∫
RN
|ṽn|q|ũn|p−2ũnφdx →

∫
RN
|ṽ|q|ũ|p−2ũφdx, n→ ∞. (3.6)

Similarly, we can also get∫
RN
|ũn|p|ṽn|q−2ṽn ϕdx →

∫
RN
|ũ|p|ṽ|q−2ṽϕdx, n→ ∞. (3.7)
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We now claim that J′V∞
(u, v) = 0. For any (φ, ϕ) ∈ X, by Lemma 2.3, (3.6) and (3.7), we

have

〈J′V∞
(un, vn), (φ(x− yn), ϕ(x− yn))〉

=
∫

RN
(∇un · ∇φ(x− yn) + V∞unφ(x− yn) +∇vn · ∇ϕ(x− yn) + V∞vn ϕ(x− yn))dx

−
∫

RN
(Iα ∗ |un|

α
N +1)|un|

α
N−1unφ(x− yn)dx−

∫
RN

(Iα ∗ |vn|
α
N +1)|vn|

α
N−1vn ϕ(x− yn)dx

−
∫

RN
|vn|q|un|p−2unφ(x− yn)dx−

∫
RN
|un|p|vn|q−2vn ϕ(x− yn)dx

=
∫

RN
(∇ũn · ∇φ + V∞ũnφ +∇ṽn · ∇ϕ + V∞ṽn ϕ)dx

−
∫

RN
(Iα ∗ |ũn|

α
N +1)|ũn|

α
N−1ũnφdx−

∫
RN

(Iα ∗ |ṽn|
α
N +1)|ṽn|

α
N−1ṽn ϕdx

−
∫

RN
|ṽn|q|ũn|p−2ũnφdx−

∫
RN
|ũn|p|ṽn|q−2ṽn ϕdx

= 〈J′V∞
(u, v), (φ, ϕ)〉+ on(1).

Thus J′V∞
(u, v) = 0.

By the Fatou lemma,

JV∞(u, v) = JV∞(u, v)− 1
2
〈J′V∞

(u, v), (u, v)〉

=
α

2(N + α)

∫
RN

((Iα ∗ |u|
α
N +1)|u| α

N +1 + (Iα ∗ |v|
α
N +1)|v| α

N +1)dx

+
( p + q

2
− 1
) ∫

RN
|u|p|v|qdx

≤ lim inf
n→∞

( α

2(N + α)

∫
RN

((Iα ∗ |ũn|
α
N +1)|ũn|

α
N +1 + (Iα ∗ |ṽn|

α
N +1)|ṽn|

α
N +1)dx

+
( p + q

2
− 1
) ∫

RN
|ũn|p|ṽn|qdx

)
= lim inf

n→∞

(
JV∞(ũn, ṽn)−

1
2
〈J′V∞

(ũn, vn), (ũn, ṽn)〉
)

= c.

Thus JV∞(u, v) ≤ c.
We finally conclude that

JV∞(u, v) = JV∞(u, v)− 1
2
〈J′V∞

(u, v), (u, v)〉

=
α

2(N + α)

∫
RN

((Iα ∗ |u|
α
N +1)|u| α

N +1 + (Iα ∗ |v|
α
N +1)|v| α

N +1)dx

+
( p + q

2
− 1
) ∫

RN
|u|p|v|qdx

> 0.

(3.8)

Therefore, the lemma follows.

By Lemma 2.5 and Mountain Pass theorem, there exists a Palais–Smale sequence {(un, vn)}
of JV∞ at the energy level c0. It then follows lemma 2.6 that c0 ∈ (0, c∗). The sequence {(un, vn)}
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is bounded in X. In fact, by taking µ ∈
(
2, min

{ 2(N+α)
N , p + q

}]
, we can get

c0 + on(1) = JV∞(un, vn)−
1
µ
〈J′V∞

(un, vn), (un, vn)〉

=

(
1
2
− 1

µ

)
‖(un, vn)‖2

V∞

+

(
1
µ
− N

2(N + α)

)(∫
RN

(Iα ∗ |un|
α
N +1)|un|

α
N +1dx +

∫
RN

(Iα ∗ |vn|
α
N +1)|vn|

α
N +1dx

)
+

(
p + q

µ
− 1
) ∫

RN
|un|p|vn|qdx

≥
(

1
2
− 1

µ

)
‖(un, vn)‖2

V∞
.

Thus {(un, vn)} is bounded in X. Up to a subsequence if necessary, there exists (u, v) ∈ X
such that

(un, vn) ⇀ (u, v) in X, (un(x), vn(x))→ (u(x), v(x)) a.e. in RN .

Then Lemma 3.2 infers that (u, v) is a nontrivial critical point of functional JV∞ and JV∞(u, v) ∈
(0, c0].

Let{(zn, wn)} be a sequence of nontrivial critical points of JV∞ such that

lim
n→∞

JV∞(zn, wn) = cV∞
g .

It is easy to see that cV∞
g ≤ c0 < c∗. By using the same arguments as above, we can get that

{(zn, wn)} is bounded in X. In view of 〈J′V∞
(zn, wn), (zn, wn)〉 = 0, it follows that {‖(zn, wn)‖}

has a positive lower bound, which together with (3.8) implies that cV∞
g > 0. Therefore,

{(zn, wn)} is a (PS)cV∞
g

sequence of JV∞ with cV∞
g ∈ (0, c0]. It follows from Lemma 3.2 that

up to a sequence of {(zn, wn)} and translations,

(zn, wn) ⇀ (z, w) 6= 0 in X, as n→ ∞, J′V∞
(z, w) = 0 and JV∞(z, w) ∈ (0, cV∞

g ].

Furthermore, by the definition of cV∞
g , we conclude that JV∞(z, w) = cV∞

g . Hence, (z, w) is a
ground state solution of system (1.6). �

4 Proof of Theorem 1.1

Lemma 4.1. For any solution (u, v) ∈ X\{(0, 0)} of system (1.6), the function JV∞(tu, tv), t ≥ 0
achieves its unique strict global maximum at t = 1, that is to say

JV∞(u, v) = max
t≥0

JV∞(tu, tv) > JV∞(tu, tv), for t ≥ 0 and t 6= 1.

Proof. Let (u, v) ∈ X\{(0, 0)} be a solution of system (1.6), for every t ≥ 0, we have

JV∞(tu, tv) =
t2

2

∫
RN

(|∇u|2 + V∞|u|2 + |∇v|2 + V∞|v|2)dx

− N
2(N + α)

t
2α
N +2

∫
RN

((Iα ∗ |u|
α
N +1)|u| α

N +1 + (Iα ∗ |v|
α
N +1)|v| α

N +1)dx

− tp+q
∫

RN
|u|p|v|qdx

=
A
2

t2 − BN
2(N + α)

t
2α
N +2 − Ctp+q,

(4.1)
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where

A :=
∫

RN
(|∇u|2 + V∞|u|2 + |∇v|2 + V∞|v|2)dx;

B :=
∫

RN
((Iα ∗ |u|

α
N +1)|u| α

N +1 + (Iα ∗ |v|
α
N +1)|v| α

N +1)dx;

C :=
∫

RN
|u|p|v|qdx.

By (4.1), it is easy to get that JV∞(tu, tv) ∈ C1([0, ∞), R) and limt→∞ JV∞(tu, tv) = −∞. Thus
JV∞(tu, tv) can achieve its global maximum. Since 0 = 〈J′V∞

(u, v), (u, v)〉 = A− B− (p + q)C,

by a direct calculation, we can get that t = 1 is the only point such that dJV∞ (tu,tv)
dt = 0. Then

JV∞(tu, tv) achieves the unique strict global maximum at t = 1.

Lemma 4.2. Assume (V1), (V2) hold, then there exists a (PS)cV sequence for JV with 0 < cV < cV∞
g .

Proof. Firstly, we claim that there exists (u0, v0) ∈ X such that JV(u0, v0) < 0. Indeed, for any
(u, v) ∈ X\{(0, 0)}, we have JV(u, v) < JV∞(u, v). In view of (4.1), by taking u0 = tu, v0 = tv
with t large enough, where (u, v) is a ground state solution of system (1.6). Then we get that
JV(u0, v0) < JV∞(u

0, v0) < 0.
Similar to Lemma 2.5, we see that the functional JV also enjoys the Mountain Pass geome-

try. Then we have a minimax description at cV . We show that

cV := inf
γ∈Υ

max
t∈[0,1]

JV(γ(t)) > max{JV(0, 0), JV(u0, v0)},

where

Υ = {γ ∈ C([0, 1], X) : γ(0) = (0, 0), γ(1) = (u0, v0)}.

In fact, (V1), (V2) and (2.1) imply that

JV(u, v) ≥ 1
2

min{1, V(x)}(‖u‖2 + ‖v‖2)− C1

(
‖u‖

2(N+α)
N + ‖v‖

2(N+α)
N

)
− 1

2

∫
RN

(|u|2p + |v|2q)dx

≥ 1
2

min{1, V(x)}‖(u, v)‖2 − C1‖(u, v)‖
2(N+α)

N − C2‖(u, v)‖2p − C3‖(u, v)‖2q,

where C1, C2 are positive constants. Since p, q ∈
(
1,
√

N
N−2

)
, JV has a strict local minimum at

0 and then cV > 0.
Next, we show that cV < cV∞

g . Let (u, v) be the ground state solution of system (1.6)
mentioned above. From the proof of Lemma 4.1 and by using (V2), we see that

cV∞
g = JV∞(u, v) = max

t≥0
JV∞(tu, tv) > max

t≥0
JV(tu, tv) ≥ cV .

The proof is complete.

Proof of Theorem 1.1. The proof is divided into four steps.



Ground state for lower critical Choquard coupled systems 15

Step 1. Let {(un, vn)} be a (PS)cV sequence of functional JV with 0 < cV < cV∞
g . Then take

µ ∈
(
2, min

{ 2(N+α)
N , p + q

}]
, we have

cV + on(1) = JV(un, vn)−
1
µ
〈J′V(un, vn), (un, vn)〉

=
(1

2
− 1

µ

) ∫
RN

(|∇un|2 + V(x)|un|2 + |∇vn|2 + V(x)|vn|2)dx

+
( 1

µ
− N

2(N + α)

) ∫
RN

((Iα ∗ |un|
α
N +1)|un|

α
N +1 + (Iα ∗ |vn|

α
N +1)|vn|

α
N +1)dx

+
( p + q

µ
− 1
) ∫

RN
|un|p|vn|qdx

≥
(1

2
− 1

µ

) ∫
RN

(|∇un|2 + V(x)|un|2 + |∇vn|2 + V(x)|vn|2)dx.

Thus (V1) and (V2) imply that {(un, vn)} is bounded in X. Therefore, there exists (u, v) ∈ X
such that up to a subsequence if necessary,

(un, vn) ⇀ (u, v) weakly in X, (un(x), vn(x))→ (u(x), v(x)), for almost every x ∈ RN .

By a similar argument as in the proof of Lemma 3.2, we see that there exists {yn} ⊂ RN such
that

lim sup
n→∞

∫
B1(yn)

(|un|2p + |vn|2q)dx > 0. (4.2)

Step 2. We can claim that {yn} is bounded in RN . In fact, suppose that for a subsequence still
denoted by {yn} such that

lim
n→∞
|yn| → ∞, (4.3)

we define zn(·) = un(· + yn), wn(·) = vn(· + yn), then {(zn, wn)} is bounded in X, and
by (4.2) (zn, wn) ⇀ (z, w) 6= (0, 0). In the following, we will show that J′V∞

(z, w) = 0 and
JV∞(z, w) ≤ cV , which contradict that cV < cV∞

g . Hence {yn} is bounded.
In order to prove J′V∞

(z, w) = 0, by (4.3), (V1), (V2) and Hölder inequality, for any (φ, ϕ) ∈
X, we have

∣∣∣ ∫
RN

(V(x + yn)−V∞)(zn(x)φ(x) + wn(x)ϕ(x))dx
∣∣∣

≤
∣∣∣ ∫

B|yn |/2

(V(x + yn)−V∞)(zn(x)φ(x) + wn(x)ϕ(x))dx
∣∣∣

+
∣∣∣ ∫

RN\B|yn |/2

(V(x + yn)−V∞)(zn(x)φ(x) + wn(x)ϕ(x))dx
∣∣∣

≤ sup
B|yn |/2

|V(x + yn)−V∞|(|zn|L2(RN)|φ|L2(RN) + |wn|L2(RN)|ϕ|L2(RN))

+ C
(
|zn|L2(RN)

( ∫
RN\B|yn |/2

|φ|2dx
) 1

2
+ |wn|L2(RN)

( ∫
RN\B|yn |/2

|ϕ|2dx
) 1

2
)

= on(1).

(4.4)
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Thus Lemma 2.3 and (4.4) imply that

〈J′V(un, vn), (φ(x− yn), ϕ(x− yn))〉

=
∫

RN
(∇un(x)∇φ(x− yn) + V(x)un(x)φ(x− yn))dx

−
∫

RN
(Iα ∗ |un|

α
N +1)|un|

α
N−1unφ(x− yn)dx

+
∫

RN
(∇vn(x)∇ϕ(x− yn) + V(x)vn(x)ϕ(x− yn))dx

−
∫

RN
(Iα ∗ |vn|

α
N +1|vn|

α
N−1vn ϕ(x− yn))dx

− p
∫

RN
|vn|q|un|p−2unφ(x− yn)dx− q

∫
RN
|un|p|vn|q−2vn ϕ(x− yn)dx

=
∫

RN
(∇zn(x)∇φ(x) + V(x + yn)zn(x)φ(x))dx

+
∫

RN
(∇wn(x)∇ϕ(x) + V(x + yn)wn(x)ϕ(x))dx

−
∫

RN
(Iα ∗ |zn|

α
N +1)|zn|

α
N−1znφdx−

∫
RN

(Iα ∗ |wn|
α
N +1)|wn|

α
N−1wn ϕdx

− p
∫

RN
|wn|q|zn|p−2znφdx− q

∫
RN
|zn|p|wn|q−2wn ϕdx

= 〈J′V∞
(zn, wn), (φ, ϕ)〉+

∫
RN

(V(x + yn)−V∞)(zn(x)φ(x) + wn(x)ϕ(x))dx

= 〈J′V∞
(z, w), (φ, ϕ)〉+ on(1).

(4.5)

Then from (4.5) we deduce that J′V∞
(z, w) = 0.

To prove JV∞(z, w) ≤ cV , by the Fatou lemma, we have

JV∞(z, w) = JV∞(z, w)− 1
2
〈J′V∞

(z, w), (z, w)〉

=
α

2(N + α)

∫
RN

((Iα ∗ |z|
α
N +1)|z| α

N +1 + (Iα ∗ |w|
α
N +1)|w| α

N +1)dx

+
( p + q

2
− 1
) ∫

RN
|z|p|w|qdx

≤ lim inf
n→∞

[
α

2(N + α)

( ∫
RN

(Iα ∗ |zn|
α
N +1)|zn|

α
N +1dx+∫

RN
(Iα ∗ |wn|

α
N +1)|wn|

α
N +1dx

)
+
( p + q

2
− 1
) ∫

RN
|zn|p|wn|qdx

]
= lim inf

n→∞

[
α

2(N + α)

( ∫
RN

(Iα ∗ |un|
α
N +1)|un|

α
N +1dx

+
∫

RN
(Iα ∗ |vn|

α
N +1)|vn|

α
N +1dx

)
+
( p + q

2
− 1
) ∫

RN
|un|p|vn|qdx

]
= lim inf

n→∞
(JV(un, vn)−

1
2
〈J′V(un, vn), (un, vn)〉) = cV .

(4.6)

Therefore, JV∞(z, w) ≤ cV .

Step 3. We show that (u, v) obtained in step 1 is a nontrivial solution of (1.1) and JV(u, v) ∈
(0, cV ]. By the classical Sobolev embedding theorem, (4.2) and step 2, we have (u, v) 6= (0, 0).
In view of Lemma 2.3, Lemma 3.2, (V1) and (V2), we can show that (u, v) is a critical point of
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JV . Similarly to the proof of (4.6), we have JV(u, v) ≤ cV . Direct calculation gives that

JV(u, v) = JV(u, v)− 1
2
〈J′V(u, v), (u, v)〉

=
α

2(N + α)

( ∫
RN

(Iα ∗ |u|
α
N +1)|u| α

N +1dx +
∫

RN
(Iα ∗ |v|

α
N +1)|v| α

N +1dx
)

+
( p + q

2
− 1
) ∫

RN
|u|p|v|qdx

> 0.

Thus 0 < JV(u, v) ≤ cV < cV∞
g .

Step 4. We show that there exists a ground state solution of system (1.1). By Step 3 and the
definition of cV

g , we see that cV
g < cV∞

g . Let {(zn, wn)} be a sequence of nontrivial critical points
of JV satisfying JV(zn, wn) → cV

g as n → ∞. By using the same arguments as in Step 1, we
can show that {(zn, wn)} is bounded in X. In view of 〈J′V(zn, wn), (zn, wn)〉 = 0, it follows
that {‖(zn, wn)‖X} has a positive lower bound. By similar arguments as step 1, we can show
that cV

g > 0. Therefore, {(zn, wn)} is a (PS)cV
g

sequence of functional JV with 0 < cV
g < cV∞

g .
Repeating Step 1–Step 3, we obtain some (z, w) ∈ X \ {(0, 0)} such that J′V(z, w) = 0 and
JV(z, w) ≤ cV

g . Thus (z, w) is a ground state solution of system (1.1). The proof of Theorem 1.1
is complete.
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