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Abstract:

This paper deals with existence of solutions to three-point BVPs in perturbed systems of
first-order ordinary differential equations at resonance. An existence theorem is established
by using the Theorem of Borsuk and some examples are given to illustrate it. A result for
computing the local degree of polynomials whose terms of highest order have no common

real linear factors is also presented.
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1 Introduction

In this paper, we consider

¥ — At)r = H(t,x,e) = eF(t,z,e) + E(t), 0 <t <1, (1)
M=xz(0) + Nz(n) + Rx(1) = 0, (2)
where M, N and R are constant square matrices of order n, A(t) is an n x n matrix with

continuous entries, E : [0,1] — R continuous, F': [0,1] x R™ x (—&g,&9) — R™ is a continu-

ous function and ¢ € R such that | € |< gy, and n € (0,1).
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The work is motivated by Cronin [6, 7] who considered the problem of finding periodic
solutions of perturbed systems. We adapt her approach to study three-point BVPs with
linear boundary conditions using the methods and results of Cronin [6, 7]. The three-point
BVP (1), (2) is called resonant or degenerate in the case that the rank of matrix £ =n—r,
0 <n —r < n, that is the matrix £ = M + NYy(n) + RY(1) is singular where M, N and
R are the constant n X n matrices given in (1), and Y'(¢) is a fundamental matrix of linear
system 2’ = A(t)z and Yy(¢t) = Y (¢)Y1(0). In studying the resonant case, we will use a
finite-dimensional version of the Lyapunov Schmidt procedure (see [7]).

The existence of solutions to two-point, three-point, four-point or multipoint BVPs for
ODE:s at resonance have been studied by a number of authors (see, for example [4], [9], [10],
2], [13], [14], [(15], [16], [20], [21], [22], [23], [24], [40], [32]), (17], (18], [19], [28], [36], [39],
[41]). A great amount of work has been completed on the existence of solutions to BVPs for
nonlinear systems of first-order ODEs at resonance which involve a small parameter (see,
for example [5], [26], [27] and [37]). The resonance case for systems of first-order difference
and differential equations has been considered by several authors (see for example Agarwal
[1], Agarwal and O’Regan [2], Agarwal and Sambandham [3], Etheridge and Rodriguez [11],
Rodriguez [33, 34, 35] and [38]). In these cases, resonance happens where the associated
linear homogeneous BVP admits nontrivial solutions.

Recently, Mohamed et al. [30] established the existence of solutions at resonance for the

following nonlinear boundary conditions

¥ — A(t)x = H(t,z,e) =eF(t,x,e) + E(t), 0 <t <1, (3)

Mz(0) + Nz(n) + Rx(1) = £+ eg(x(0), x(n), (1)), (4)

where M, N and R are constant square matrices of order n, A(t) is an n x n matrix
with continuous entries, E : [0,1] — R is continuous, F' : [0,1] x R™ x (—&g,&9) — R" is a
continuous function where g9 > 0, £ € R", n € (0,1) and g : R® — R" is continuous. They
applied a version of Brouwer’s fixed point theorem which is due to Miranda (see Piccinini,

Stampacchia and Vidossich [31]) to prove the existence of solutions to (3), (4).
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In this paper, we make use of the Theorem of Borsuk to show the existence of solutions
of the BVP (1), (2) under suitable assumptions on the coefficients. We obtain the existence
of solutions of three-point BVPs at resonance for general BVPs. We also present a result
for computing the degree of 1y(c) = (V¥i(c1, o), i (c1,¢2)) at (0,0) where the 1y(cy, o) are
polynomials whose terms of highest order have no common real linear factors; see Cronin [7]
p. 296-297. This result is for homogeneous polynomials in two variables which need not be
odd functions while Borsuk’s Theorem holds for continuous odd functions in any dimensions.
These results generalize the degenerate case of periodic BVPs considered by Cronin [6, 7],

and also the degenerate case of three-point BVP [13, 30].

2 Preliminaries
Lemma 2.1. Consider the system
= A(t)x (5)

where A(t) is an n X n matriz with continuous entries on the interval [0,1]. Let Y (t) be a

fundamental matriz of (5). Then the solution of (5) which satisfies the initial condition
2(0) = ¢ (6)

is z(t) = Y ()Y "10)c where ¢ is a constant n-vector. Abbreviate Y (t)Y 1(0) to Yo(t).
Thus x(t) = Yy(t)c.

Lemma 2.2. [30] Let Y (t) be a fundamental matriz of (5). Then any solution of (1) and

(6) can be written as
t
x(t,c,e) = Yo(t)e + / Y ()Y 1 (s)H (s, 2(s),e)ds. (7)
0
The solution (1) satisfies the boundary conditions (2) if and only if

Le=eN(c,a,n,e)+d (8)
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where

L =M+ NYy(n) + RYy(1),N(c,a,n,e) = _(/077 NY (n)Y Y(s)F(s,x(s,c,¢),€)ds

+/ RY (1)Y X(s)F(s,z(s,c,¢),e)ds — g(c, z(n), x(l))),

d = —(/On NY(n)Y_l(s)E(s)ds+/0 RY (1)Y () E(s)ds —e),
and x(t,c,€) is the solution of (1) given x(0) = c.

Thus (8) is a system of n real equations in €, ¢y, -+ , ¢, where ¢y, - ¢, are the compo-
nents of ¢. The system (8) is sometimes called the branching equations.

Next we suppose that £ is a singular matrix. This is sometimes called the resonance
case or degenerate case. Now we consider the case rank L=n—7r, 0 <n —r <n. Let E,

denote the null space of £ and let FE,_, denote the complement in R" of E, | i.e.
R"™ = E,_, ® E,(direct sum).

Let xq,---,x, be a basis for R" such that zq,---,z, is a basis for F,, and x, .1, -+ ,z, a
basis for E,,_,.
Let P, be the matrix projection onto Ker £L = E,, and P,_, = I — P,, where [ is the

identity matrix. Thus P,_, is a projection onto the complementary space E,_, of E,. and
P*=pP, P> =P, ,and P, ,P.=P.P,_, =0. 9)

Without loss of generality, we may assume
P.c=(c1, -+ ,¢,0,---,0)and P,_,c = (0, - ,0,¢r41,"+,Cn). (10)

We will identify P,.c with ¢" = (¢1,---,¢.) and P,_,c with ¢"" = (¢,41, -+ ,¢,) whenever
it is convenient to do so.

Let H be a nonsingular n X n matrix satisfying
HL=P,_,. (11)

Matrix H can be computed easily (see Cronin [7]). The nature of the solutions of the

branching equations depends heavily on the rank of the matrix L.
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Lemma 2.3. [30] The matriz L has rank n —r if and only if the three-point BVP (5) and
Mz(0) + Nz(n) + Rx(1) =0 has exactly r linearly independent solutions.

Next we give a necessary and sufficient condition for the existence of solutions of z(t, ¢, ¢)
of three-point BVPs for £ > 0 such that the solution satisfies z(0) = ¢ where ¢ = ¢(¢) for
suitable c(¢).

We need to solve (8) for ¢ when ¢ is sufficiently small. The problem of finding solutions
to (1) and (2) is reduced to that of solving the branching equations (8) for ¢ as function of

e for | € |< 9. So consider (8) which is equivalent to
L(P,+ P,_,)c=eN((P + Py—y)c,a,n,e) + d.

Multiplying (8) by the matrix H and using (11), we have

P,_,c=ecHN((P.+ P,_y)c,a,n,€) + Hd, (12)
where
HN((P, + P,_,)c,a,m,€) = —H(/O NY (n)Y 1(s)F(s,2(s,c,€),¢)ds
+/0 RY (1)Y X(s)F(s,z(s,c,¢),e)ds — g(c, x(n),x(l)))
and

Hd = —H( /017 NY ()Y Y (s)E(s)ds + /01 RY (1)Y (s)E(s)ds — e).

Since the matrix H is nonsingular, solving (8) for ¢ is equivalent to solving (12) for c.
The following theorem due to Cronin [6, 7] gives a necessary condition for the existence of

solutions to the BVP (1) and (2).

Theorem 2.4. A necessary condition that (12) can be solved for ¢, with | € | < gq, for some

o >0 P.Hd=0.

Definition 2.5. [30] Let E, denote the null space of £ and let E,,_, denote the complement
in R" of E,.. Let P, be the matrix projection onto Ker L = E,, and P,_, = [ — P,, where

I is the identity matrix. Thus P,_, is a projection onto the complementary space FE,_, of
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E,.. If E,_, is properly contained in R™ then E, is an r—dimensional vector space where
O0<r<mn. Ifec=(c, - ,cn),let P.c=c and P,_, = ¢ ", then define a continuous

mapping &, : R” — R", given by

(135(01, e ,Cr) - PTHN(CT D Cn—r(cr’g)’a’n’e)’ (13)

"= is a differentiable function of ¢ and ¢, P.HN is interpreted as

where ¢"7"(c",e) = ¢
(HN, -+, HN,). Similarly we will sometimes identify P, .c and ¢"~". Setting ¢ = 0, we

have
(IDO(Cla T 7CT’) = PT’HN(CT D Pn—THdaaanao)a

where ¢"7"(¢",0) = P,_,Hd; note that from the context ¢"~"(¢",0) = P,_, Hd is interpreted
as ""(c",0) = (Hdyy1,- - ,Hd,). If E, =R" and P. =1, then P,_, =0. Since P,_, =0
it follows that the matrix H is the identity matrix. Thus define a continuous mapping

o, : R" — R", given by ®.(c) = N(c,a,n,¢). Setting € = 0, we have ®g(c) =N (c,a,n,0).

3 Main Results

Now we state the well known Theorem of Borsuk (see, for example, Piccinini, Stampacchia

and Vidossich [31] p. 211).

Theorem 3.1. Let By, C R"™ be a bounded open set that is symmetrical with respect to the
origin (that is By = —By ) and contains the origin. If g : Bi — R™ is continuous and
antipodal

Do(c) = —Po(—c), (c € OBg)

and if 0 & ©o(0By), then d(Pg, By, 0) is an odd number (and thus nonzero).

Next we introduce the computation of the topological degree of a mapping in Euclidean

2-space defined by homogeneous polynomials. The methods and notations described below
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come from Cronin [7, 8]. Let

(I)é(cb 02) = (01 - az‘C2)pi7

—.

@
Il
—

@3(01, Cg) = CQ

—.

(c1 = bjea)?,

<
Il
—

where Cp, Cy are constants. (We include the possibility that some a; = oo or some b; = oo;
equivalently, that the factor y—a,;x is equal to —x or the factor y—b;z is equal to —z). The
topological degree is resolved by examining the changes of sign of ®}(cy, c2) and ®Z(cy, c2) as
c1, co varies over the boundary of the ball By with centre at the origin and arbitrary radius
when computing the topological degree of (®}, ®3). We may omit the following factors since

none of them affect the degree of (®§, ®3) on By at 0.

1. Factors (¢; — a;c2) and (¢; — bjcz) where a; and b; have complex conjugates

in @}, respectively, ®2.

2. Factors (¢ — a;c2) or (¢; — bjce) which appear with even exponents where q;

and b; are real.

3. Factors (¢; — a;co) and (¢ — a;j1¢2), if there exists a pair a;, a;41 (i <i+1)
such that no b; lies between them (i.e., there is no b; such that a; < b; < a;41).

Similarly for pairs b;, bji;.

4. Factors (c; — a,qce) and (¢; — ascs), if a, and a, are the smallest and largest
of the array of numbers ay,- -+, a,, by, ,by,. Similarly factors (¢; — b.c2) and
(c1 — bsea), if b, and by are the smallest and largest of the array of numbers

ap,:-- 7a'nab17"' 7bm-

If there are no remaining factors in ®} or ®Z, then the topological degree is zero. We

now state the second main theorem in this paper (see Cronin [7] p. 38-40).

Theorem 3.2. If we assume that the terms of highest degree of ®i(c1,co) and P3(cy, co)

are homogenous polynomaials with no common real linear factors after reduction using the
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conditions 1, 2, 3, and 4 above, then

a1<bl<a2<bg<-~-<ap<bp
or

b1<a1<b2<a2<---<bp<ap

for some integer p < min{m,n}. In the first case the degree is p, while in the second case

the degree 1s —p. Hence
d(®g, By, 0) # 0

for By, a ball with centre at the origin and sufficiently large radius. Then for sufficiently

small €, | €< g

d(®., By, 0) = d(®y, By, 0) # 0.

Hence there is a solution z(t,c,e) of the BVP (1), (2) with x(0,c,&) = ¢ where ¢ € Bj, C R?

and | € |< gg for some g9 > 0.

Remark 3.3. In this paper, we find that an arbitrarily small change in A(t) will affect the
structure of the set of solutions, and the value of the local degree will depend on how the

function f(t,y,y,¢) is changed.

4 Applications and Examples

In this section, we apply our results from the previous section and we start by considering
the degenerate case for o = /2 in the interval [0, 27] with rank L— /2 = 1 < 2. Thus, we

consider

v +y=cf(t,y,y,¢e), tel0,2n], (14)

y(2m) = ay(n), ¥'(0) =0, (15)

where n =7/4, a = /2 and f € C([0,1] x R? x (—&g,29); R).
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Then we study the totally degenerate case, rank £ = 0 for general boundary conditions

and give an example where Borsuk’s Theorem or Theorem 3.2 applies. We consider

y' + 167y = cf(t,y,y,e), t€]0,1], (16)
2y(0) —y(1/2) —y(1) = 0, (17)
—-y'(1/2) +y'(1) = 0, (18)

where n =1/2 € (0,1), f € C([0,1] x R? x (—¢&¢,0); R).

We will use the following facts in solving the examples.
1/2
/ sin" 4ws cos™ 4ns ds # 0,
0
1
/ sin” 4ws cos™ dms ds # 0 (19)
0
if and only if both n and m are even.
1
/ sin” 27s cos™ 27ws ds # 0 (20)
0

if and only if both n and m are even.

Rank L— ) =1<2, a=+/2 and y'(0) = 0.

The BVP (14), (15) is equivalent to

) 0 1 T 0

Ty -1 0 T2 f<t7 371737275)
0
0

0 0 21(0 -2 0 x1(m/4 1 r1(2m
0, (~v2 0\ (mn) | e\ _ (o),
01 1’2(0) 0 0 .772(7'('/4) 0 .’172(27'(') 0
21 0 1 00 V2 0 10
where x = , A= , M = , N = . R= ’
To -1 0 01 0 0 0 0
0 cost sint cost sint
F(t,z,e) = . We obtain Y (t) = , Yo(t) = )
f(t,xq, x9,€) —sint cost —sint cost
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cos2m  sin27w cosm/4 sinm/4
Yo(2m) = , Yo(m/4) = and
—sin 27 cos 2w —sinm/4 cosw/4
cos(t —s) sin(t—s
Y)Y~ l(s) = eAlt=s) = ( ) ( ) . Then by Lemma 2.2, solving the
—sin(t —s) cos(t — s)

problem (21), (22) is reduced to that of solving L= /2¢ = eN(c, o, n,€) 4+ d for ¢. Thus
we find La=./2) and N(c, o, 71, €).

Lia=y2)y = M+ NYy(m/4)+ RYs(2m)
00\ [=v2 0} [ v22 v22) (10} (10
0 1 0 0] \—v2/2 2/2 00/ \o 1
0 —1
0 1/
and
/4 —/2 0 x
N(c,a,m,e) = —/ v ATV (s, 2(s,¢,¢),€) ds
0 0 0
21 10
—/ AR (s, (s, ¢,€),€) ds
0 0 0
= (Nl(caaaﬁ>5)>0)§
where

w/4
Ni(c,a,n,e) = / V2sin(m/4 — s)f(s,x1(s,¢,€), xa(s, ¢, €),€)ds
0

21
—/ sin(2m — ) f(s, x1(s, ¢, €), xa(s, ¢, €), €)ds,
0

1
and d = 0. Thus we have rank L—,2) = 1. Let e; = be a basis for Ker(La.- /), and
0

Ker(La-2)=Span e;. Let P, be the matrix projection onto Ker(Lo—2), P =

00 11
So P, =1—-P = . Set H = so that HL(,—,2) = P5. Since d = 0, it
0 1 01
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follows that PyHd = 0. Therefore a necessary condition of Theorem 2.4 is satisfied. Then we
apply Theorem 3.2. In order to study @y, we must first obtain z(¢, ¢,0), that is the solution
of ' = A(t)xr. By Lemma 2.1, 2’ = A(t)z has a solution z(t) with z(0) = ¢ = (c1,0)7,
where z5(0) = 0 = ¢y. Thus (14), (15) has a solution if € = 0 namely x;(¢,¢,0) =

cq cost,xo(t,c,0) = —cy sint. We compute
10\ (1 1\ (N(ca,ne
P HN (¢,a,n,e) = 1 7€)
0 0 01 0
Ni(c,a,m,€)

0

Thus ®.(c;) = Ni(c!,a,n,€), where Poe = ¢ = (602) and Pic = ¢' = (¢). Setting
e = 0, we have ®y(c;) = Ni(c!, a,n,0), where ¢?(c',0) = P,Hd = 0. In system (21), let
f(t, 21, 39,¢) = axi+bxy so that f € C([0, 27 xR?*x (—eg,&0); R). Thus f(¢,c; cos t, —cysin t,0) =

ac? cos®t — bey sint. Using condition (20), and thus

w/4
Oo(c;) = / V2sin(w/4 — s)f(s,cicos s, —cysins, 0)ds
0

2
- / sin(2m — s) f(s, ¢ cos s, —cy sin s, 0)ds.
0
w/4

= V2sin(r/4 — s)(ac? cos® s — bey sin s)ds
0

2
- / sin(27m — s)(ac’ cos® s — bey sin s)ds
0
w/4
— 3 nad - 3 3 .2
= {ac] cos™ s — bey cos ssin s — acy sin s cos” s + bey sin® sds — beym}ds

0

3 1 Tm 1
3
= — 4+ —) = bcy(— + =).
acl(32 16) e 8 2)

Since ®q(cy) is odd, the local degree is odd and therefore nonzero. Then for sufficiently large
By, and sufficiently small ¢, d(®., By, 0) = d(®y, By, 0) # 0.
Next we apply Borsuk’s Theorem in Example 1, and then Theorem 3.2 in Example 2 to

find the local degree of a mapping in Euclidean 2-space defined by homogeneous polynomials.
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Rank £ =0.

The BVP (16), (17) and (18) is equivalent to
x) 0 1 Ty 0
= +e (23)
xh —167= 0 To f(t, 1, x9,€)
20 x1(0 -1 0 x1(1/2 -1 0 z1(1
o) | a2 | (0 _ o
0 0) \2(0) 0 -1/ \z2(1/2) 0 1) \aa(1) 0
0 1 2 0 -1 0 -1 0
where © = , M = , N = , R=
—1672 0 0 1 0 -1 0 1
cos 4rt sindnt/ (4w cosdnt  —sindnt/ (4w
e [0 o )
—4msin4nt cos4mt 4m sin 47t cos 4mt
cosdnt  sindmt/(4m) 10
Yo(t) = Y (6)Y 1 (0) = Yo(1/2) = and
—Amsin 4t cos 4rt 01
10
Yo(1) = . Then by Lemma 2.2, the problem of solving (23), (24) is reduced to that
01

of solving Le=eN(c,a,n,e)+ d for ¢. Thus we find £ and N (c,a,n,¢€).

L = M+ NYy(1/2) + RY,(1)

20 -1 0 10 -1 0 10
= + +
0 0 0 -1 01 0 1 01
0 0
0 0
1 0
Thus we have rank £ = 0. Let e; = 6y = , is a basis for Ker(L), and
0 1
10
Ker(L) = Span(ey,e2). Let Py be the matrix projection onto Ker(L), P, = . So
01
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00 10
Po=1—-P = . Set H = so that HL = P,. We obtain

0 0 1
cos4rs —sindnrs/ (4w
N(Caaanv‘g) = - /< )
47 sin 4ns cos4rs
0
X ds
(s,x1(s,¢,€),22(s, ¢, €)
1 -1 0 cosdrws  —sindws/(4m)
4rsindrns cos4rs
0
X ds
f(s,x1(s,¢,8), x9(s,¢,€), €)
12 [ —sin 4ms/(4m)
= / f(s,x1(s,¢,8),x2(8,¢,€),€))ds
0 cos 4rs

f(s,z1(s,c,€),x2(s,¢,¢),¢))ds

V[ —sin 4ws/ (47
+/ /(4r)
0 —cos 4rs
Ni(c,a,m,¢€)
No(c,a,m, €)

9

where
1/2
Ni(c,a,n,e) = —/ sindws/(4m) f(s, x1(s, ¢, €), x2(8, ¢, €),€))ds
0

— /1 sindrws/(4m) f(s,z1(s, ¢, €), x2(s, ¢,€), €))ds,
0

1

Nofe:ane) = = [ cosims(san(s.c.e).mals.c.0),2)ds,
1/2

and d = 0. Since d = 0, it follows that P{Hd = 0. Therefore a necessary condition of
Theorem 2.4 is satisfied. Then we apply Theorem 3.2. In order to study ®y, we must first
obtain z(t,c,0), that is the solution of 2’ = A(t)z. By Lemma 2.1, 2/ = A(t)z has a
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solution w(t) with z(0) = ¢ = (c1,¢2)T. Thus (16), (17), (18) has a solution if ¢ = 0 namely

x1(t,¢,0) = ¢y cosdnt + cosindnt/(4w), x2(t, ¢,0) = —4mey sindnt 4 co cos 4nt. We compute

10 10 Ni(c,a,n, )
01 0 1) \Na(c,a,m,¢)

P HN (¢,a,n,e) =

Thus
Ni(c,a,n,¢€)
q)&‘(ch 02) -
NQ(Cv a, 1, 5)
Setting € = 0, we have
Nl (Ca a, 1, O)
Do(er, ) =
NQ(Ca a, 1, O)
Now we state an example where the value of the local degree depends on the function
f(t’ y7 y/7 8) *
Example 1

In system (23), let f(t,21,29,€) = a3 so that f € C(]0,27] x R? X (—&q,£0); R). Then

f(t, ci cosdmt + cysindrt/(4r), —4mey sindrt + ¢y cos dnt, 0) = —6473¢ sin® 4t

+4872c2cy sin? dnt cos dmt — 12mcc2 sin 4t cos? 4t + ¢ cos® 4.

Using condition (19), we obtain

D (cy, )
12 sin4ms
= — { 1 f(s,¢1cosdms + cosindrs/(4m), —4mey sindnws + ¢ cos 4ms, 0)}ds
0 T
U sindrs
— / { 1 f(s,c1cosdms + cysindns/(4m), —4mwey sindws + o cos 4ws, 0)}ds
: T
1/2

= — {167%c? sin® 47s + 3¢, sin? 4s cos® 4ms tds

— [ {167%¢ sin* 4ns + 3c,c5 sin? 47s cos® 4ms}ds
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and

3¢
—3ricicy + —2
T

®F(c1, ¢2)

1
- / cosdms{ f(s,cicosdns + cysindmws/(4m), —4ney sindws + co cos 4ws, 0)}ds

1/2

1/2
— / {48723 cy sin? 4s cos? 4ms + 3 cos* 4s}ds
0

3

Since ®g(cy,c2) = (Bi(c1, ca), P2(c1,c2)) is continuous, odd on dBy, and 0 & Py(IBy,), the

local degree is odd and therefore nonzero. Then for sufficiently large B and sufficiently

small e, d(®., By, 0) = d(Py, By, 0) # 0.

Example 2

In system (23), let f(t, 21, 2o,€) = 22 cos 4rt + x5 cos? 4t + 21 sin® 47t so that
f e C([0,2r] x R? x (—¢&¢,&0); R). Then

f(t,cicos 4mt + cysindnt/(47), —4mey sin drt + ¢y cos 4nt, 0) = ¢ cos® 4nt

3 cos dmt sin” 4t
+—6162 cos? 4t sin 47t + QOSSN 7T
2 1672

c
+¢9 cos® At + ¢4 sin? 4dxt cos drt + 4—2 sin® 4rrt.
T

— 47eq cos? dmtsindmt

Using condition (19), we obtain

D4 (c1, c2)

1/2

{

sin 47?5

f(s,¢1cosdms + cosindrs/(4m), —4mey sindnws + ¢ cos 4ms, 0)}ds
0

1
4
— / {sm WSf(S, c1cos4ms + cosindms/(4m), —4dmey sindws + cy cos 4ms, 0) hds

.4
0102 . Cosin* 4ms
/ {[=—= — c1] cos* 4mssin® 4ns + ————}ds

812 1672
0102 24 24 ey sint drs J
{Q_Cl cos” 4ms sin 7TS+W} s
—30102 361 902

12872 16 6472
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and

P (c1, ¢2)

1
= - / {cosdmsf(s,crcosdms + cosindns/(4n), —4mwe; sindns + ¢ cos 4ms, 0)}ds
1/2
1/2
= — {(c2 4 ¢3) cos* 4ms + (c2 + ¢1) cos® s sin”® 47s Yds
0
3mc? c2 3mcy
= (Tay A (e a
4 256m 4 16

Let

).

D (c1,c2) = pi(er, e2) + qi(ca, e2)
@8(017 c2) = pa(cr, e2) + qa(cr, Ca)
where

_ —3cica _ 3c1 9co
p1<01702) — 12872 q1 = 16~ 64x2>

3 2 2
(4 ), m=—(2 1),

Hence pi(e,¢2) is a polynomial homogeneous of degree m = 2 in ¢; and ¢z, pa(cy, o) is a
polynomial homogeneous of degree n = 2 in ¢; and ¢y, and ¢;(c;,c2) consists of the term
kclf(i)cl;(i) where lgi) + lgi) =1 < min(m,n) = 2 for i = 1,2. Thus we define ¢y to be the

mapping defined by

Yo(cr, ca) — (piler, ca), paler, ca)).

Since p; and ps have no common real linear factors, then d(vg, By, 0) is defined for By of
arbitrary radius. After reduction using the conditions 1 and 4 in Theorem 3.2, 1 is a
constant. Hence d(1)g, By, 0) = 0. If the radius of By, is sufficiently large then d(®, By, 0) =
d(1g, B, 0). Hence for sufficiently large By and sufficiently small e, d(®., Bg,0) = 0. Do
the solutions exist? The answer is yes, y = 0 for each ¢ < &g, in fact this is the only
solution of the BVP (16), (17), (18). The equation ®g(cy,cy) = (0,0) has just one solution
(c1,¢2) = (0,0). This implies y(t) = x1(t,¢,0) = ¢q cosdnt + cysindnt/(4r) = 0. Thus
a necessary and sufficient condition for BVP (16), (17), (18) to have trivial solution is

f(t,0,0,6) =0 for ¢t € [0,27], € < &p.
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