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Abstract. In this paper we study the radial symmetric solutions of the two-dimensional
Cahn-Hilliard equation with degenerate mobility. We adopt the method of parabolic
regularization. After establishing some necessary uniform estimates on the approxi-
mate solutions, we prove the existence and the nonnegativity of weak solutions.
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1 Introduction

This paper is devoted to the radial symmetric solutions of the Cahn-Hilliard
equation with degenerate mobility

ou .
e +div[m(u)(kVAu — VA(u))] = 0,

with the boundary value conditions

and initial value condition

where B is the unit ball in R?, 7 is the outward unit normal to 0B, k >0,
J=m(u)(kVAu — VA(u)),

and m(s), A(s) are appropriately smooth and satisfy the following structure
conditions

() 0< m(s) < CulsP,
(1) 1) = [ A=~ 4G < Callr+ O

for some positive constants p, q, 1, C’'s. We note that a reasonable choice of
A(s) is the cubic polynomial, namely

A(s) =718 + 7282 + 35+, 11 >0,
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which corresponds to the so called double-well potential

H(s) = 27134 + %7233 + %7352 + Y45.

The Cahn-Hilliard equation was introduced to study several diffusion pro-
cesses, such as phase separation in binary alloys, see [1, 2]. During the past years,
such an equation has been paid extensive attention. In particular, there are vast
literatures on the investigation of the Cahn-Hilliard equation with constant mo-
bility, for an overview we refer to [3, 4]. However, there are only a few works
devoted to the equation with degenerate mobility, see [5, 6, 7, 8, 9, 10, 11, 12],
among which Elliott and Garcke [6] was the first who established the basic
existence results of weak solutions for space dimensions large than one.

In this paper, we study the radial symmetric solutions of the Cahn-Hilliard
equation. We will study the problem in two-dimensional case, which has partic-
ular physical derivation of modeling the oil film spreading over a solid surface,
see [13]. After introducing the radial variable r = |z|, we see that the radial
symmetric solution satisfies

R G RS N

ou ou ~ ~

> = =J =J =0, 1.2

orlr=0  Orlr=1 r=0 =1 (1.2)

u = ug(r), (1.3)
t=0

where
ov ou

!
T =mu )(k(?r Al )87*)

It should be noticed that the equation (1.1) is degenerate at the points
where r = 0 or u = 0, and hence the arguments for one-dimensional problem
can not be applied directly. Because of the degeneracy, the problem does not
admit classical solutions in general. So, we introduce the weak solutions in the
following sense

Definition A function w is said to be a weak solution of the problem (1.1)-
(1.3), if the following conditions are fulfilled:

) ru(r, t) is continuous in Q, where Q7 = (0,1) x (0,7);

(1
EQ) Vrm(w)upr € L2(P), where P = Qp\({u=0}U{t =0} U {r =0});

3) For any ¢ € C*(Q7), the following integral equality holds

/1 u(r, T)p(r, T)dr+/ rug(r)e r0dr+//Tru—drdt
// [k— — Alu )gﬂ g—fdrdtzo;

(4) u satisfies the lateral boundary value condition (1.2) at the points where

u # 0.

EJQTDE, 2001 No. 2, p.2



We first investigate the existence of weak solutions. Because of the degen-
eracy, we will first consider the regularized problem. Based on the uniform
estimates for the approximate solutions, we obtain the existence. Owing to the
background, we are much interested in the nonnegativity of the weak solutions.
For this purpose, we construct a suitable test function and discuss such a prop-
erty under some conditions on the data. This paper is arranged as follows. We
first study the regularized problem in Section 2, and then establish the existence
in Section 3. Subsequently, we discuss the nonnegativity of weak solutions in
the last Section.

2 Regularized problem

To discuss the existence, we adopt the method of parabolic regularization,
namely, the desired solution will be obtained as the limit of some subsequence
of solutions of the following regularized problem

o) 0 W @ g sy D (0
9 + o {rgmg(u) [kz 5 A (u) 87‘]} =0, r.V= o (ra 8r> , (2.1)

ou ou ~ ~

| = =J =J| =0, 2.2
or lr=0 or lr=1 J r=0 J r=1 0 ( )
UL:O = uo(r), (2.3)

where r. =7 + &, ms(s) = m(s) + ¢ and

7, = malw) [kav au] |

Theorem 2.1 For each fixed £ > 0 and suitably smooth ug, under the as-
sumptions (Hy), (Hz), the problem (2.1)—(2.3) admits a unique classical solution
u in the space C4+e1+e/4(Q)) for some o € (0, 1).

To prove the theorem, we need some a priori estimates on the solutions. We
first have

Lemma 2.1 For any o € (0, 3] and 8 < «, there is a constant M indepen-
dent of € such that

[réu(r,t) — sgu(s, t)] < M|r — 5|B
and
|reu(r, t) — scu(s, t)] < M|r — s\ﬂ

for all r,s € (0,1), where s. = s +¢.
Proof. We first introduce some notations. Let I = (0,1) and for any fixed
e > 0 denote by W2 (I) the class of all functions satisfying

[ulls,e = </01(7’ + €)|u’(r)|2dr>

1/2 1/2

+ (/01(r+5)|u(r)2dr> < +00.
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It is obvious that W12(I) ¢ W.2(I), but the class W.2(I) is quite different
from W12(I). In particular, we notice that the functions in W,:2(I) may not
be bounded. However, it is not difficult to prove that for u € W.2(I), the

following properties hold:
(1) If 0 < a <1, then

sup ((r+&)*u(r)]) < Cllull«.e,
0<r<1

where C' is a constant depending only on «;
(2) If 0 < a < 1, then for any 8 < o

|(r1+2)%u(r) = (r2 +€)*u(ra)| < Clri = 72|’ |Jullv.e,

where C' is a constant depending only on « and f.

Now, we set
1 2
F.(t) = /0 [grg (%) +r.H(u)+rep

and get from the equation (2.1)

dr

dF(t)
dt
1

-/ :25%5& &) @) oy | dr
/1- k oud (zm) 811
= [ S () ey
- /01 :k% @%) +r€A(u)} .
: (—%% {Tama(u) [k;%—‘; — A’(u)%} }) dr
_ /01 L&%(%%) - A(u)} (% {Tsme(u) [k(?}—‘: - A’(u)%} }) dr
- /0 %[kaA(u)]rgms(u) {k%—‘:/l’(u)%] dr

! ov. ., oul]®
= /0 TMe {kEA(u)E] dr

< 0

which implies that
F.(t) < F.(0) (2.4)

1 ou\ 2
/0 Te (E) dr < C. (2.5)
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Integrating the equation (2.1) on Q¢ = (0,1) x (0,t), we have

/01 reu(r, t)dr = /01 reug(r)dr. (2.6)

For any p € (0,1),

1+25

u(p,t)—/o seu(s, t)ds

—u(s,t)]ds

[

[ [ o2t
[ s [ [

// rtdsdr+/pl/1 —(r, t)dsdr

[ (Eee)gonms |

1 rp

(r,t)drds

+ €r>

[1rmmﬂ}g&@w

< /0 re a—:(r,t) dr+2/p ‘a—(rt dr
Setting p. = p + ¢ and multiplying the above inequality with 2p;/ 2, we get
‘( + 2¢)p: 12 u(p,t) — 2p2/ /01 sgu(s,t)ds‘
< 2p1/2/ Te rt ’dr+4p1/2/1‘@(r,t)‘dr
P
< 2pl/2/0 re g:f( )dr+4/ 1/2’5 )| dr =0
< C (/01 Te %(Tﬁ)ﬁdr)lm

From (2.5), (2.6) and (2.7), we see that r;/Qu(r, t) is uniformly bounded on Q7.
Furthermore u(-,t) € W2 (I) for any fixed ¢ € (0,T), with ||u(-,t)||.. bounded
by a constant C' independent of €. The desired estimates then follow from the
properties of W*lf (I) mentioned above. The proof is complete.
Lemma 2.2 For any « > 0, there is a constant M independent of € such
that
P u(r ) < M, ullo < M (2.8)

and
[reu(r,t2) — reu(r, t1)] < Mlta — t1|1/16 (2.9)
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for all r € (0,1), ¢1,t2 € (0,7).

Proof. The first two estimates have already been seen from the arguments
in Lemma 2.1. To prove (2.9), we need an integral estimate first. Multiplying
the equation (2.1) by V and integrating with respect to r over (0, 1), we get

L or.u ) 1% du
= £ a_ elle __A/
0 /o { 5 V+8r [rm (kza ar)]V}dr

1o ou\ > ov\ 2 1 ou OV
= - a. e\ 5~ ele - A/
/0 {at ’ (87’) ”mk(ar) dr*/o ar ar "
d Y [ou\? 1 oV
T | Te (E) dr—i—/o remek (8r) dr

1! av\> 1 /! ou\”
< = eMe € EA/2
< 2/Ormk:(ar) dr+2k/rm( )(87") dr
ko[t oV 1! ou\’
< i il P q 2=
< 2/0 rgmgkr(ar) dr +2k re|ulP(Chlul? + Cy) (8r) dr,

which, together with the first two estimates in this lemma, implies that

/Ot /01 reme(r) (%‘;)2 drdt < C. (2.10)

Now, we begin to show (2.9). Without loss of generality, we assume that
t1 < tz2 and set At =ty — t;. Integrating both sides of the equation (2.1) over
(t1,t2) X (y,y + (At)®) and then integrating the resulting relation with respect
to y over (x,x + (At)%), we get

z+(A)* 1
(At) /I /O(y+0(At) +eé)-

- [u(y (AL t) — u(y + O(A), tl)} dbdy

T+(AY  py+(AHY pta oV o
ellte a_ AI
/ /1 o {r m [kz 5 (u )87’] } drdrdy

/t E[(y + (A + &)me(u(y + (A +¢,7))-

i.e.

83 1+ (0 &,7) = -+ matuly + &) 3 Vi +6.7)| ardy

+(At)
+(AE)* b

/t { (y+e)yme(uly +e,7)A (u (y+s,7))a—yu(y+5,7)
+ (Y + (A1) +e)me (u(y + (A +,7)) A" (u(y + (AD)* +¢,7)):

9 a
a—yu(y + (AD)* + ¢, T)] drdy.
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By the mean value theorem, there exists z* = y* + 0*(At)®, y* € (z,z +
(At)*),0* € (0,1) such that the left hand side of the above equality can be
expressed by

(A pl
(A1) /m /O (y +0(At)* +¢)-
[u(y + (ALY, t2) — u(y + 0(AL)*, t1)] dody
= (AP + 07 (A +9) [uly” + 0% (AN 1) — uly” + 0% (A%, 1)].

For the right hand side, we have

z+(A)  pto
- / / Kl + (A + e)me (uly + (AD® +,7)

0 0
8—yV(y + (A +e,7) — (y+e)me(u(y +e, T)a—yV(y + €, T):| drdy

TH(AD®  pto
] [—<y+s>me<u<y+s,r>A'<u<y+a,r>>a%u<y+s,r>
+ (Y + (A 4 e)me(uly + (AN +&,7) A (u(y + (At)* +¢,7))-

aﬁyu(y + (A)* + ¢, T)] drdy

z+2(At) to a
= 7/ / k {(rJre)mg(u(rJre,T))—V(r+s,7') drdr
T+ (At t or

z+(AE) b
+/ (7“—i—s)me(u(r+5,T)8—V(r+5,7)drdr
- r

T+2(A  pty P
Jr/ / (r+ée)yme(ulr +&,7)A (u(r +&,7))=—u(r + ¢, 7)drdr
z+(A)e Sty or

z+(A) )
- / (r+e)me(u(r +&,7)A" (u(r + ¢, T))EU(T + e, 7)drdr

TH2(AH)*  pty 9
< / / kreme(u(r + ¢, T)‘—V(TT)‘deT’
o+ (At t or
z+2(At) to au
+/ / Tgms(u(r+s,7'))‘A’ —‘d’rdr
T+ (AL t or
+2(A)* o 2 /0 a2(A)* it oV 1/2
< </ / krgmgd'rdr> </ / krsmg(—)Qder>
T+ (At t T+ (At t or

TH+2(A)*  pts 12/ ag2(AD™ s ou 1/2
+ / / remedrdr / / reme| AL|? (==)2drdr )
T+ (At)> t1 z+(At) t or

By (2.8), (2.10) and the assumptions on m(u), A(u), we see that

1-3a
2
’

|zZu(z”, t2) — xiu(z™, t1)| < C(At)
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which implies, by setting a = 1/4 and using the properties of the functions in
WL2(I), that
[reu(r, ta) — reu(r, t1)] < C(AL)/16,

The proof is complete.

Proof of Theorem 2.1. Using Lemma 2.1 and 2.2, we see that r.u is uniformly
bounded in C''/*41/16(Q)-norm with the bound independent of . Similar to
[14], we can further establish the estimates on the Holder norm of Du. Then,
using the classical Schauder theory, we may complete the proof of the remaining
part in a standard way.

3 Existence

After the discussion of the regularized problem, we can now turn to the investi-
gation of the existence of weak solutions of the problem (1.1)—(1.3). The main
existence result is the following

Theorem 3.1 Under the assumptions (Hy), (Hz), the problem (1.1)—(1.3)
admits at least one weak solution.

Proof. Let u. be the approximate solution of the problem (2.1)—(2.3) con-
structed in the previous section. Using the estimates in Lemma 2.1 and 2.2, for
any 8 < 3, and (r1,t2), (r2,t1) € Q7, we have

P1ete(r1, ta) — rocuc(ra, t1)| < C(lre — ra|® + [t1 — t2]?/*)

with constant C' independent of €. So, we may extract a subsequence from
{reuc}, denoted also by {r.u.}, such that

reug(r,t) — ru(r, t) uniformly in Qr,

and the limiting function ru € CY/*1/16(Q,). By (2.8), we also have r®u €
L>®(Qr) with & > 0 and for any ¢ € (0,7), u(-,t) € W, 5 (I) with the norm
lu(-, t)]|«,0 bounded by a constant independent of .

Now, let § > 0 be fixed and set Ps = {(r,t); rm(u(r,t)) > 6}. We choose
€(6) > 0, such that

N s

(r,t) € P5,0 < & < £0(0). (3.1)

reme(ue(r,t)) >
Then from (2.10)
Ve

I (5

To prove the integral equality in the definition of solutions, it suffices to pass
the limit as ¢ — 0 in

1 1
_/ reue(r, T)cp(oyT)dr—f—/ rguoggo(r,())dr—l—// rgugg—(fdrdt
0 0 T
oV, , Ouc | Op B
Jr//P Teme (Ue) [k o — A'(ue) 07‘] o drdt = 0.
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The limits

1

1
ti [ e, D7) = [ rutr D)l T,
e=PJo 0

1

lim rguog() (r, 0)dr = / o () (r, 0)dr,

hr% // rsus drdt // ru—drdt
£—
T
are obvious. It remains to show
lim // reme (uz)k av a‘Pd dt = // av a‘Pd dt, (3.3)
e—0 Q
T
. ou. 0 8u8
g%//Trsmg(ug)A/(u) 2 ‘Pd dt = // - (,;jd rdt. (3.4)
In fact, for any fixed § > 0,
8V 0 8V 0
’//Trsmg(ug - a‘fd dtf// “”d dt’
‘// reme (ue )k av a‘Pd dt—// k:——d dt‘
Ps

+}//QT\P6 reme (Ue) aa‘;: gfd dt‘ —l—‘//P\P k_rEd dt‘

From the estimates (2.10), we have

V. Oy

reme(ue) ——dr dt‘

s

’// rm(u) Vo @d dt‘
P\Pg 67" 57‘

‘// reme(us )k Ve 02 gy dt—// ka—vaid dt‘
Ps (97" 87’ Ps

//PS E‘drdt

0 <e<ep(d)

reme(ue) — rm(u) ’

or
aV. OV \ Oy

dp| C aV. IV \ Oy
wl E’\/S+‘//1>5Tm(u)<6r 67°> ar " dt‘
and hence

g%‘// reme (ue )k GV a('Dd dt—// kJEEd dt‘<C§sup}a ‘

By the arbitrariness of §, we see that the limit (3.3) holds.

< supl|reme(ue) —rm
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Finally, from the uniform convergence of r.u. to ru, we immediately obtain

e—0

lim // reme (ue ) D A(ue) Dodrdt

e—0

= lim// re DH (u.) Dpdrdt
T
T

= lim [ (e+ 1)H(us(1,t))De(1,t)drdt

e—0 Jo
T
- lin%) eH (u:(0,t))Dy(0, t)drdt
E— 0
T

— lim H(u:)D(reDy)drdt
e—0 Jo

/T H(u(1,t))Do(1,t)drdt — / H(u)D(rDy)drdt
0 Qr

/ ) DH(u)rDypdrdt = / / rm(u) DA(u)Dydrdt.

The proof is complete.

4 Nonnegativity

Just as mentioned by several authors, it is much interesting to discuss the phys-
ical solutions. For the two-dimensional problem (1.1)—(1.3), a very typical ex-
ample is the modeling of oil films spreading over an solid surface, where the
unknown function v denotes the height from the surface of the oil film to the
solid surface. Motivated by this idea, we devote this section to the discussion
of the nonnegativity of solutions.

Theorem 4.1 The weak solution u obtained in Section 3 satisfy u(z,t) >
0, if up(z) > 0.

Proof. Suppose the contrary, that is, the set

E = {(r,t) € Qp;u(r,t) <0} (4.1)

is nonempty.

For any fixed § > 0, choose a C*° function Hs(s) such that Hs(s) = —o
for s > =6, Hs(s) = —1, for § < —2§ and that Hs(s) is nondecreasing for
—20 < s < —4. Also, we extend the function u(r,t) to be defined in the whole
plane R? such that the extension u(r,t) = 0 for t > T+1and t < —1. Let a(s) be

the kernel of mollifier in one-dimension, that is, a(s) € C*°(R), suppa = [—1, 1],
1

a(s) > 0in (—1,1), and / a(s)ds = 1. For any fixed k > 0,0 > 0, define

-1

ul(r,t) = /Ra(s,r)ah(t — 8)ds,
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where an(s) = 3a(2).
The function

w3 (r,t) = [B5(t) Hs (u")]"

is clearly an admissible test function, that is the following integral equality holds

/1 u(r, T (T, T)dr+/1ru0( )<p5(r0dr+//Tru 028 jray

// rm(u [k——A( )gﬂ aa“"éd dt = 0.

To proceed further, we give an analysis on the properties of the test function
@t (r,t). The definition of Bs(t) implies that

(4.2)

5 5
oh(r,t) =0, t>T =2, h<y. (4.3)

Since @(r,t) is continuous, for fixed §, there exists 11 (d) > 0, such that
h 6
U (r,t)2—§, t<m(), 0<r <1, h<n(d), (4.4)

which together with the definition of 35(t), Hs(s) imply that
Hs(u"(r, ) = =6, t <m(8), 0 <7 <1, h <m(5) (4.5)

and hence ) 1
oy =—6,t< 3M(0); 0<r <1, h < om(d). (4.6)

We note also that for any functions f(t),g(t) € L?(R),

/Rf(t)gh /f dt/ antfsdsf/f / s)an (s — t)ds
= [ato)is [ sants — oyt = [ oty

Taking this into account and using (4.3), (4.5), (4.6), we have

J[| rugpetara
= /+Oodt/ ru[ (t)Hs(u ))]hdr
= //T(ru) 5 (Bs(t)Hs (u™)) drdt
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and hence by integrating by parts
//T(Tu)h% (Bg(t)Hg(uh)) drdt
/ (ru)" (r, T) B3 (T) Hi (u" (r, T)) dr — / (ru)" (r, 0) 5 (0) Hy (u" (1, 0))dr
/ B5(t) Hs (u ) A grdt
Qr

5/ ru) rOdr—// rB5(t) Mdrdt,

where Fj(s) = / Hs(o)do.
0
Again by (4.5)

uh(r,O)
Rt r0) = [ Hsloio
= /1 Hs(\u"(r,0))d\ - u(r,0)
0
= —dul(r,0)

and hence

// (Tu)h%(ﬂa(t)Ha(uh))drdt

5 /O (ru)" (r, 0)dr + /O 35 (0) F5 (u” (r, 0))dr + / / r By (u) B} () drdt

] A (g) it

-0
(4.7)
From (4.3), (4.6) it is clear that
! 1
— | ru(r, T)"(T,r)dr =0, 0 < h < 5771(6), (4.8)
0
1 1
/ rug ()l (r, 0)dr = 75/ rug(r)dr. (4.9)
0 0
Substituting (4.7), (4.8) and (4.9) into (4.2), we have
T
- = 1
35 // rFs(u —2 drdt — 6/ rug (r)dr
-0 0 (4.10)

2
V] 2k
+ //P (){kar A(u)ar] 87‘drdt70'
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By the uniform continuity of u(r,t) in Q, there exist 12(8) > 0, such that
g 5
u(r,t) > -3 Y (r,t) € P, (4.11)

where P° = {(r,t);dist((r,t), P) < n2(6)}. Here we have used the fact that
u(r,t) > 0 in P. Thus

1
Hs(u(r,t) = =6, VY (rt)e P2 0<h< 52(0)
where P%/2 = {(r,t);dist((r, t), P) < in2(8)}.
This and the definition of u”, Hs(s) show that the function % (r,t) is only
a function of ¢ in P, whenever h < £13(8). Therefore

1
D (r,t) =0, (r,t) € P, 0 < h < o (9) (4.12)

and so (4.10) becomes

! 2 2t —T
- _ Fs(u" = 4.1
6/0 rug(r)dr T—23 //QTT s(u)a (T25) drdt = 0, (4.13)

where 7(0) = min(n;(9),72(9)). Letting h tend to zero, we have

! 2 26— 1T
5/0 rug(r)dr — T—2 //QT rFs(u)o <T—26) drdt = 0. (4.14)

From the definition of Fs(s), Hs(s), it is easily seen that

Fs(u(r,t)) = —xg(r,t)u(r,t) (6 —0)

and so by letting ¢ tend to zero in (4.14), we have

//E lu(r, B)|a <2tT T) drdt = 0,

2t —T
which contradicts the fact that « (T) >0 for 0 <t < T. We have thus

proved the theorem.
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