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Abstract. We are concerned with the Cauchy problem of nonhomogeneous Boussinesq
equations for magnetohydrodynamics convection in R?2. We show that there exists a
unique local strong solution provided the initial density, the magnetic field, and the
initial temperature decrease at infinity sufficiently quickly. In particular, the initial data
can be arbitrarily large and the initial density may contain vacuum states.
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1 Introduction

Consider the following nonhomogeneous Boussinesq system for magnetohydrodynamic con-
vection (Boussinesq-MHD) in R%:

pt +div(pu) =0,

(pu); + div(pu ® u) — yAu + VP = b - Vb + pfe,

0 +u- VO =0, (1.1)
b;—vAb+u-Vb—-—b-Vu=0,
\divu =divb =0,

where t > 0 is time, x = (x1,x) € R? is the spatial coordinate, and p = p(x,t), u =
(ul,u?)(x,t), b = (b1,b%)(x,t), 0 = 0(x,t), and P = P(x,t) denote the density, velocity,
magnetic field, temperature, and pressure of the fluid, respectively. The coefficients y and v
are positive constants. e, = (0, 1)T, where T is the transpose.

We consider the Cauchy problem for (1.1) with the far field behavior

(p,u,6,b) — (0,0,0,0), as |x| — oo, (1.2)
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and the initial condition
0(x,0) = po(x), pu(x,0) = poup(x), 6(x,0) =6p(x), b(x,0) =bp(x), xcR>* (1.3)

for given initial data pg, uo, 6y, and by.

The system (1.1) is a combination of the nonhomogeneous Boussinesq equations of fluid
dynamics and Maxwell’s equations of electromagnetism, where the displacement current can
be neglected. The Boussinesq-MHD system models the convection of an incompressible flow
driven by the buoyant effect of a thermal or density field, and the Lorenz force, generated by
the magnetic field of the fluid and the Lorentz force. Specifically, it closely relates to a natural
type of the Rayleigh-Bénard convection, which occurs in a horizontal layer of conductive fluid
heated from below, with the presence of a magnetic field. For more physics background, one
may refer to [7,14,16] and references therein.

When p is constant, the system (1.1) reduces to the homogeneous Boussinesq-MHD system.
Recently, the well-posedness issue of solutions has attracted much attention. Bian [3] studied
the initial boundary value problem of two-dimensional (2D) viscous Boussinesq-MHD system
and obtained a unique classical solution for H? initial data. Without smallness assumption on
the initial data, Bian and Gui [4] proved the global unique solvability of 2D Boussinesq-MHD
system with the temperature-dependent viscosity, thermal diffusivity, and electrical conduc-
tivity. Later on, the authors [5] established the global existence of weak solutions with H!
initial data. By imposing a higher regularity assumption on the initial data, they also ob-
tained a unique global strong solution. In [10], Larios and Pei proved the local well-posedness
of solutions to the fully dissipative 3D Boussinesq-MHD system, and also the fully inviscid,
irresistive, non-diffusive Boussinesq-MHD system. Moreover, they also provided a Prodi-
Serrin-type global regularity condition for the 3D Boussinesq-MHD system without thermal
diffusion, in terms of only two velocity and two magnetic components. By Fourier localiza-
tion techniques, Zhai and Chen [20] investigated well-posedness to the Cauchy problem of the
Boussinesq-MHD system with the temperature-dependent viscosity in Besov spaces. Very re-
cently, Liu et al. [13] showed the global existence and uniqueness of strong and smooth large
solutions to the 3D Boussinesq-MHD system with a damping term. Meanwhile, Bian and
Pu [6] proved global axisymmetric smooth solutions for the 3D Boussinesq-MHD equations
without magnetic diffusion and heat convection.

If the fluid is not affected by the Lorentz force (i.e., b = 0), then the system (1.1) becomes
the nonhomogeneous Boussinesq system. The authors [9,21] studied regularity criteria for
3D nonhomogeneous incompressible Boussinesq equations, while Qiu and Yao [17] showed
the local existence and uniqueness of strong solutions of multi-dimensional nonhomogeneous
incompressible Boussinesq equations in Besov spaces. A blow-up criterion was also obtained
in [17]. We should point out here that the results in [9,17,21] always require the initial density
is bounded away from zero. For the initial density allowing vacuum states, Zhong [22] recently
showed local existence of strong solutions of the Cauchy problem in R? by making use of
weighted energy estimate techniques. In this paper, we will investigate the local existence of
strong solutions to the problem (1.1)—(1.3) with zero density at infinity. The initial density is
allowed to vanish and the spatial measure of the set of vacuum can be arbitrarily large, in
particular, the initial density can even have compact support.

Before stating our main result, we first explain the notations and conventions used
throughout this paper. For r > 0, set

B, 2 {xeR*| |x| <r}.
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For 1 < p < o0 and integer k > 0, the standard Sobolev spaces are denoted by:
LV = LP(R?), WM =W*(R?), H*=H"(R?), DM ={uclLl. |VueclLl}.
Our main result can be stated as follows:

Theorem 1.1. Let 7 be a positive constant and

1
2 3+ |x*)2log"™ (3+[x]?). (1.4)
For constants q > 2 and a > 1, we assume that the initial data (pg > 0,u0, 69 > 0, by) satisfy

pox’ € LN H'NWM, 6y € H' n W,
VPouo € L2, Vug € L2, divug =0, (1.5)
box? € L2, Vby € L2, divby = 0.

Then there exists a positive time Ty > 0 such that the problem (1.1)—(1.3) has a strong solution
(p >0,u,0 >0,b) on R? x (0, Ty] satisfying

(0 e C([o, To); L' N H n W),

px® € L®(0, To; L " HE N W4),

Vvou, Vu, \/E\/[)ut, ViVZu € L°(0, To; L?),

0 € C([0, To]; H n W),

b,bx2, Vb, /tb;, VtV?b € L=(0, Ty; L?), (1.6)
Vu € L0, To; H') N qui(o, To; W),

Vb € L%(0, To; H'), by, Vb2 € L?(0, Tp; L?),

VtVu € L2(0, To; W),

Vour, VtVbxz, \/tVuy, Vb, € L2(IR? x (0, Ty)),

and

1
. S L _
ogngfTo - p(x, t)dx > 1 /11{2 po(x)dx, (1.7)
for some positive constant Ny. Moreover, if 0gx" € H' N W, then the strong solution just established
is unique.

Remark 1.2. When there is no electromagnetic field effect, that is b = 0, (1.1) turns to be the
nonhomogeneous Boussinesq equations, and Theorem 1.1 is the same as that of in [22]. Hence
we generalize the main result of [22] to the nonhomogeneous Boussinesq-MHD system (1.1).
However, compared with [22], for the system (1.1) treated here, the strong coupling between
the velocity field and the magnetic field, such as u - Vb, as well as strong nonlinearity b - Vb,
will bring out some new difficulties. To this end, we require boxz € L2 and Vb, € L2 beyond
the typical hypothesis of by € H!. This additional hypothesis is needed in order to obtain the
estimate (3.10), which plays a crucial role in dealing with coupling between the velocity field
and the magnetic field.

The rest of the paper is organized as follows. In Section 2, we collect some elementary
facts and inequalities which will be needed in later analysis. Sections 3 is devoted to the a
priori estimates which are needed to obtain the local existence of strong solutions. The main
result Theorem 1.1 is proved in Section 4.
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2 Preliminaries

In this section, we will recall some known facts and elementary inequalities which will be used
frequently later. First of all, if the initial density is strictly away from vacuum, the following
local existence theorem on bounded balls can be shown by similar arguments as in [19].

Lemma 2.1. For R > 0and Bg = {x € R? | |x| < R}, assume that (oo, uo,80 > 0,by) satisfies
(po, o, 90,1)0) S HZ(BR), iI‘%f po(x) > 0, div Uy = diVbo =0. (2.1)
XEbr

Then there exists a small time Tg > 0 and a unique classical solution (p,u, P,0,b) to the following
initial-boundary-value problem

pt + div(pu) =0,

(ou); +div(pu ® u) — pAu+ VP = b - Vb + pfey,

0 +u-Vo =0,

b; —vAb+u-Vb—b-Vu=0, 2.2)
divu =divb =0,

(0,u,8,b)(x,t = 0) = (po, uo, 0o, bo), x € Bg,
| u(x,t) =b(x,t) =0, X €0Bg, t >0,

on B x (0, Tr] such that

(p,0) € C ([0, Tr); H?),
(u,b) € C ([0, Tr]; H*) N L* (0, Tx; H?), (2.3)
P e C ([0, Tr]; H') N L% (0, Tx; H?),

where we denote H* = H¥(BR) for positive integer k.

Next, for QO C R?, the following weighted L™-bounds for elements of the Hilbert space
D2(Q) £ {v € HL (Q)|Vv € L2(Q)} can be found in [12, Theorem B.1].

Lemma 2.2. Form € [2,00) and s € (1+ %, 00), there exists a positive constant C such that for either
Q = R? or Q = B with R > 1 and for any v € D?(Q),

1
[o|™ 2\ — "
(520 tog(a+ Ixf)*dx) " < Cllolzisy + ClIVola 4

A useful consequence of Lemma 2.2 is the following crucial weighted bounds for elements
of D¥2(Q)), which have been proved in [11, Lemma 2.3].

Lemma 2.3. Let x and 1o be as in (1.4) and Q be as in Lemma 2.2. Assume that p € L'(Q) N L*(Q)
is a non-negative function such that

/B pdx > My, |lpllp)ni=) < Ma, (2.5)
Np

for positive constants My, My, and Ny > 1 with By, C Q). Then for e > 0 and 1 > 0, there is a
positive constant C depending only on €,17, My, Ma, Ny, and 1o such that every v € D2(Q) satisfies

[ox || erornq) < CllvVPollza) + ClIVOl 2 (q) (2.6)
with 77 = min{1,7}.
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Next, the following LP-bound for elliptic systems, whose proof is similar to that of [8,
Lemma 12], is a direct result of the combination of the well-known elliptic theory [1,2] and a
standard scaling procedure.

Lemma 2.4. For p > 1 and k > 0, there exists a positive constant C depending only on p and k such
that

IV 20 1 (8e) < ClAV] w5 (27)

for every v € WK2P (BR) satisfying
v=0 on Bg.

3 A priori estimates
Throughout this section, for r € [1,c0] and k > 0, we denote
[rax=[ ax L=L(Br), WH = WH(B), HF =W
Br

Moreover, for R > 4Ny > 4 with Nj fixed, assume that (po, up, 6o, bo) satisfies, in addition to
(2.1), that

% < /BN po(x)dx < /BR po(x)dx < 1. (3.1)

Thus Lemma 2.1 yields that there exists some Tz > 0 such that the initial-boundary-value
problem (1.1) and (2.2) has a unique classical solution (p,u, P,6,b) on Bg x [0, Tr] satisfying
(2.3).

Let X,70,a, and g be as in Theorem 1.1, the main aim of this section is to derive the
following key a priori estimate on ¢ defined by

(1) 2 1+ [l pullz + I Vull 2 + 18] awra + VDl 2 + 1222 + 1% [ epowa. (B.2)

Proposition 3.1. Assume that (po, uo, 6o, bo) satisfies (2.1) and (3.1). Let (p,u, P, 60, b) be the solution
to the initial-boundary-value problem (1.1) and (2.2) on Bg x (0, Tr| obtained by Lemma 2.1. Then
there exist positive constants To and M both depending only on u,v,no,q, a, No, and Eg such that

sup () + VI (IIvpurlz + 192ull 2 + [lbrll 2 + [ 92b| 2 + | Vb3 2 )

0<t<Ty

TO 2 21,112 2 )
+/ I /PuliE + V2l + [V2b]2: + bl + | Vb2t 2 ) ds
<HVZUHL2’ FIVRILT + IVl + t||vp|\%q) dt

+/0 (E1Fu . + £ b2, + ] V20t |2, ) dt < M, (3.3)
where

Eo = [lv/pouoll 2 + [IVuoll2 + [0l 1w + 1 Vboll 2 + 122 boll 12 + 1500l L1y -

To show Proposition 3.1, whose proof will be postponed to the end of this subsection, we
begin with the following standard energy estimate for (p,u, P,6,b) and the estimate on the
LP-norm of the density.
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Lemma 3.2. Under the conditions of Proposition 3.1, let (p,u,P,0,b) be a smooth solution to the
initial-boundary-value problem (1.1) and (2.2). Then for any t € (0, Ty],

t
sup ([lollpinre + 100 2ae + lv/oullz + [b]17:) +/0 (IVullZ. + [ Vbl[Z) ds < C,  (34)

0<s<t

where (and in what follows) C denotes a generic positive constant depending only on u,v,q,a, No, 1o
and Ey. T is as that of Lemma 3.3.

Proof. 1. Since divu = 0, we deduce from (1.1); that
pr+u-Vp=0. (3.5)
Define particle path
IX(x,t) = u(X(x,t),1),
X(x,0) = x.

Thus, along particle path, we obtain from (3.5) that

P10 =0,

which implies
p(X(x,t),t) = po. (3.6)

Similarly, one derives from (1.1)3 that
0(X(x,t),t) = 6. (3.7)
2. Multiplying (1.1); by u and then integrating the resulting equation over Bg, we have

1d

5%/P1u|2dx+ﬂ/|Vu|2dx = /b.Vb.udx+/p9e2.udx_ (3.8)

Multiplying (1.1)4 by b and integrating by parts, we arrive at
Ld
24t

which combined with (3.8) and (3.7) implies that

/yb|2dx+v/|Vb|2dx+/b-Vb-udx:o,

| =

(IvpuliZ + 1b1:) + (ulVulZ + v Vo) = [ pou- exd

1
< llpllE~ I v/oul 2 6]l
< Cllpull: +C. (39

N =
_Q

t

Thus, Gronwall’s inequality leads to

t
sup ([lv/pullf + [Bl172) + [ (IVulif + [ VbiE) ds < C,

0<s<t
which together with (3.6) and (3.7) yields (3.4) and completes the proof of Lemma 3.2. O

Next, we will give some spatial weighted estimates on the density and the magnetic.
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Lemma 3.3. Under the conditions of Proposition 3.1, let (p,u,P,0,b) be a smooth solution to the
initial-boundary-value problem (1.1) and (2.2). Then there exists a Ty = T1(No, Eg) > 0 such that for
allt € (0, Tl],

a t a
sup ([lpx”lu + [b¥[1%) + [ Vb2 |[2ds < C. (3.10)

0<s<t
Proof. 1. For N > 1, let ¢ € C5°(By) satisfy
N
0<gn <1, on(x) =1 iflx] <=, [Von|< CN~ L (3.11)

It follows from (1.1); and (3.4) that

d
E/pgomodx = /pu - Vpon,dx

> —CN,! </pdx>2 </p]u\2dx>2 > —C(Ey). (3.12)

Integrating (3.12) and using (3.1) give rise to

1

it (3.13)

inf pdx > inf /pq)ZNde > /PofpzNodX— CTy >

0<t<Ty JByy, 0<t<

Here, T} 2 min{1, (4C)~'}. From now on, we will always assume that t < T;. The combina-
tion of (3.13), (3.4), and (2.6) implies that for e > 0 and 7 > 0, every v € D?(Bg) satisfies

va_”lliz%e < Cle,m)lIveolzz + Cle, )l Vol (3.14)

with 77 = min{1,#}.
2. Noting that
V5] < (34 210) log! ™ (3 + |xf%) < Cla, o) 5%,
multiplying (1.1); by ¥* and integrating by parts imply that
Llowll = [ plu- V)axax
< C/p|u|x”_1+ﬁdx

< C||pxﬂ—1+%|| Hux—%uw

< CllollE= lox 155 (Il v@ullz + [ Vull2)
< CAA+ llpx"[) (1+ [ Vullz2)

due to (3.4) and (3.14). This combined with Gronwall’s inequality and (3.4) leads to
t
sup [|ox?|| < Cexp {C/ (1+ | Vul?,) ds} <C. (3.15)
0<s<t 0
3. Multiplying (1.1)3 by bx* and integrating by parts yield

Hb-a/ZH 2—|—1/||Vb a/2||L2 _ /|b|2Afadx+/b.vu.bxﬂdx+;/|b|2u.V3?ﬂdx
£ T1 + 1_2 —|—I_3, (3.16)

Zdt
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where

| < C/|b\2f”32*210g2(1_'7°)(3+ x?)dx < C/\b]zf“dx,
|| < C[|[Vul| 2| bx?|[7,
< C||Vul|p2l[bx? || 12 (| VBEE || 12 + bV 2 | 12)
< C(IVulf +1)[Ib2 |7 + 5 | Vb |2,
|I3] < Cl[bx2|| o[ b3 ]| 2 x5 | 4
< C|[bx? ||}, + C|[bx? |7, (H\fUsz + | Vull})
< C (14 |Vl b2 + ¥ Vbst 2, (317)

due to Gagliardo-Nirenberg inequality, (3.4), and (3.14). Putting (3.17) into (3.16), we get after
using Gronwall’s inequality and (3.4) that

a .t
sup |bxz |, + HVbeHdes < Cexp {C/ (14 [|Vul32) ds} <C, (3.18)
0

0<s<t

which together with (3.15) gives (3.10) and finishes the proof of Lemma 3.3. O

Lemma 3.4. Let Tq be as in Lemma 3.3. Then there exists a positive constant « > 1 such that for all
t e (O, Tl] ,

t
Sup (IVullfz + 1VDbI72) +/0 (Ivouslzz + V2ullf2 + IIbs[IZ2 + [ V?bIIZ) ds

t
<C+ c/o ¥ (s)ds. (3.19)

Proof. 1. It follows from (3.4), (3.10), and (3.14) that for any € > 0 and any # > 0,

17a

le"0]l 2 < Cllp"e" | sgpallox 3

H 4(2+e)

= L 7
37

(24€)y 4(2+¢) _3fa__

<C (/p 37 pf“dx) |lox™ 3@ || 4puq
L 7
4(2+e)y 317

(2+¢) 2 €)
< Cllll~" ; lo=" I i (Iveoll2 + Vol 2)
< Cllv/poll2 + ClIVoll 2, (3:20)

where 77 = min{1,%} and v € D?(Bg). In particular, this together with (3.4) and (3.14) yields

lo7ull 2 + [t 2 < C(1+ | Vulz2), 21)
0701 z5c + 107 2 < C(1+[V6]|2). (6.22)

2. Multiplying (1.1), by u; and integrating by parts, one has

y;t/|vu|2dx+/p|ut|2dx < C/pIuIZIVu|2dx+/b-Vb-utdx+/99|“t|dx~ (3.23)
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We derive from (3.21), Holder’s inequality, and Gagliardo-Nirenberg inequality that

[ plulIVuldx < |l /pullE | Vul?y

3 1
< Clly/pullfs [ Vull7 V] 2,
< Cy" + || V2ul|7,, (3.24)

where (and in what follows) we use # > 1 to denote a genetic constant, which may be different
from line to line. For the second term on the right-hand side of (3.23), integration by parts
together with (1.1)s and Gagliardo-Nirenberg inequality indicates that for any ¢ > 0,

/b-Vb~utdx:—d/b-Vu-bdx+/bt-Vu-bdx+/b-Vu-btdx
4 [ Tu-bax + ¥ ool + Clbl | Vul

< - /b Vu - bdx + - Hth 12 T Clbl[2[| VB[ 2| Vul| 2 [ V| g

<-= /b - Vu-bdx + 7||th%2 +e]| V2ul)2, + Cy. (3.25)
From Cauchy-Schwarz inequality and (3.4), we have
1 1 1
[ potulax < 3 I/Builz+ S lellis el < 5 [ pludx+c. (3.26)
Thus, inserting (3.24)—(3.26) into (3.23) gives
d
L 3(0) + 21 v/pwl < el 2ul + Lo bl + Cy, 6.27)
where
B(#) éyHVuH%z—F/b-Vu-bdx
satisfies

LIvalf = il VbIE: < B(t) < €[ Vulf +C|[ Vb2, (328)

owing to Holder’s inequality, Gagliardo-Nirenberg inequality, and (3.4).
3. It follows from (1.1); that

d
v [ VbIE + [[bef2 + vl b,
< CllIb[[Vul[|Z. + Cll[ul|Vb]|Z
< Clbll2 (V2 2 Vul[f2 + Cllz™ Fu {5 |22 Vb | 2| Vb 4
2

< 1|2, + Cy* + Cl| 7 Vb, (3.29)
due to (2.7), (3.21), and Gagliardo-Nirenberg inequality. Multiplying (3.29) by v~ 1(C; + 1)
and adding the resulting inequality to (3.27) imply
d
7 (B(H) + (C1 + 1) Vb][32) + II\futH%z + - IIbtlliz +5 IIAbH

< Cy* +C|\szby|§2+suv2uH§2. (3.30)
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Since (p,u, P, 0,b) satisfies the following Stokes system

—puAu+ VP = —pu; —pu-Vu+b-Vb +pbey, x <€ Bg,
divu =0, X € Bg, (3.31)
u(x) =0, X € dBg,

applying regularity theory of Stokes system to (3.31) (see [18]) yields that for any p € [2, ),
IV2ullr + [ VPlr < Cllpullr + Cllou - Vallr + ClI[b||Vb] [ + Cllpbllr.  (332)
Hence, we infer from (3.32), (3.4), (3.21), and Gagliardo-Nirenberg inequality that

IV2ullZ. + [V PIIZ:
< Cllows|2 + Cllou - V|3 + Cl|[b[[ Vb]||Z. + Clle8]I7.
< Cllpll=llvpullzz + Clloullful|Vallfs + ClIbl L Vb7 + CllollE= 1017
< Cllvputl|fz + Clloullz: [ Vull 2| Vall g1 + Clbll 2 VbI[Z2 [ Vb0 + C

1 1
< Clly/pula + 3 19%b1R + 5 [9%ul% +C (14| Vbl + | Vul )
1 1
< Cllivpwli + 7 1VDIIE + S IV2ulf + Cy. (3.:33)
Substituting (3.33) into (3.30) and choosing ¢ suitably small, one gets

d 1 vl v e
25 (B + (o DIVDIR) + 5 I v/puils + o [bil2 + S 14bI2 < Cy + C|#E Vb2,

Integrating the above inequality over (0, t), then we obtain (3.19) from (2.7), (3.28), (3.10), and
(3.33). The proof of Lemma 3.4 is finished. O

Lemma 3.5. Let Ty be as in Lemma 3.3. Then there exists a positive constant « > 1 such that for all
te (0, Tl],

t t
sup s (||y/pus|72 + [[bs|72) +/O s (IVus||72 + | Vbs|72) ds < CeXP{C/O w“ds}- (3.34)

0<s<t
Proof. 1. Differentiating (1.1), with respect to t gives
ol + oua- Vut — yAut = —pt(Ut +u- Vll) — pu; - Vu— VPt + (b . Vb)t + (p@ez)t. (335)

Multiplying (3.35) by u; and integrating the resulting equality by parts over B, we obtain
after using (1.1); and (1.1)5 that

1d
Ea/p[ut|2dx+y/|Vut|2dx

< C [ plullus] (|Vur| + [Vul? + [ull V2ul) dx + C [ pluf*|Vul|Vuldx

+C/p|ut\2\Vu|dx+/bt-Vb.utdx%—/b-Vbt-utdx

7
+ / 0:6es - wrdx + / ofhey - updx 2 Y I (3.36)
i=1
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It follows from (3.20), (3.21), and Gagliardo-Nirenberg inequality that

o 1 1
I < Cllvpullsllveu I 2 lvewl s (Va2 + [[Vulf)
1 1 1
+CllotulfelvVow 2l vowlli [ Vull 2

1 1
< COL+ [IVallf2)llveulz: (lveulz + [Vl 2)?
< (IVuellz + 1Vullfz + [ Vall 2| V2l 2 + |V 2)

< BVl + Cp | vpuelf + Cy* + C (1+ | VullE) [ V2ul.. (337)
Holder’s inequality combined with (3.20) and (3.21) leads to
PO 3 1
L+ I < Clly/pullfs I Vull |Vl 2 + ClI V| 2 owel| 7ol vouel |-
< BIVwllE: + cyvpu it + € (9 + [ V2ul). (3:38)

Integration by parts together with (1.1)s, Holder’s and Gagliardo-Nirenberg inequalities indi-
cates that

Byt 0y = —/bt-Vut-bdx—/b-Vut-btdx
< LIVwili? + Clbl b

M v
< ol Vue|: + mnvmlliz + Cy*[|be 3. (3.39)

Integration by parts together with (1.1);, (1.1)s, Holder’s inequality, Gagliardo-Nirenberg in-
equality, and (3.7) indicates that

Is = /pu -V (0ey - us)dx
< /p\uHV@Hut]dx—i—/p|u\0\Vut|dx
< Iveudlllvoull 2 VOl + [Vueizlloull 16 s
< BVt + oyl w2 + cyt. (3:40)
We get from Holder’s inequality, (3.4), and (3.21) that
b < [ plullVelludx
< [[Voutllr2llvoull 2 [[VO]|rs
Li-2
< Cy* [l y/pu[72 + Cypt. (3.41)
Substituting (3.37)-(3.41) into (3.36), we obtain after using (3.33) that
Evpu s+l Tl < o (14 |l + byl)
dt Pth 12 tLZ_lP \/ﬁtLZ tll2

‘MV
+m||%f”%2+c(1+ IVul2) [V2b]%.  (3.42)

2. Differentiating (1.1); with respect to t shows

btt —bt -Vu—> 'Vllt—f—llt Vb—l—llVbt = VAbt. (343)



12 X. Zhong

Multiplying (3.43) by b; and integrating the resulting equality over By yield that

2 2
2dt/yw dx+v/\Vbt| dx

:/b-Vut-btdx—/ut-Vb-btdx+/bt-Vu-btdx—/u-Vbt-btdx
4

2Ys, (3.44)
i=1

On the one hand, we deduce from (3.14) and (3.18) that

2
Z < Cl Vil 4[] s + Cl[ Ve | 2| [ b 2
< Clbe|[7 + ClI Ve[ T2 + gl Vbl f + Cll [ b ]IZ

A

v _a _a
SIIVbe[I22 + ClIbe[[ 72 + Cl[Vue |72 + Cllwsx 4|35 22| 2 b 4

1%
< IVl + ClibeE: + ClI Va2 + CllVoui |1z, (3.45)

where one has used the following estimate

t
sup |||b[*[|7, + A [|Vb|[b|[|7.ds < C. (3.46)

0<s<t

Indeed, multiplying (1.1); by b|b|? and integrating by parts lead to

3 (UBPI22), + vl [bllbl 2 + 291622
< ClVull2 /b1 < ClIVull2 b IV b2
< JIVIBPIE: + €[ Vul% b2, (3.47)
which together with Gronwall’s inequality and (3.4) gives (3.46).

On the other hand, integration by parts combined with (1.1); and Gagliardo-Nirenberg
inequality yields

ZS = /bt Vu - bdx < C|[by|| 12| Vb[| 2] Vul| 2 < *IIVth T+ Cyt[belf (348
=3

Inserting (3.45) and (3.48) into (3.44), one has
iHb 172 + vl Ve[ < Cy* ([Ibe 172 + [[vouwel[72) + Cof Ve |7 (3.49)
dt tl 2 tllp2 = lI) tll2 \/ﬁth 2 tllg2- .
3. From (3.42) multiplied by #1(C; + 1) and (3.49), we get
d / _ v
o (T G+ DlloulE: + bl ) + Vel + 2V,
< Cy* (14 [Ibeliz + [l VowillL2) + € (1+ IVulliz) V2B, (3.50)

Multiplying (3.50) by t, we obtain (3.34) after using Gronwall’s inequality and (3.19). The
proof of Lemma 3.5 is finished. O
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Lemma 3.6. Let Ty be as in Lemma 3.3. Then there exists a positive constant « > 1 such that for all
t e (O,THL

t a
sup s (|| V2ulf: + ([ V2b|[% + Vb5 [2) + [ s V2bs s

0<s<t

SCexp{Cexp{C/Otlp"‘ds}}. (3.51)

Proof. 1. Multiplying (1.1); by Abx* and integrating by parts lead to

L4 [19bpstdx v [ |abPetax

24t
< C/]Vb]|b||Vu|\Va?“\dx+C/|Vb|2|u|\V92”\dx+C/|Vb|\AbHV>Z“]dx
5
+C/\b\|Vu\|Ab|X“dx+C/|Vu[|Vb]2x“dxé Y i (3.52)
i=1

Applying (3.10), (3.14), Holder’s inequality, and Gagliardo-Nirenberg inequality, one gets by
some direct calculations that

Fi < Cllbx ||| Vul o Vbt 2
< Clos |, (9B 12 + b5 12 ) [Vl &l Pl Vb5
< Cy* + C||V2u|)% + Cy®|| Vbz2 |2,
Jo < CIIVBP 5273 g 03 | | VD] o
< Cy*| Vbt |, ¥ |Vb]| < Cy* [ Vbt |, + C| Vb,
< Cy* || Vbst |12 + Z[labxt 2,

Js+]s< ZHAbf% 172 + ClIVbx2||72 + Cl[b2 |7 || Vulf7s
< “)|abs3 |3, + CI| Vb |2,
+Cl[bxE |12 (Vb2 |2 + b2 |12 ) |V 2| Tt
< e||Abx2 |2, + Cy¥||Vbx2 |2, + Cy* + C||V2u|)2,
Js < IVl Vb5t < € (9 [V2ulf ) Vb
Substituting the above estimates into (3.52) and noting the following fact
/ V2b[22%dx = / |Ab[2&dx — / 9,9 - 9ybd T dx + / 9,9;b - 3ybd T dx
g/|Ab|29?”dx+;/|V2b|2f”dx+C/|Vb|2f”dx,
we derive that
{i/|Vb|zx”dx+g/]V2b|2x“dx

m a
<C (1,0"‘ + |V2ul|, ] ) [Vbx2||7, + C (|| V2, +¢"). (3.53)
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2. We now claim that
t g+1 q+1 t
/ <HV2uHLZ +vel,! —I—SHV2uH%q—|—SHVPH%q) ds§Cexp{C/0 1/)“(s)ds}, (3.54)

whose proof will be given at the end of this proof. Thus, multiplying (3.53) by ¢, we infer from
(3.10), (3.4), (3.54), and Gronwall’s inequality that

a t a t
sup (sHVbJZiH%2> +/O s||V*bx2||7,ds < Cexp {Cexp {C/o lp“ds}}. (3.55)

0<s<t

3. It deduces from (1.1),, (2.7), (3.4), (3.21), Holder’s inequality, and Gagliardo—Nirenberg
inequality that

V2|12, < C|[b¢||2, + C||[ul|[VD]||% + C|[|b||Vu] ||
< CIbe]%; + Clluz 5|3 || VbE2 | 12[| Vb]| 14 + C||b]| 2| Vb | 2| Vu /%
< C|Ibe|2; + C|| Vb2 ||, + Cllux ™5 ||15]| Vb|[2 + C||V2b]| 2 || Vu |2

o 1
< C||bs||2, + C|| Vbx2||2, + Zuvzbuiz +C(1+|Vul%,) (1+Vb|%), (3.56)
which together with (3.33) gives that

IV2ull?: + IVPI% + 192bIE: < € (IlvAudlZ: + b + | Vbe? |2

+C (14 [|Vul,) (1+ ||Vbu‘;2). (3.57)
Then, multiplying (3.57) by s, one gets from (3.19), (3.34), and (3.55) that

sup (s V2ullf. + s VP72 + 5[ V?b|72)

0<s<t

t ¢ 12
SCexp{Cexp{C/O 1p“ds}}+C<1+/O lp"‘(s)ds>
< Cexp{Cexp{C/Otlp"‘ds}}. (3.58)

4. To finish the proof of Lemma 3.6, it suffices to show (3.54). Indeed, choosing p = g in
(3.32), we deduce from (3.19), (3.20), and Gagliardo—Nirenberg inequality that

IV2ullzs + ||V Pl
< C(llowtl[s + [low - Vul[za + [[[b][Vb[][s + [[06][ 1)
< C(llouel|zs + [loul[ 29[Vl 20 + [[b]l 20 [V 120 + [|\/00]]12 + ([ VO] 12)

2(9-1) 72-2

- - 1-1 1-1
< Cllpwl£ llowd = + o (1+ V2l + V2015 )

72-2q
2 q

2(9—1)
- 7
<C (H\/ﬁUtHL‘é VL + H\fputllp>

1-1 1-1
g (14192l + 19201557, (3:59)
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which together with (3.19) and (3.34) implies that

) q+1 q+1
INGEE +||vp|rm)

’ q2%(q+
<[5 (llvpul) i (V) s

q+1 21 -1
+C [ vpuld ds+c/ (mwz al £+ V)5 )

1 t q—Zg(qu]
< C sup (s ||futHLz) /0 ( IVul|7.) 272 ds

0<s<t

t
£C [+ Ivpulh+ V7l + Vb ) ds

t tf -2
SCeXp{C/ 1[)“(15} 1—|—/ s PHPa 45| Vw|7, | ds
0 0
t
SCexp{C/ ¢“ds} (3.60)
0

and

t
| (sI2ul + 5 VPIR,) ds
(g-1) 7?29

<C ['sllvpulBads+C [ (sllvpud) # (sVulR) = ds
0 s (1419l ||v2b||1;q) s
< C [ sllymuilads +C [ s|Vuilads +C [ (9 +s|V2ull + 5 9%b]2) ds
< Cexp{C/Ot l/)“ds}. (3.61)

One thus obtains (3.54) from (3.60)—(3.61) and finishes the proof of Lemma 3.6. O

Lemma 3.7. Let Ty be as in Lemma 3.3. Then there exists a positive constant « > 1 such that for all
t € (0,T1],

¢
sup (||ox®||giawia + | VO|lr2are) < exp {Cexp {C/O 1p“ds}} ) (3.62)

0<s<t
Proof. 1. It follows from Sobolev’s inequality and (3.21) that for 0 < 6 < 1,
Juz= = < C(0) (Jlux ]| 4 + [V (ux™) 1)
< C(0) () s + [ Vulls + lJug 0] s [£7V2] e )
C(6) (" + [[V2ull2) - (3.63)
One derives from (1.1); and (1.1)4 that px* satisfies

(px")t +u - V(px") — apx'u - Vlogx =0, (3.64)
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which along with (3.63) gives that for any r € [2,4],

d _ _ _
IV (o)l < C(+ [ Valls + u- Viog 2] is) |V (o5
+Cllp#" i (||| Vul|V log #[|1- + | u] [V log £ |1-)
< C (¢ +11V%ull 2rws) [V (02 1
a __2 __3
+Cllo = (I1Vull + us 3l 573 o)
< C (" + V2l 2ozs) A+ [V (03l + 119 () 1)

Then we derive from (3.65), (3.54), and Gronwall’s inequality that

t
sup [|ox|| s < exp {CeXp {C/ 1,0"‘015}}.
0<s<t 0

2. Operating V to (1.1); and then multiplying | V0| =2V for r € [2, q] gives that

d
VOl < CI V=] V6]|1r + Cll6]| ]| V*ull.
q+1
< C (9" + [ V?ullz2a) [ VOl + Cy* + [ V2ull 2,

q+1

<c (w“ ; Hvzuugmm) A+ V6]),

which along with Gronwall’s inequality leads to

t
sup ||VO||r2ns < exp {Cexp {C/ w“ds}} .
0

0<s<t

Hence the desired (3.62) follows from (3.66) and (3.68).
Now, Proposition 3.1 is a direct consequence of Lemmas 3.2-3.7.

Proof of Proposition 3.1. It follows from (3.4), (3.19), and (3.62) that

P(t) < exp {Cexp {C/Ot w“ds}} :

Standard arguments yield that for M £ ¢C and Ty = min{T,, (CM*)~1},

sup () < M,

0<t<Ty

(3.65)

(3.66)

(3.67)

(3.68)

which together with (3.62), (3.19), (3.34), and (3.54) gives (3.3). The proof of Proposition 3.1 is

thus completed.

4 Proof of Theorem 1.1

With the a priori estimates in Section 3 at hand, it is a position to prove Theorem 1.1.

O]
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Proof of Theorem 1.1. Let (po, uo, 6o, bo) be as in Theorem 1.1. Without loss of generality, we
assume that the initial density po satisfies

/]R , podx =1,
which implies that there exists a positive constant Ny such that
3 3
dx > - / dx = —. 4.1
/BNOPO =2 IRZPO a (4.1)

We construct pf = p& + R~Le~**, where 0 < pR € C(R?) satisfies

AR >
{IBNO podx 2 1/2, (4.2)

xpf — %909 in L'(R?) N HY(R?) NW1(R?), as R — co.

Due to bo2 € L*(R?) and Vby € L?*(R?), we choose b{ € {w € CP(Bgr) | divw = 0}
satisfying

bR%2 = box2, VbX = Vby in L2(R%), as R — co. (4.3)
Noting that 6y € H'(IR?) N W1 (IR?), we choose 0% € C3°(Bg) such that
6% — 6y in H'(R*) N WM (R?), as R — co. (4.4)
Since Vug € L?(IR?), we select vk € C§°(Bg) (i = 1,2) such that fori = 1,2,

Lim [V = diuol|12(re) = 0. (4.5)
We consider the unique smooth solution uf of the following elliptic problem:

—Auf + pfuf + VPE = /pRhR — 9;vR, in Bg,
divul =0, in Bg, (4.6)
ug = 0, on aBR,

where h® = (,/poug) * j 1 with j5 being the standard mollifying kernel of width é.
Extending uf to R? by defining 0 outside Bg and denoting it by @5, we claim that

Lim <]|V(ﬁ§ — )| 2y + I/ o885 — mu0||L2(R2)> = 0. (4.7)

In fact, it is easy to find that @ is also a solution of (4.6) in R?>. Multiplying (4.6) by @} and
integrating the resulting equation over R? lead to

Ri~R |2 ~R|2
[ eblasiax+ [ |vagpax
< [l R |25 MR [l 2(80) + CHIVE 2080 10786 11254

1 ~R 12 1 Ri~R |2 Ri12 R 12
< S IV iy + 5 [ pB1S P+ C (I + IVEIgs))
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which implies
/ p§|ﬁ§|2dx+/ |Vak|2dx < C (4.8)
R2 R2

for some C independent of R. This together with (4.2) yields that there exist a subsequence
Rj — o0 and a function 1@ € {1y € H..(R?)|,/potip € L*(R?), Viip € L?(R?)} such that

loc
{\/;“0/ — /poilp weakly in L%(R?), (4.9)
Viiy — Viig weakly in L2(IR?).
Next, we will show
fip = up. (4.10)
Indeed, multiplying (4.6) by a test function 7t € C’ (]RZ) with div 7t = 0, it holds that

/Rz(a v a”d”/ \/g W) - mdx = 0. (4.11)

Let R; — oo, it follows from (4.2), (4.5), and (4.9) that

/ 8i(ﬁ0 — uo) . aindx —|—/ po(ﬁo — uo) s7Tdx = 0, (412)
R2 R?2

which implies (4.10).
Furthermore, multiplying (4.6) by ﬁg ’ and integrating the resulting equation over R?, by
the same arguments as (4.12), we have

. _R; R;| . R;
legnoo o (|Vu0]|2 +p0’|u0]\2) dx = /Rz (|Vuo|* + polug |*) dx
which combined with (4.9) leads to
. “Rjo L2 . Rjy SRjo g S 2
legnoo - \Va,'|“dx = /]R2 |Viig|“dx, legnoo/Rzpo [0, |*dx = /]RZpoluo\ dx.
This, along with (4.10) and (4.9), gives (4.7).

Hence, by virtue of Lemma 2.1, the initial-boundary-value problem (2.2) with the ini-
tial data (po,uo,Gg,bR) has a classical solution (pR,u®, PR, 08 bR) on Br x [0, Tr]. More-
over, Proposition 3.1 shows that there exists a Ty independent of R such that (3.3) holds for
(PR; uR, pR’ QR, bR>

For simplicity, in what follows, we denote

LP = LP(R?), WrP = WkP(RR?).
Extending (oR, uR, PR, 0%, bR) by zero on IR? \ Bg and denoting it by
(pR 2 prpR, @k, PR, éR/BR)
with @r satisfying (3.11). First, (3.3) leads to
sup (/82 + 198 s+ 198 + VB + [ 2 )

0<t<Ty

< sup ([ly/oRullias + V08 205,

0<t<Tp
+ 1968 |2 seynamg + V0 iz + IDR2E [ 20sy)
—c (4.13)
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and

sup [|6°%"||inge < C. (4.14)

0<t<Ty

Similarly, it follows from (3.3) that for g > 2,

sup vﬁ(n\/ ny-%HVZfﬂnz+n<ﬂban-+annp)

0<t<Ty
To ~ ~ a
+/0 (Hx/ﬁRﬁinz + || Va7, + [ VPDR 1, + ||VbszHi2> dt
To 2Ry 2-R|2 R|2 FR|2
+/0 <||v ||y HHVEat || 4+ || Vag |72 + ¢ Vb HL2> dt < C. (4.15)

Next, for p € [2,4|, we obtain from (3.3) and (3.62) that

sup [|[V(7*e) | < C sup (IV(0R5) s + R 10" 1oy

0<t<T, 0<t<T,

< C sup ||praHH1(BR)ﬂW1/P(BR) <C, (4.16)
0<t<T,

which together with (3.63) and (3.3) yields

To
7 kI < [ e 190 5 )

SCA |2 uR |2 ) |5V R (2, Bt
<C. (4.17)

With the estimates (4.13)-(4.17) together with (2.2); and (2.2)3, we find that the sequence
(PR, aR, PR, 6%, bR) converges, up to the extraction of subsequences, to some limit (p,u, P, 0, b)
in the obvious weak sense, that is, as R — oo, we have

oR% — px, 6R — 6, in C(By x [0, Ty]), for any N > 0, (4.18)
oRx" — px", weakly * in L*(0, To; H' N W), (4.19)
VOR — V0, weakly * in L®(0, Tp; L> N L1), (4.20)
bRx2 — bx?2, weakly *inL™(0, Tp; L2), (4.21)
bR — b, VbRz2 — Vbx2, VbR — Vb, weakly in L*(IR? x (0, Ty)), (4.22)
/oRaR — (/pu, Vak — Vu, VbR — Vb, weakly * in L*(0, Ty; L?), (4.23)
V2R — V2u, weakly in L (0, To; L) N L?(R? x (0, Tp)), (4.24)
VIVZHR = V1V, weakly in L%(0, To; L7), weakly * in L*(0, To; Lz), (4.25)
VIBR — \/iby, VEVZBR — \/1V?b, weakly * in L*(0, Ty; L?), (4.26)
Viy/pRalk — Vt,/pu;, weakly * in L*(0, To; L?), (4.27)
VIVaR = V/tVu, VIVBR — V/tVb;, weakly in L2(R? x (0, Tp)), (4.28)
with
0% € L°(0, T L)), inf | plx t)dx > . (4.29)

0<t<To /By, 4
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Next, for any function ¢ € CF(R? x [0, Tp)), we take ¢p@r as test function in the initial-
boundary-value problem (2.2) with the initial data (pg, ug,Gg, bg). Then, letting R — oo,
standard arguments together with (4.18)—(4.29) show that (p,u,P,6,b) is a strong solution
of (1.1)=(1.3) on R? x (0, Ty] satisfying (1.6) and (1.7). Indeed, the existence of a pressure P
follows immediately from the (1.1); and (1.1)4 by a classical consideration. The proof of the
existence part of Theorem 1.1 is finished.

It remains only to prove the uniqueness of the strong solutions provided that 6yx" €
H'NWY. Let (p,u,P,6,b) and (p, @, P,d,b) be two strong solutions satisfying (1.6) and (1.7)
with the same initial data, and denote

@=2p—-p ULu—-9,%Y260-0,®£b-b.
First, subtracting the mass equation satisfied by (p,u, P,6,b) and (p,d, P,0,b) gives
O +d-VO+U-Vp=0. (4.30)

Multiplying (4.30) by 2@x" for r € (1,4) with @ = min{2,a} and integrating by parts yield

d 1 _ B (A s
E/\@fr\zdx < Cllaz ™2+ |0F'|% + C| 0| 2 [Uz~ || 5 [2°Vp| o
L (q=2)(a-r) La—(q-2)(a-r)

< C(1+ [ Valwu) 1057 + ClO©2"[l12 (I[VUl| 2 + [lv/pUll2)

due to Sobolev’s inequality, (1.7), (3.14), and (3.63). This combined with Gronwall’s inequality
shows that for all 0 < t < T,

t
0% |12 < C/O (VU2 + [[VpUl|12) ds. (4.31)

Similarly to (4.31), one has

t
[#5712 <€ [ (I9U]12 + |/pU12) . (4.32)

Next, subtracting (1.1); and (1.1), satisfied by (p,u, P,6,b) and (g, @, P,6,b) leads to

pU; +pU-VU — uAU = — pU - Vi — O(a; +a-Va) — V(P —DP)
+b-V®+®- Vb + Obe, + p¥e; (4.33)

and
® —1VADP=b-VU+® - Vi—u-V®—-U- Vb, (4.34)

Multiplying (4.33) by U and (4.34) by ® respectively, and adding the resulting equations
together, we obtain after integration by parts that

d
5 [ (olUP+1@F) dx+ [ (uITUP +v|VOP) dx
< Cl[Valie [ (olUP + @) dx+C [ 01U (0l +a]| Va) dx
+C/|U|(|®\9+p|‘£’])dx—/d>-VU-de—/U-VB-dDdx

4
2 C| V| / (o|UP2 + [ @) dx + Y K. (4.35)
i=1
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We first estimate K;. Holder’s inequality combined with (1.7), (2.6), (3.3), (4.31), and
Young's inequality yields that for r € (1,4),

Ki < CllO% 12Uz |10 (l[ae 2 o + [V = s 2 1)

< C(o) (Ivpuellfz + IVl + [ Vallzx) |07
+e (|lvPUlIz: + I VUIIZ:)

t
< Ce) (1+ Va1 V2al) [ (IVUJE: + [[VRUIE:) ds
+e(IlvoUl7. + [VU[3.) . (4.36)

For the term K3, we derive from Holder’s inequality, (3.3), and (4.32) that

Kz < C||©" || ][ U2 | ]| 1] |22 | + Cll /Bl /AUl 2 ¥ 2
<e([lVPUllL: + [IVU]L) + C(e) |07 + C[[ ¥
<e(lvpUlL +IVU3) + Cle)[02"[17. + CII¥ 2| L1717

< e (IVpUI: + IVUIR) +C(e) [ (IVUIR: + 1 V/oUIR.) ds. @37
We derive from Gagliardo-Nirenberg inequality and (3.46) that
K3 < Cl[bll14]|@]l 1| VU 12 < €] VU2 + el V|72 + Cle) [ @17 (4.38)
Owing to (1.7), (2.6), and (3.3), K4 can be estimated as follows
Ky <CJIUS| 4[| VB 2% | 13 [ VB2 | s | @]
<C(IIVAUllzz + [IVUll2) VB2 | @]

<e (IVPUl72 + IVUI[Z:) + C(e)[I VD22 12| @ s
<e (IVPU72 + [IVUI[Z:) + el V@72 + C(e) | VD |72 [ @72 (4.39)

Denoting
G(t) 2 | VAUl + @13 + [ (19Ul + V@l + | pUl:) ds,
then substituting (4.36)—(4.39) into (4.35) and choosing ¢ suitably small lead to
G'(t) < C (14| Valls + | VB2E |2 + ] Va2 + | Va2 + ] V2ull} ) G(o),
which together with Gronwall’s inequality and (1.6) implies G(t) = 0. Hence, (U, ®)(x,t) =
(0,0) for almost everywhere (x,t) € R?> x (0, T). Finally, one can deduce from (4.31)—(4.32)

that O(x,t) = 0 and ¥(x,t) = 0 for almost everywhere (x,t) € R? x (0, T).
The proof of Theorem 1.1 is completed. O
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