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Abstract. We consider a nonlinear elliptic problem driven by the p-Laplacian plus and
indefinite potential term. The reaction is (p− 1)-linear and resonant and the boundary
term is concave. The problem is nonparametric. Using variational tools, together with
truncation and perturbation techniques and critical groups, we show that the problem
has at least three nontrivial smooth solutions.
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1 Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. In this paper, we deal with the
following nonlinear boundary value problem

−∆pu(z) + ξ(z)|u(z)|p−2u(z) = f (z, u(z)) in Ω,
∂u
∂np

= β(z)|u|q−2u on ∂Ω.
(1.1)

with 1 < q < p.
In this problem, ∆p denotes the p-Laplace differential operator defined by

∆pu = div
(
|Du|p−2Du

)
for all u ∈W1,p(Ω), 1 < p < N.

This problem has three special features which make its study interesting. The first feature
is that the potential coefficient ξ ∈ L∞(Ω) is indefinite (that is, sign changing) and so the left
hand side of the problem is noncoercive. The second feature is that the forcing term f (z, x)
which is a Carathéodory function (that is, for all x ∈ R, z 7→ f (z, x) is measurable and for
a.a. z ∈ Ω, x 7→ f (z, x) is continuous) asymptotically as x → ±∞ is resonant with respect to
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the principal eigenvalue of the differential operator u 7→ −∆pu + ξ(z)|u|p−2u with Neumann
boundary condition. So, the problem is resonant and as it is well-known such problems are
more difficult to deal with. The third feature is that combined with the resonant reaction,
we have a concave boundary term (since β(z) ≥ 0 for all z ∈ ∂Ω and 1 < q < p). There-
fore problem (1.1) is a variant of the classical concave-convex problem, in which the convex
((p− 1)-superlinear) term is replaced by a resonant ((p− 1)-linear) term and the concave con-
tribution comes from the boundary condition. Problems with such competition phenomena,
were studied recently by Abreu–Madeira [1], Hu–Papageorgiou [6], Papageorgiou–Rădulescu
[9], Papageorgiou–Scapellato [12] and Sabina de Lis–Segura de Leon [14]. All these works deal
with parametric problems. The presence of a parameter in the problem, makes the analysis
easier, since by varying and restricting the parameter, we are able to satisfy the relevant geom-
etry in order to apply the minimax theorems of critical point theory. In our problem there is
no parameter. In addition, in all the aforementioned works the reaction is (p− 1)-superlinear
and so do not cover the resonant case treated here.

In the boundary condition, ∂u
∂np

denotes the conormal derivative of u ∈ W1,p(Ω). It is

interpreted using the nonlinear Green’s identity (see [11, p. 35]) and if u ∈W1,p(Ω)∩C0,1(Ω),
then

∂u
∂np

= |Du|p−2(Du, n)RN = |Du|p−2 ∂u
∂n

,

with n(·) being the outward unit normal on ∂Ω.
Using variational tools based on the critical point theory together with critical groups

(Morse theory), we show that problem (1.1) has at least three nontrivial smooth solutions.

2 Mathematical background – hypotheses

The study of problem (1.1), uses the Sobolev space W1,p(Ω), the Banach space C1(Ω) and the
boundary Lebesgue spaces Lτ(∂Ω), 1 ≤ τ < ∞.

By ‖ · ‖ we denote the norm of the Sobolev space W1,p(Ω). We have

‖u‖ =
[
‖u‖p

p + ‖Du‖p
p
] 1

p for all u ∈W1,p(Ω).

The Banach space C1(Ω) is ordered using the positive (order) cone

C+ =
{

u ∈ C1(Ω) : u(z) ≥ 0 for all z ∈ Ω
}

.

This cone has a nonempty interior given by

int C+ =
{

u ∈ C+ : u(z) > 0 for all z ∈ Ω
}

.

Also by σ(·) we denote the (N − 1)-dimensional Hausdorff (surface) measure on ∂Ω. Us-
ing this measure, we can define the boundary Lebesgue spaces Lτ(∂Ω), 1 ≤ τ < ∞. By
γ0 : W1,p(Ω)→ Lp(∂Ω) we denote the trace map. This map is linear, compact and γ0(u) = u|∂Ω
for all u ∈ W1,p(Ω) ∩ C(Ω). So, the trace map defines boundary values for all Sobolev func-
tions. In the sequel, we drop the use of the trace map γ0(·) and all restrictions of Sobolev
functions on ∂Ω, are interpreted in the sense of traces.

Let 〈·, ·〉 denote the duality brackets for the pair (W1,p(Ω), W1,p(Ω)∗) and consider the
map A : W1,p(Ω)→W1,p(Ω)∗ to be the nonlinear operator defined by

〈A(u), h〉 =
∫

Ω
|Du|p−2(Du, Dh)RN dz for all u, h ∈W1,p(Ω).
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From Gasiński–Papageorgiou [5] (p. 279), we have that this map is:

• monotone, continuous (hence maximal monotone too) and maps bounded sets to
bounded sets;

• it is of type (S)+, that is,

un
w−→ u in W1,p(Ω) and lim sup

n→∞
〈A(un), un − u〉 ≤ 0

imply that

un → u in W1,p(Ω) as n→ ∞.

Let ξ ∈ L∞(Ω) and consider the following nonlinear eigenvalue problem
−∆pu(z) + ξ(z)|u(z)|p−2u(z) = λ̂|u(z)|p−2u(z) in Ω,
∂u
∂np

= 0 on ∂Ω.
(2.1)

We say that λ̂ ∈ R is an eigenvalue, if (2.1) admits a nontrivial solution û ∈W1,p(Ω) known
as an eigenfunction corresponding to the eigenvalue λ̂.

Problem (2.1) was studied by Fragnelli–Mugnai–Papageorgiou [3] (Robin problem) and
Mugnai–Papageorgiou [8] (Neumann problem), who proved that there is a smallest eigenvalue
λ̂1 ∈ R with the following properties:

(a) λ̂1 is isolated, that is, if σ̂(p) denotes the spectrum of (2.1), then we can find ε > 0 small
such that (λ̂1, λ̂1 + ε) ∩ σ̂(p) = ∅.

(b) λ̂1 is simple, that is, if û, v̂ ∈ W1,p(Ω) are eigenfunctions corresponding to λ̂1, then
û = ϑv̂ for some ϑ ∈ R \ {0}.

(c) If γ(u) = ‖Du‖p
p +

∫
Ω

ξ(z)|u|p dz for all u ∈W1,p(Ω), then

λ̂1 = inf

[
γ(u)
‖u‖p

p
: u ∈W1,p(Ω), u 6= 0

]
. (2.2)

In (2.2) the infimum is realized on the corresponding one dimensional eigenspace (see
(b)). Then, it follows that the elements of this eigenspace have fixed sign. By û1 ∈ W1,p(Ω)

we denote the positive, Lp-normalized (that is, ‖û1‖p = 1) eigenfunction corresponding to λ̂1.
The nonlinear regularity theory of Lieberman [7] and the nonlinear maximum principle (see,
for example, Gasiński–Papageorgiou [4], p. 738), imply that û1 ∈ intC+. We mention that λ̂1

is the only eigenvalue with eigenfunctions of constant sign. All other eigenvalues have nodal
(that is, sign changing) eigenfunctions. Note that using the Ljusternik–Schnirelmann minimax
scheme, we can generate a whole strictly increasing sequence {λ̂k}k≥1 of eigenvalues such that
λ̂k → +∞ as k→ +∞. We do not know if this sequence exhausts σ̂(p).

Let X be a Banach space and ϕ ∈ C1(X, R), c ∈ R. We introduce the following two sets

ϕc = {u ∈ X : ϕ(u) ≤ c},
Kϕ = {u ∈ X : ϕ′(u) = 0} (the critical set of ϕ).
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Let (Y1, Y2) be a topological pair such that Y2 ⊆ Y1 ⊆ X and k ∈ N0. By Hk(Y1, Y2) we
denote the kth-relative singular homology group for the pair (Y1, Y2) with integer coefficients.
If u ∈ Kϕ is isolated and c = ϕ(u), then the critical groups of ϕ at u are defined by

Ck(ϕ, u) = Hk(ϕc ∩U, ϕc ∩U \ {u}) for all k ∈N0,

with U being a neighborhood of u such that ϕc ∩U ∩ Kϕ = {u}. The excision property of
singular homology, implies that the above definition is independent of the isolating neighbor-
hood.

Finally, we fix some basic notation. Given x ∈ R, we set x± = max{±x, 0}. Then, for
u ∈W1,p(Ω), we define u±(z) = u(z)± for all z ∈ Ω. We have

u± ∈W1,p(Ω), u = u+ − u−, |u| = u+ + u−.

If u, v ∈W1,p(Ω) and u ≤ v, then

[u, v] =
{

h ∈W1,p(Ω) : u(z) ≤ h(z) ≤ v(z) for a.a. z ∈ Ω
}

.

Our hypotheses on the data of problem (1.1) are the following:

H0: ξ ∈ L∞(Ω), β ∈ C0,α(∂Ω) with α ∈ (0, 1) and β(z) > 0 for all z ∈ ∂Ω.

H1: f : Ω×R→ R is a Carathéodory function such that f (z, 0) = 0 for a.a. z ∈ Ω and

(i) | f (z, x)| ≤ a(z)[1 + |x|p−1] for a.a. z ∈ Ω, all x ∈ R, with a ∈ L∞(Ω);

(ii) if F(z, x) =
∫ x

0 f (z, s)ds, then lim
x→±∞

pF(z, x)
|x|p ≤ λ̂1(p) uniformly for a.a. z ∈ Ω;

(iii) there exists τ ∈ (q, p) such that

0 < γ0 ≤ lim inf
x→±∞

f (z, x)x− pF(z, x)
|x|τ uniformly for a.a. z ∈ Ω;

(iv) there exist δ0 > 0, ĉ > ‖ξ−‖∞ and µ ∈ [q, p) such that

ĉ|x|p ≤ F(z, x) for a.a. z ∈ Ω, all |x| ≤ δ0

and
µF(z, x)− f (z, x)x ≥ 0 for a.a. z ∈ Ω, all |x| ≤ δ0.

Remarks 2.1. Hypotheses H1(i),(ii), imply that the reaction f (z, ·) is (p − 1)-linear as x →
±∞ and the problem is resonant with respect to λ̂1(p). Note that the resonance condition
(hypothesis H1(ii)) is formulated in terms of the primitive F(z, x) which is more general.

3 Solutions of constant sign

In this section, we prove the existence of two nontrivial smooth solutions of constant sign (one
positive and the other negative).
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To this end, let η > ‖ξ‖∞ and consider the following two C1-functionals ϕ± : W1,p(Ω)→ R

defined by

ϕ+(u) =
1
p
‖Du‖p

p +
1
p

∫
Ω
[ξ(z) + η]|u|p dz− 1

q

∫
∂Ω

β(z)(u+)q dσ−
∫

Ω

[
F(z, u+) +

η

p
(u+)p

]
dz,

ϕ−(u) =
1
p
‖Du‖p

p +
1
p

∫
Ω
[ξ(z) + η]|u|pdz +

1
q

∫
∂Ω

β(z)(u−)qdσ−
∫

Ω

[
F(z,−u−)− η

p
(u−)p

]
dz,

for all u ∈W1,p(Ω).
We show that these functionals are coercive.

Proposition 3.1. If hypotheses H0, H1 hold, then the functionals ϕ±(·) are both coercive.

Proof. We do the proof for ϕ+(·), the proof for ϕ−(·) being similar.
We argue by contradiction. So, suppose that ϕ+(·) is not coercive. Then we can find a

sequence {un}n≥1 ⊆W1,p(Ω) such that

‖un‖ → ∞ and ϕ(un) ≤ M1 for some M1 > 0, all n ∈N. (3.1)

Then we have

M1 ≥ ϕ+(un)

=
1
p

[
‖Du+

n ‖
p
p +

∫
Ω

ξ(z)(u+
n )

p dz
]
+

1
p

[
‖Du−n ‖

p
p +

∫
Ω
[ξ(z) + η](u−n )

p dz
]
−

− 1
q

∫
∂Ω

β(z)(u+
n )

q dσ−
∫

Ω
F(z, u+

n )dz

≥ 1
p

[
‖Du+

n ‖
p
p +

∫
Ω

ξ(z)(u+
n )

p dz
]
− 1

q

∫
∂Ω

β(z)(u+
n )

q dσ−
∫

Ω
F(z, u+

n )dz (3.2)

(since η > ‖ξ‖∞).

We will use (3.2) to show that {u+
n }n≥1 ⊆ W1,p(Ω) is bounded. We proceed indirectly. So,

suppose that at least for a subsequence, we have

‖u+
n ‖ → ∞ as n→ ∞. (3.3)

Let yn = u+
n

‖u+
n ‖

, n ∈N. We have ‖yn‖ = 1, yn ≥ 0 for all n ∈N and so we may assume that

yn
w−→ y in W1,p(Ω) and yn → y in Lp(Ω) and in Lp(∂Ω); y ≥ 0. (3.4)

From (3.2) we have

1
p

[
‖Dyn‖p

p +
∫

Ω
ξ(z)yp

n dz
]
− 1

q‖u+
n ‖p−q

∫
∂Ω

β(z)yq
n dσ−

∫
Ω

F(z, u+
n )

‖u+
n ‖p dz ≤ M1

‖u+
n ‖p , (3.5)

for all n ∈N

Hypothesis H1(i) implies that

|F(z, x)| ≤ c1[1 + |x|p] for a.a. z ∈ Ω, all x ∈ R, some c1 > 0,

⇒
{

F(·, u+
n (·))

‖u+
n ‖p

}
n≥1
⊆ L1(Ω) is uniformly integrable.
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Then, by the Dunford–Pettis theorem (see Papageorgiou–Winkert [13], Theorem 4.1.18,
p. 289), we have that

{ F(·,u+
n (·))

‖u+
n ‖p

}
n≥1 ⊆ L1(Ω) is relatively weakly compact. Then, by the

Eberlein–Smulian theorem and by passing to a subsequence if necessary, we have

F(·, u+
n (·))

‖u+
n ‖p

w−−→ 1
p

ϑ(·)y(·)p in L1(Ω) as n→ ∞ (3.6)

with ϑ ∈ L∞(Ω), ϑ(z) ≤ λ̂1(p) for a.a. z ∈ Ω

(see hypothesis H1(ii) and Aizicovici–Papageorgiou–Staicu [2], proof of Proposition 16).

We return to (3.5), pass to the limit as n → ∞ and use (3.4), (3.3), (3.6) and the fact that
q < p, to obtain

‖Dy‖p
p +

∫
Ω

ξ(z)yp dz ≤
∫

Ω
ϑ(z)yp dz. (3.7)

First suppose that ϑ 6≡ λ̂1(p) (see (3.6)). Then from (3.7) and Mugnai–Papageorgiou [8]
(Lemma 4.11), we have

c2‖y‖p ≤ 0 for some c2 > 0,

⇒ y = 0. (3.8)

Then from (3.5), (3.7), (3.8), (3.4) and (3.6), we obtain

‖Dun‖p → 0,

⇒ yn → 0 in W1,p(Ω),

a contradiction since ‖yn‖ = 1 for all n ∈N.
Next we suppose that ϑ(z) = λ̂1(p) for a.a. z ∈ Ω. Then from (3.7) and (2.2), we have that

y = µû1(p) with µ ≥ 0 (recall that y ≥ 0).

If µ = 0, then y = 0 and as above, we show that

yn → 0 in W1,p(Ω),

a contradiction to the fact that ‖yn‖ = 1 for all n ∈ N. So, suppose µ > 0. Then y ∈ int C+.
This implies that

u+
n (z)→ +∞ for a.a. z ∈ Ω. (3.9)

From (3.2) we have

M1 ≥
1
p

∫
Ω

[
λ̂1(p)(u+

n )
p − pF(z, u+

n )
]

dz− 1
q

∫
∂Ω

β(z)(u+
n )

q dσ

(see (3.7), (2.2) and recall that η > ‖η‖∞),

⇒ M1

‖u+
n ‖τ
≥ 1

p

∫
Ω

[
λ̂1(p)(u+

n )
p − pF(z, u+

n )
]

(u+
n )p yp

n dz− 1
q‖u+

n ‖p−q

∫
∂Ω

β(z)yq
n dσ, (3.10)

for all n ∈N.

On R̊+ = (0, ∞) we have

d
dx

[
F(z, x)

xp

]
=

f (z, x)xp − pxp−1F(z, x)
x2p =

f (z, x)x− pF(z, x)
xp+1 .
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On account of hypothesis H1(iii), we can find γ1 ∈ (0, γ0) and M2 > 0 such that

f (z, x)x− pF(z, x)
xp+1 ≥ γ1

xp+1−τ
for a.a. z ∈ Ω, all x ≥ M2,

⇒ d
dx

[
F(z, x)

xp

]
≥ γ1

xp+1−τ
for a.a. z ∈ Ω, all x ≥ M2,

⇒ F(z, v)
vp − F(z, x)

xp ≥ γ1

p− τ

[
1

xp−τ
− 1

vp−τ

]
for a.a. z ∈ Ω, all v ≥ x ≥ M2.

Passing to the limit as v→ ∞ and since F(z,v)
vp → 1

p λ̂1(p) as v→ +∞, we obtain

λ̂1(p)
p
− F(z, x)

xp ≥ γ1

p− τ
· 1

xp−τ
for a.a. z ∈ Ω, all x ≥ M2,

⇒ λ̂1(p)xp − pF(z, x)
xτ

≥ pγ1

p− τ
for a.a. z ∈ Ω, all x ≥ M2,

⇒ lim inf
x→+∞

λ̂1(p)xp − pF(z, x)
xτ

≥ pγ1

p− τ
> 0 uniformly for a.a. z ∈ Ω. (3.11)

Returning to (3.10), passing to the limit as n → ∞ and using (3.9), (3.11) and Fatou’s
lemma, we obtain

0 ≥ lim inf
n→∞

∫
Ω

[
λ̂1(p)(u+

n )
p − pF(z, u+

n )
]

(u+
n )p yp

n dz > 0

(recall that q < p and see (3.3)),

a contradiction. We infer that

{u+
n }n≥1 ⊆W1,p(Ω) is bounded. (3.12)

From (3.1) and (3.12), we have

1
p

[
‖Du−n ‖

p
p +

∫
Ω
[ξ(z) + η](u−n )

p dz
]
≤ M3 for some M3 > 0, all n ∈N,

⇒ c3‖u−n ‖p ≤ M3 for some c3 > 0, all n ∈N,

⇒ {u−n } ⊆W1,p(Ω) is bounded. (3.13)

From (3.12) and (3.13) it follows that

{un}n≥1 ⊆W1,p(Ω) is bounded,

which contradicts (3.1). This proves that ϕ+(·) is coercive.
In a similar fashion we show that ϕ−(·) is coercive too.

Now we are ready to produce the two constant sign solutions.

Proposition 3.2. If hypotheses H0, H1 hold, then problem (1.1) has at least two constant sign smooth
solutions

u0 ∈ intC+ and v0 ∈ −intC+.
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Proof. From Proposition 3.1 we know that ϕ+(·) is coercive. Also by the Sobolev embedding
theorem and the compactness of the trace map, we see that ϕ+(·) is sequentially weakly lower
semicontinuous. So, by the Weierstrass-Tonelli theorem, we can find u0 ∈W1,p(Ω) such that

ϕ+(u0) = min
[

ϕ+(u) : u ∈W1,p(Ω)
]

. (3.14)

Since û1(p) ∈ int C+, we can choose t ∈ (0, 1) small such that

0 < tû1(p)(z) ≤ δ0 for all z ∈ Ω,

with δ0 > 0 as in hypothesis H1(iv). We have

0 ≤ F(z, tû1(p)(z)) for a.a. z ∈ Ω. (3.15)

Then we have

ϕ+(tû1(p)) ≤ tp

p
λ̂1(p)− tq

q

∫
∂Ω

β(z)û1(p)q dσ (see (3.15)).

Since q < p, choosing t ∈ (0, 1) even smaller if necessary, we have

ϕ+(tû1(p)) < 0,

⇒ ϕ+(u0) < 0 = ϕ+(0) (see (3.14)),

⇒ u0 6= 0.

From (3.14), we have

ϕ′+(u0) = 0,

⇒ 〈A(u0), h〉+
∫

Ω
[ξ(z) + η]|u0|p−2u0h dz

=
∫

∂Ω
β(z)(u+

0 )
q−1h dσ +

∫
Ω
[ f (z, u+

0 ) + η(u+
0 )

p−1]h dz for all h ∈W1,p(Ω). (3.16)

In (3.16) we choose h = −u−n ∈W1,p(Ω) and obtain

‖Du−0 ‖
p
p +

∫
Ω
[ξ(z) + η](u−0 )

p dz = 0,

⇒ c4‖u−0 ‖
p ≤ 0 for some c4 > 0 (since η > ‖ξ‖∞),

⇒ u0 ≥ 0, u0 6= 0.

Then from (3.16) we have
−∆pu0(z) + ξ(z)u0(z)p−1 = f (z, u0(z)) for a.a. z ∈ Ω,
∂u0

∂np
= β(z)uq−1

0 on ∂Ω.
(3.17)

From (3.17) and Proposition 2.10 of Papageorgiou–Rădulescu [10] (see also Theorem 4.1
of Winkert [15]), we have that u0 ∈ L∞(Ω). Then Theorem 2 of Lieberman [7], implies that
u0 ∈ C+ \ {0}.
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Let ρ = ‖u0‖∞. We can find ξ̂ρ > 0 such that f (z, x)x + ξ̂ρ|x|p ≥ 0 for a.a. z ∈ Ω, all
|x| ≤ ρ. Then from (3.17) we have

− ∆pu0(z) +
[
ξ(z) + ξ̂ρ

]
u0(z)p−1 ≥ 0 for a.a. z ∈ Ω (see hypothesis H1(iv)),

⇒ ∆pu0(z) ≤
[
‖ξ‖∞ + ξ̂ρ

]
u0(z)p−1 for a.a. z ∈ Ω,

⇒ u0 ∈ intC+ (by the nonlinear maximum principle; see [4, p. 738]).

Similarly working this time with the functional ϕ−(·), we obtain a negative solution v0 ∈
− int C+ for problem (1.1).

It is easy to check that

Kϕ+ ⊆ int C+ ∪ {0} and Kϕ− ⊆ (− int C+) ∪ {0}.

So, we may assume that

Kϕ+ = {0, u0} and Kϕ− = {0, v0}, (3.18)

or otherwise we already have a third nontrivial smooth solution which in fact has fixed sign.
So, we are done. In the next section we produce a third nontrivial smooth solution for prob-
lem (1.1).

4 Three nontrivial solutions

Starting from (3.18), we introduce the following truncation-perturbation of f (z, ·) (as before
η > ‖ξ‖∞):

f̂ (z, x) =


f (z, v0(z)) + η|v0(z)|p−2v0(z) if x < v0(z),

f (z, x) + η|x|p−2x if v0(z) ≤ x ≤ u0(z),

f (z, u0(z)) + ηu0(z)p−1 if u0(z) < x.

(4.1)

We also consider the positive and negative truncations of f̂ (z, x), namely the functions

f̂±(z, x) = f̂ (z,±x±). (4.2)

It is clear that f̂ and f̂± are all three Carathéodory functions. We see that

F̂(z, x) =
∫ x

0
f̂ (z, s)ds and F̂±(z, x) =

∫ x

0
f̂±(z, s)ds.

We also introduce similar truncations of the boundary term:

ĝ(z, x) =


β(z)|v0(z)|q−2v0(z) if x < v0(z),

β(z)|x|q−2x if v0(z) ≤ x ≤ u0(z),

β(z)u0(z)q−1 if u0(z) < x,

for all (z, x) ∈ ∂Ω×R. (4.3)

We also consider the positive and negative truncations of g(z, ·), namely the functions

ĝ±(z, x) = ĝ(z,±x±). (4.4)
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Evidently ĝ and ĝ± are all three Carathéodory functions on ∂Ω×R. We set

Ĝ(z, x) =
∫ x

0
ĝ(z, s)ds and Ĝ±(z, x) =

∫ x

0
ĝ±(z, s)ds.

We introduce the C1-functionals ψ̂, ψ̂± : W1,p(Ω)→ R defined by

ψ̂(u) =
1
p
‖Du‖p

p +
1
p

∫
Ω
[ξ(z) + η]|u|p dz−

∫
Ω

F̂(z, u)dz−
∫

∂Ω
Ĝ(z, u)dσ,

ψ̂±(u) =
1
p
‖Du‖p

p +
1
p

∫
Ω
[ξ(z) + η]|u|p dz−

∫
Ω

F̂±(z, u)dz−
∫

∂Ω
Ĝ±(z, u)dσ,

for all u ∈W1,p(Ω).

Finally, let ϕ : W1,p(Ω)→ R be the energy (Euler) functional for problem (1.1) defined by

ϕ(u) =
1
p
‖Du‖p

p +
1
p

∫
Ω

ξ(z)|u|p dz−
∫

Ω
F(z, u)dz− 1

q

∫
∂Ω

β(z)|u|q dσ for all u ∈W1,p(Ω).

We have that ϕ ∈ C1(W1,p(Ω)). Also

Kϕ = set of solutions of problem (1.1), (4.5)

while from (4.3), (4.4) and the nonlinear regularity theory [7], we have

Kψ̂ ⊆ [v0, u0] ∩ C1(Ω), Kψ̂+
⊆ [0, u0] ∩ C+, Kψ̂−

⊆ [v0, 0] ∩ C+. (4.6)

Note that
ϕ|[v0,u0] = ψ̂|[v0,u0] and ϕ′|[v0,u0] = ψ̂′|[v0,u0], (4.7)

ϕ|[0,u0] = ϕ+|[0,u0] = ψ̂+|[0,u0] and ϕ′|[0,u0] = ϕ′+|[0,u0] = ψ̂′+|[0,u0], (4.8)

ϕ|[v0,0] = ϕ−|[v0,0] = ψ̂−|[v0,0] and ϕ′|[v0,0] = ϕ′−|[v0,0] = ψ̂′−|[v0,0]. (4.9)

From (4.5) we see that we may assume that Kϕ is finite or otherwise we already have an
infinity of nontrivial smooth solutions for problem (1.1) and so we are done. Combining this
fact with (4.6) and (4.7), we see that Kψ̂ is finite too. Moreover, from (3.18), (4.6), (4.8), (4.9) we
infer that

Kψ̂ ⊆ [v0, u0] ∩ C1(Ω) is finite, Kψ̂+
= {0, u0}, Kψ̂−

= {0, v0}. (4.10)

These observations permit the consideration of the critical groups of ϕ and ψ̂ at u = 0 and
for these groups we have the following result.

Proposition 4.1. If hypotheses H0, H1 hold, then Ck(ϕ, 0) = Ck(ψ̂, 0) for all k ∈N0.

Proof. Recall that we assume that Kϕ is finite. We consider the homotopy ĥ(t, u) defined by

ĥ(t, u) = tψ̂(u) + (1− t)ϕ(u) for all (t, u) ∈ [0, 1]×W1,p(Ω).

Suppose we could find {tn}n≥1 ⊆ [0, 1] and {un}n≥1 ⊆W1,p(Ω) such that

tn → t ∈ [0, 1], un → 0 in W1,p(Ω), ĥ′u(tn, un) = 0 for all n ∈N. (4.11)
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From the equation in (4.11), we have
−∆pun(z) + [ξ(z) + tnη]|un(z)|p−2un(z)

= tn f̂ (z, un(z)) + (1− tn) f (z, un(z)) for a.a. z ∈ Ω,
∂un

∂np
= tn ĝ(z, un) + (1− tn)β(z)|un|q−2un on ∂Ω.

(4.12)

From (4.12) and Proposition 2.10 of Papageorgiou-Rădulescu [10], we can find c5 > 0 such
that

‖un‖∞ ≤ c5 for all n ∈N.

Then from Theorem 2 of Lieberman [7], we see that there exist α0 ∈ (0, 1) and c6 > 0 such
that

un ∈ C1,α0(Ω) and ‖un‖C1,α0 (Ω) ≤ c6 for all n ∈N. (4.13)

From (4.13), the compact embedding of C1,α0(Ω) into C1(Ω) and (4.11) we infer that

un → 0 in C1(Ω) as n→ ∞. (4.14)

Then, on account of (4.14), we can find n0 ∈N such that

un ∈ [v0, u0], for all n ≥ n0,

⇒ {un}n≥n0 ⊆ Kϕ (see (4.7) and (4.10)),

which contradicts our assumption that Kϕ is finite. Therefore (4.11) can not occur and then
the homotopy invariance property of critical groups (see Papageorgiou–Rădulescu–Repovš
[11, Theorem 6.3.6, p. 505]), implies that

Ck(ϕ, 0) = Ck(ψ̂, 0) for all k ∈N0.

Next we compute the critical groups of ϕ at u = 0.

Proposition 4.2. If hypotheses H0, H1 hold, then Ck(ϕ, 0) = 0 for all k ∈N0.

Proof. On account of hypotheses H1(i),(iv), we have

F(z, x) ≥ −c7|x|r for a.a. z ∈ Ω, all x ∈ R, (4.15)

with c7 > 0 and r > p. Then, using (4.15), for every u ∈W1,p(Ω) and every t > 0, we have

ϕ(tu) ≤ tpc8‖u‖p + trc9‖u‖r − tq
∫

∂Ω
β(z)|u|q dσ for some c8, c9 > 0.

Note that
∫

∂Ω β(z)|u|q dσ > 0. Therefore since q < p < r, we can find t∗ = t∗(u) ∈ (0, 1) such
that

ϕ(tu) < 0 for all t ∈ (0, t∗). (4.16)

Let u ∈W1,p(Ω) with 0 < ‖u‖ ≤ 1, ϕ(u) = 0 and ϑ ∈ (µ, p). We have

d
dt

ϕ(tu)

∣∣∣∣∣
t=1

= 〈ϕ′(u), u〉 (by the chain rule)

= 〈A(u), u〉+
∫

Ω
ξ(z)|u|p dz−

∫
Ω

f (z, u)u dz−
∫

∂Ω
β(z)|u|q dσ

=

[
1− ϑ

p

]
‖Du‖p

p +

[
1− ϑ

p

] ∫
Ω

ξ(z)|u|p dz +
[

ϑ

q
− 1
] ∫

∂Ω
β(z)|u|q dσ

+ (ϑ− µ)
∫

Ω
F(z, u)dz +

∫
Ω
[µF(z, u)− f (z, u)u] dz (4.17)

(since ϕ(u) = 0).
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By hypothesis H1(iv), we have that

F(z, x) ≥ ĉ|x|p for a.a. z ∈ Ω, all |x| ≤ δ0. (4.18)

Combining (4.18) with hypothesis H1(i) we have that

F(z, x) ≥ ĉ|x|p − c10|x|r for a.a. z ∈ Ω, all x ∈ R, (4.19)

for some c10 > 0.
In addition, hypotheses H1(i),(iv) imply that

µF(z, x)− f (z, x)x ≥ −c11|x|r for a.a. z ∈ Ω, all x ∈ R, some c11 > 0. (4.20)

We return to (4.17) and use (4.18), (4.19), (4.20) and obtain

d
dt

ϕ(tu)

∣∣∣∣∣
t=1

≥ c12‖Du‖p
p +

[
ĉ− ‖ξ−‖∞

]
‖u‖p

p − c13‖u‖r

for some c12, c13 > 0 (recall that q < µ < ϑ).

But by hypothesis H1(iv) we have that ĉ > ‖ξ−‖∞. So, from the above inequality, we have

d
dt

ϕ(tu)

∣∣∣∣∣
t=1

≥ c14‖u‖p − c13‖u‖r for some c14 > 0.

Since p < r, we can find ρ ∈ (0, 1) small such that

d
dt

ϕ(tu)

∣∣∣∣∣
t=1

> 0 for all u ∈W1,p(Ω) with < ‖u‖ ≤ ρ, ϕ(u) = 0. (4.21)

Consider a u ∈W1,p(Ω) as in (4.21), namely that

0 < ‖u‖ < ρ and ϕ(u) = 0.

We show that
ϕ(tu) ≤ 0 for all t ∈ [0, 1]. (4.22)

Suppose that (4.22) is not true. Then we can find t0 ∈ (0, 1) such that ϕ(t0u) > 0. Since
ϕ(u) = 0 and ϕ(·) is continuous, by Bolzano’s theorem, we can find t̂ ∈ (t0, 1] such that
ϕ(t̂u) = 0. We set

t∗ = min
{

t̂ ∈ (t0, 1] : ϕ(tu) = 0
}
> t0 > 0.

We have
ϕ(tu) > 0 for all t ∈ [t0, t∗). (4.23)

If v = t∗u, then 0 < ‖v‖ ≤ ρ and ϕ(v) = 0. So, from (4.21) we have

d
dt

ϕ(tu)

∣∣∣∣∣
t=1

> 0. (4.24)

On the other hand

d
dt

ϕ(tu)

∣∣∣∣∣
t=1

= t∗
d
dt

ϕ(tu)

∣∣∣∣∣
t=t∗

= t∗ lim
t→(t∗)−

ϕ(tu)
t− t∗

≤ 0 (see (4.23)). (4.25)
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Comparing (4.24) and (4.25), we have a contradiction. This proves (4.22).
Recall that Kϕ is finite. So, we can always choose ρ ∈ (0, 1) small so that Kϕ ∩ Bρ = {0}

(recall that Bρ = {u ∈ W1,p(Ω) : ‖u‖ < ρ}). Consider the continuous deformation h0 :
[0, 1]× (ϕ0 ∩ Bρ)→ ϕ0 ∩ Bρ defined by

h0(t, u) = (1− t)u for all (t, u) ∈ [0, 1]× (ϕ0 ∩ Bρ).

On account of (4.22) this deformation is well-defined and shows that ϕ0 ∩ Bρ is contractible
in itself.

Let u ∈ Bρ with ϕ(u) > 0. We claim that there is a unique t(u) ∈ (0, 1) such that

ϕ(t(u)u) = 0. (4.26)

The existence of such t(u) ∈ (0, 1) follows from (4.16) and Bolzano’s theorem. For the
uniqueness, suppose we could find 0 < t1 < t2 < 1 such that

ϕ(t1u) = ϕ(t2u) = 0. (4.27)

Consider the function
η(t) = ϕ(tt2u) for all t ∈ [0, 1].

From (4.27) and (4.22), it follows that that t = t1
t2
∈ (0, 1) is a maximizer of η(·). Therefore

we have

d
dt

η(t)

∣∣∣∣∣
t= t1

t2

= 0,

⇒ d
dt

ϕ(tt1u)

∣∣∣∣∣
t=1

= 0,

which contradicts (4.21). So, t(u) ∈ (0, 1) satisfying (4.26) is unique. Therefore we have

ϕ(tu) < 0 for t ∈ (0, t(u)) and ϕ(tu) > 0 if t ∈ (t(u), 1]. (4.28)

Then we introduce the function λ : Bρ \ {0} → [0, 1] defined by

λ(u) =

{
1 if u ∈ Bρ \ {0}, ϕ(u) ≤ 0,

t(u) if u ∈ Bρ \ {0}, ϕ(u) > 0.

It is easy to see that λ(·) is continuous. So, if we consider the map k : Bρ \ {0} →
(ϕ0 ∩ Bρ) \ {0} defined by

k(u) =

{
u if u ∈ Bρ \ {0}, ϕ(u) ≤ 0,

λ(u)u if u ∈ Bρ \ {0}, ϕ(u) > 0,

then k(·) is continuous and k|(ϕ0∩Bρ)\{0} = identity. It follows that (ϕ0 ∩ Bρ) \ {0} is a retract

of Bρ \ {0}, which is contractible. Therefore (ϕ0 ∩ Bρ) \ {0} is contractible and so we have

Hk(ϕ0 ∩ Bρ, (ϕ0 ∩ Bρ) \ {0}) = 0 for all k ∈N0 (see [11], p. 469),

⇒ Ck(ϕ, 0) = 0 for all k ∈N0.
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Corollary 4.3. If hypotheses H0, H1 hold, then Ck(ψ̂, 0) = 0 for all k ∈N0.

Now we are ready for the multiplicity theorem. It is interesting to point out that the
solutions we produce are ordered.

Theorem 4.4. If hypotheses H0, H1 hold, then problem (1.1) has at least three nontrivial smooth
solutions

u0 ∈ intC+, v0 ∈ −intC+ and y0 ∈ C1(Ω), v0 ≤ y0 ≤ u0.

Proof. From Proposition 3.2 we already have two nontrivial constant sign solutions

u0 ∈ intC+ and v0 ∈ −intC+.

Claim: u0 ∈ intC+ and v0 ∈ −intC+ are local minimizers of ψ̂(·).
From (4.1), (4.2), (4.3) and (4.4), we see that ψ̂+(·) is coercive. Also, it is sequentially weakly

lower semicontinuous. So, we can find ũ0 ∈W1,p(Ω) such that

ψ̂+(ũ0) = min
[
ψ̂+(u) : u ∈W1,p(Ω.)

]
(4.29)

Let u ∈ intC+. Since u0 ∈ intC+, we can find t ∈ (0, 1) small such that

0 ≤ tu ≤ min{u0, δ0}

(see Papageorgiou–Rădulescu–Repovš [11], Proposition 4.1.22, p. 274). Then, since µ < p, we
have

ψ̂+(tu) < 0 for t ∈ (0, 1) small,

⇒ ψ̂+(ũ0) < 0 = ψ̂+(0) (see (4.29)),

⇒ ũ0 6= 0,

⇒ ũ0 = u0 (see (4.10) and (4.29)).

Note that ψ̂
∣∣
C+

= ψ̂+

∣∣
C+

. Since u0 ∈ intC+, it follows that

u0 is a local C1(Ω)-minimizer of ψ̂(·),
⇒ u0 is a local W1,p(Ω)-minimizer of ψ̂(·)

(see Papageorgiou–Rădulescu [10, Proposition 2.12]).

Similarly for v0 ∈ − int C+ using this time the functional ψ−(·).
This proves the claim.

Without any loss of generality we may assume that

ψ̂(v0) ≤ ψ̂(u0).

From (4.10), the Claim and Theorem 5.7.6, p. 449, of Papageorgiou–Rădulescu–Repovš
[11], we know that we can find ρ ∈ (0, 1) small such that

ψ̂(v0) ≤ ψ̂(u0) < inf
[
ψ̂(u) : ‖u− u0‖ = ρ

]
= m̂ρ, ‖v0 − u0‖ > ρ. (4.30)

Since ψ̂(·) is coercive, from Proposition 5.1.15, p. 369, of Papageorgiou–Rădulescu–Repovš
[11], we have that

ψ̂(·) satisfies the Palais–Smale condition. (4.31)
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Then (4.30) and (4.31) permit the use of the mountain pass theorem. So, we can find
y0 ∈W1,p(Ω) such that

y0 ∈ Kψ̂ ⊆ [v0, u0] ∩ C1(Ω) (see (4.10)) and m̂ρ ≤ ψ̂(y0) (see (4.30)). (4.32)

From (4.30) and (4.32), we have that

y0 6= u0 and y0 6= v0.

Moreover, since y0 is a critical point of ψ̂ of mountain pass type, from Corollary 6.6.9, p. 533,
of Papageorgiou–Rădulescu–Repovš [11], we have

C1(ψ̂, y0) 6= 0. (4.33)

On the other hand, from Corollary 4.3, we have

Ck(ψ̂, 0) = 0 for all k ∈N0. (4.34)

Comparing (4.33) and (4.34) we infer that y0 6= 0. Therefore y0 ∈ C1(Ω) is the third nontrivial
solution of (1.1) and v0(z) ≤ y0(z) ≤ u0(z) for all z ∈ Ω.

Acknowledgements

The authors thank the anonymous referee for his/her careful reading of the paper.

References

[1] J. Abreu, G. Madeira, Generalized eigenvalues of the (p, 2)-Laplacian under a paramet-
ric boundary condition, Proc. Edinburgh Math. Soc. 63(2020), 287–303. https://doi.org/
10.1017/S0013091519000403; MR4054785; Zbl 07204915

[2] S. Aizicovici, N. S. Papageorgiou, V. Staicu, Degree theory for operators of mono-
tone type and nonlinear elliptic equations with inequality constraints, Mem. Amer. Math.
Soc. Vol. 196(2008), No. 905, 70 pp. https://doi.org/10.1090/memo/0915; MR2459421;
Zbl 165.47041

[3] G. Fragnelli, D. Mugnai, N. S. Papageorgiou, The Brezis–Oswald result for quasilinear
Robin problems, Adv. Nonlinear Stud. 16(2016), 603–622. https://doi.org/10.1515/ans-
2016-0010; MR3518349; Zbl 1343.35083

[4] L. Gasiński, N. S. Papageorgiou, Nonlinear analysis, Chapman & Hall/CRC, Boca Raton,
Fl, 2006. https://doi.org/10.1201/9781420035049; MR2168068; Zbl 1086.47001
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