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1 Introduction

Let X and Y be Banach spaces and let j : X → Y be a linear compact map. There are given
on X a Gâteaux differentiable function F : X → R with its Gâteaux differential DF : X → X∗

and on Y a locally Lipschitz function Φ : Y → R whose generalized directional derivative is
denoted Φ0 : Y×Y → R. With these data we formulate the following problem in the form of
a hemivariational inequality: find u ∈ X such that

〈DF(u), w〉+ Φ0(ju; jw) ≥ 0, ∀w ∈ X. (1.1)

Problem (1.1) qualifies as a hemivariational inequality due to the presence of the term
Φ0(ju; jw). This problem is equivalent to the differential inclusion

−DF(u) ∈ j∗∂Φ(ju),
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where the notation ∂Φ(u) stands for the generalized gradient of Φ at u ∈ X and j∗ denotes the
adjoint operator of j. The hemivariational inequalities provide accurate modeling of contact
phenomena involving nonconvex and nonsmooth mechanical processes. For an extensive
study on applications of hemivariational inequalities we cite [10, 13, 14],

Problem (1.1) has a variational structure, which is nonsmooth, whose associated energy
functional I : X → R is

I = F + Φ ◦ j. (1.2)

There is a huge literature devoted to variational problems, smooth or nonsmooth, mainly
employing minimax techniques based on critical point theory (see, e.g., [11], [3], [10, Chapter
3]). Since F is only Gâteaux differentiable, no available result can be applied to problem (1.1)
and its corresponding energy functional I in (1.2).

The main novelty of the present work is represented by the fact that we don’t assume any
ellipticity condition on the leading term DF(u) in (1.1). In order to highlight this essential
aspect, let us consider a particular situation in (1.1) related to boundary value problems with
discontinuous nonlinearities. Their study was initiated by Chang [3].

For a fixed µ ∈ R, we state the quasilinear differential inclusion{
−∆pu + µ∆qu ∈ [ f (u), f (u)] in Ω

u = 0 on ∂Ω
(1.3)

on a bounded domain Ω ⊂ RN with the boundary ∂Ω. Here ∆p and ∆q denote the p-Laplacian
and the q-Laplacian, respectively, with 1 < q < p < +∞, and for a function f ∈ L∞

loc(R) we
set

f (s) = lim
δ→0

ess inf
|τ−s|<δ

f (τ), ∀s ∈ R (1.4)

and
f (s) = lim

δ→0
ess sup
|τ−s|<δ

f (τ), ∀s ∈ R. (1.5)

If the function f is continuous, then the interval [ f (u(x)), f (u(x))] reduces to the singleton
f (u(x)) and (1.3) becomes the quasilinear Dirichlet equation{

−∆pu + µ∆qu = f (u) in Ω,

u = 0 on ∂Ω.
(1.6)

An important case in problems (1.3) and (1.6) is when µ = 0 with the p-Laplacian ∆p as
driving operator. Another important case is when µ = −1, where the quasilinear equation is
governed by the (p, q)-Laplacian ∆p + ∆q. We emphasize that the behavior of −∆p + µ∆q with
µ > 0 is completely different with respect to the one of −∆p + µ∆q with µ ≤ 0, the latter being
an elliptic operator. In the case of −∆p + µ∆q with µ > 0 the ellipticity is lost as can be easily
seen: for u = λu0 with a nonzero u0 ∈W1,p

0 (Ω) and a number λ > 0 the expression

〈−∆pu + µ∆u, u〉 = λp‖∇u0‖p
p − µλq‖∇u0‖q

q

is positive for λ large and negative for λ small. Therefore the leading operator in (1.3) is a
competing (p, q)-Laplacian when µ > 0. This makes (1.3), thus (1.1), a nonstandard problem
where a sort of hyperbolic feature is incorporated.
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We further discuss a nonlocal counterpart of problem (1.3), namely{
−∆pu + µ(−∆)s

qu ∈ [ f (u), f (u)] in Ω

u = 0 in RN \Ω
(1.7)

on a bounded domain Ω ⊂ RN with Lipschitz boundary ∂Ω, where f ∈ L∞
loc(R) with (1.4),

(1.5) as above, and a parameter µ ∈ R. Inclusion (1.7) is driven by the nonlocal operator
formed with the ordinary p-Laplacian ∆p and the (negative) s-fractional q-Laplacian (−∆)s

q,
taking 0 < s < 1 and 1 < q < p < +∞, with sq < N. The differential operator −∆p + µ(−∆)s

q
is the optimal fractional substitute for the (p, q)-Laplacian −∆p − µ∆q as noticed below in
Remark 5.2. Likewise in the case of fractional p-Laplacian (see, e.g., [15]), a motivation for
studying it comes from the theory of Markov processes. In this respect, we refer to [8, Example
1.2.1] describing a typical Markovian symmetric form. A brief survey of the nonlocal setting
related to (1.7) can be found in Section 2. If the function f is continuous, (1.7) reduces to the
equation {

−∆pu + µ(−∆)s
qu = f (u) in Ω

u = 0 in RN \Ω.
(1.8)

In the nonlocal problems (1.7) and (1.8) the ellipticity is preserved if µ ≥ 0, but not if µ < 0
for which the usual methods fail to apply.

The natural notion of solution (in the weak sense) to problem (1.1) is apparent: any u ∈ X
for which inequality (1.1) holds whenever w ∈ X. Since we do not assume any elliptic-
ity/monotonicity condition upon the principal part of (1.1) or any compactness condition of
Palais–Smale type on I in (1.2) or that I be sequentially weakly lower semicontinuous (as ba-
sically is required in [1]), in order to establish the solvability of equation (1.1) we need to relax
the notion of solution to fit the specific character of problem (1.1).

Definition 1.1. A function u ∈ X is called a generalized solution to (1.1) if there exists a sequence
{un}n≥1 ⊂ X with the properties:

(S1) un ⇀ u in X as n→ ∞;

(S2) lim supn→∞ F(un) ≤ F(u);

(S3) lim inf
n→∞

〈DF(un), v− un〉+ Φ0(ju; jv− ju) ≥ 0, ∀v ∈ X.

Remark 1.2. The idea of weakening the notion of solution to cover more general frames is fre-
quent (see, e.g., [12, p. 183]). Different situations where the solution is a limit of (approximate)
solutions are discussed in [16, 17].

Remark 1.3. Every solution to (1.1) is a generalized solution in the sense of Definition 1.1.
It suffices to take the constant sequence un = u. For the converse assertion, additional as-
sumptions should be imposed, for instance that the differential DF : X → X∗ be completely
sequentially continuous (i.e., un ⇀ u implies DFun → DFu). A key role might have property
(S2) in Definition 1.1 as will be illustrated for problems (1.3), (1.6), (1.7), (1.8).

Our main result stated as Theorem 3.2 in Section 3 provides the existence of a general-
ized solution to problem (1.1). The approach relies on minimization of the energy functional
I in (1.2) on finite dimensional subspaces of X belonging to a Galerkin basis. Denoting by
{vn}n≥1 ⊂ X the resulting minimizing sequence of I, in a further step we construct through
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Ekeland’s variational principle (see [6, 7]) applied to I and {vn}n≥1 a second minimizing se-
quence {un}n≥1 ⊂ X of I, with finer properties, that will be shown to comply with Definition
1.1. The proof is concluded by a passing to the limit process.

The abstract result in Theorem 3.2 for problem (1.1) is applied in two different directions.
First, we establish the existence of a generalized solution to the local quasilinear differential
inclusion with discontinuities (1.3), in particular (1.6) (see Theorem 4.2). Second, we obtain the
existence of a generalized solution to the nonlocal quasilinear inclusion (1.7), in particular (1.8)
(see Theorem 5.1). In both cases, a special attention is paid to clarify when the generalized
solution is a weak solution.

2 Mathematical background

Our approach on problem (1.1) relies on two fundamental tools: Galerkin basis and Ekeland’s
variational principle. For easy reference we recall some basic material.

A Galerkin basis of a Banach space X is a sequence {Xn}n≥1 of vector subspaces of X for
which

(i) dim(Xn) < ∞, ∀n;

(ii) Xn ⊂ Xn+1, ∀n;

(iii)
∞⋃

n=1

Xn = X.

If X is separable, there exists a Galerkin basis of X. For an extensive use of Galerkin bases to
various existence theorems we refer to [12, 16, 17].

We shall apply Ekeland’s Variational Principle (see [6, 7]) in the following form.

Theorem 2.1. Assume that the functional I : X → R is lower semicontinuous and bounded from
below on a Banach space X. If {vn}n≥1 is a minimizing sequence of I, then there exists a sequence
{un}n≥1 in X with the properties:

(a) I(un) ≤ I(vn) for all n;

(b) ‖un − vn‖ → 0 as n→ ∞;

(c) for all n ≥ 1, it holds

I(w) > I(un)−
1
n
‖w− un‖, ∀w ∈ X, w 6= un.

Next we outline some prerequisites of nonsmooth analysis regarding the subdifferentia-
bility of locally Lipschitz functions (for more details we recommend [4] and also [3, 10]). A
function Φ : Y → R on a Banach space Y is called locally Lipschitz if for every u ∈ Y one can
find a neighborhood U of u in Y and a constant Lu > 0 such that

|Φ(v)−Φ(w)| ≤ Lu‖v− w‖, ∀v, w ∈ U.

The generalized directional derivative of a locally Lipschitz function Φ at u ∈ Y in the direc-
tion v ∈ Y is defined as

Φ0(u; v) := lim sup
w→u, t→0+

1
t
(Φ(w + tv)−Φ(w))
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and the generalized gradient of Φ at u ∈ Y is the set

∂Φ(u) :=
{

u∗ ∈ Y∗ : 〈u∗, v〉 ≤ Φ0(u; v), ∀v ∈ Y
}

.

A continuous and convex function Φ : Y → R is locally Lipschitz and its generalized gradient
∂Φ : Y → 2Y∗ coincides with the subdifferential of Φ in the sense of convex analysis.

We need these notions in connection with the nonsmooth problems (1.3), (1.6), (1.7), (1.8).
Let f : R→ R satisfy f ∈ L∞

loc(R) for which we set

g(s) =
∫ s

0
f (t)dt for all s ∈ R (2.1)

and note that g : R→ R is locally Lipschitz. Then the generalized gradient ∂g(s) of g at s ∈ R

is the compact interval in R expressed by

∂g(s) = [ f (s), f (s)], (2.2)

where f (s) and f (s) are defined in (1.4) and (1.5), respectively.
We also address a few things about the operators in the Dirichlet problems (1.3), (1.6), (1.7),

(1.8). Given 1 < q < p < +∞, we denote p′ = p
p−1 and q′ = q

q−1 and consider the Sobolev

spaces W1,p
0 (Ω) and W1,q

0 (Ω) endowed with the norms ‖∇u‖p and ‖∇u‖q, respectively, where
‖ · ‖r stands for the usual Lr-norm. The negative p-Laplacian −∆p : W1,p

0 (Ω) → W−1,p′(Ω) is
defined by

〈−∆pu, ϕ〉 =
∫

Ω
|∇u(x)|p−2∇u(x) · ∇ϕ(x)dx for all u, ϕ ∈W1,p

0 (Ω).

This operator is strictly monotone and continuous, so pseudomonotone. If p = 2 we retrieve
the ordinary Laplacian operator. Similarly, we have the definition of the negative q-Laplacian
−∆q : W1,q

0 (Ω)→W−1,q′(Ω). By virtue of the embedding W1,p
0 (Ω) ↪→W1,q

0 (Ω), the differential
operator −∆p + µ∆q driving inclusion (1.3) and equation (1.6) is well posed in W1,p

0 (Ω). There
exists a constant k > 0 such that

‖∇u‖q ≤ k‖∇u‖p, ∀u ∈W1,p
0 (Ω). (2.3)

By a weak solution to problem (1.3) with f ∈ L∞
loc(R) we mean a u ∈ W1,p

0 (Ω) for which it
holds f (u), f (u) ∈ Lp′(Ω) and∫

Ω
|∇u(x)|p−2∇u(x) · ∇ϕ(x)dx− µ

∫
Ω
|∇u(x)|p−2∇u(x) · ∇ϕ(x)dx

≥
∫

Ω
min{ f (u(x))ϕ(x), f (u(x))ϕ(x)}dx for all ϕ ∈W1,p

0 (Ω) (2.4)

or equivalently∫
Ω
|∇u(x)|p−2∇u(x) · ∇ϕ(x)dx− µ

∫
Ω
|∇u(x)|p−2∇u(x) · ∇ϕ(x)dx

≤
∫

Ω
max{ f (u(x))ϕ(x), f (u(x))ϕ(x)}dx for all ϕ ∈W1,p

0 (Ω). (2.5)

The equivalence between (2.4) and (2.5) arises by replacing ϕ ∈ W1,p
0 (Ω) with −ϕ. For the

Dirichlet equation (1.6), the ordinary notion of weak solution is recovered. If f : R → R is
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continuous, then u ∈ W1,p
0 (Ω) is a weak solution to equation (1.6) provided f (u) ∈ Lp′(Ω)

and ∫
Ω
|∇u(x)|p−2∇u(x) · ∇ϕ(x)dx− µ

∫
Ω
|∇u(x)|p−2∇u(x) · ∇ϕ(x)dx

=
∫

Ω
f (u(x))ϕ(x)dx for all ϕ ∈W1,p

0 (Ω). (2.6)

This follows readily from (2.4) (or (2.5)), (1.4) and (1.5).
Finally, we sketch the framework of nonlocal problems (1.7) and (1.8). The fractional

Sobolev space Ws,q(Ω) of differentiability order s ∈ (0, 1) and summability exponent 1 < q <

+∞ for a bounded domain Ω ⊂ RN with a Lipschitz continuous boundary ∂Ω is introduced
as

Ws,q(Ω) :=
{

u ∈ Lq(Ω) :
∫

Ω

∫
Ω

|u(x)− u(y)|q
|x− y|N+qs dxdy < ∞

}
,

which is a separable and reflexive Banach space endowed with the norm

‖u‖Ws,q(Ω) :=
(
‖u‖q

q +
CN,q,s

2

∫
Ω

∫
Ω

|u(x)− u(y)|q
|x− y|N+qs dxdy

) 1
q

,

with a normalization constant CN,q,s > 0. If sq < N, the embedding Ws,q(Ω) ↪→ Lν(Ω) is
continuous for all 1 ≤ ν ≤ q∗s , and compact for all 1 ≤ ν < q∗s , with q∗s = Np/(N − sq) called
the fractional critical exponent (see [5, Theorem 6.5, Corollary 7.2]). Under the conditions
0 < s < 1, 1 < q < p < +∞ and sq < N, the embeddings W1,p(Ω) ↪→ W1,q(Ω) ↪→ Ws,q(Ω)

are continuous and thus for a constant C = C(N, s, q) ≥ 1 one has

‖u‖Ws,q(Ω) ≤ C‖u‖W1,q(Ω), ∀u ∈W1,p(Ω). (2.7)

(see [5, Proposition 2.2])).
The closed linear subspace

Ws,q
0 (Ω) := {u ∈Ws,q(RN) : u = 0 a.e. in RN \Ω}

can be endowed with the equivalent norm (determined by the Gagliardo seminorm)

‖u‖Ws,q
0 (Ω) :=

(
CN,q,s

2

) 1
q

[u]Ds,q(RN) :=
(

CN,q,s

2

∫
Ω

∫
Ω

|u(x)− u(y)|q
|x− y|N+qs dxdy

) 1
q

becoming a uniformly convex Banach space with the dual W−s,q′(Ω).
The (negative) s-fractional q-Laplacian is the nonlinear operator (−∆)s

q : Ws,q
0 (Ω) →

W−s,q′(Ω) defined for all u, v ∈Ws,q
0 (Ω) by

〈(−∆)s
q(u), v〉 =

CN,q,s

2

∫
RN

∫
RN

|u(x)− u(y)|q−2(u(x)− u(y))(v(x)− v(y))
|x− y|N+sq dx dy (2.8)

(see [5, 15] for more insight).
Along the pattern of the corresponding local problems, u ∈ W1,p

0 (Ω) is called a weak
solution to inclusion (1.7) with 0 < s < 1, 1 < q < p < +∞, sq < N and f ∈ L∞

loc(R) provided
f (u), f (u) ∈ Lp′(Ω) and∫

Ω
|∇u(x)|p−2∇u(x) · ∇ϕ(x)dx

+ µ
CN,q,s

2

∫
RN

∫
RN

|u(x)− u(y)|q−2(u(x)− u(y))(ϕ(x)− ϕ(y))
|x− y|N+qs dxdy

≥
∫

Ω
min{ f (u(x))ϕ(x), f (u(x))ϕ(x)}dx for all ϕ ∈W1,p

0 (Ω), (2.9)
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where we set u = ϕ = 0 outside Ω. If f : R → R is continuous, u ∈ W1,p
0 (Ω) is a weak

solution to the nonlocal equation (1.8) provided f (u) ∈ Lp′(Ω) and∫
Ω
|∇u(x)|p−2∇u(x) · ∇ϕ(x)dx

+ µ
CN,q,s

2

∫
RN

∫
RN

|u(x)− u(y)|q−2(u(x)− u(y))(ϕ(x)− ϕ(y))
|x− y|N+qs dxdy

=
∫

Ω
f (u(x))ϕ(x)dx for all ϕ ∈W1,p

0 (Ω). (2.10)

3 Existence of a generalized solution

In order to simplify the presentation, we denote by the same symbol ‖ · ‖ different norms
that occur below. The meaning will be clear from the context. Our hypotheses on the data in
problem (1.1) are as follows:

(H1) The Banach space X is separable and reflexive, and j : X → Y is a linear compact map from X
to a Banach space Y.

(H2) The function F : X → R is Gâteaux differentiable, continuous, and the function Φ : Y → R is
locally Lipschitz such that

I = F + Φ ◦ j is bounded from below on X (3.1)

and I is coercive on every finite dimensional subspace of X, i.e., if X0 is a finite dimen-
sional subspace of X, then I(u)→ +∞ as ‖u‖ → ∞ with u ∈ X0.

(H3) The set
{v ∈ X : 〈DF(v), v〉 ≤ Φ0(jv;−jv)}

is bounded in X.

The next example shows that the coercivity on every finite dimensional subspace in hy-
pothesis (H2) is a condition weaker than the coercivity on the whole space.

Example 3.1. Let X be a separable Hilbert space. Fix an orthonormal basis {em}m≥1 of X.
Then every vector u ∈ X can be written uniquely as u = ∑∞

m=1 xm(u)em, with xm(u) ∈ R, and
there holds ‖u‖2 = ∑∞

m=1 xm(u)2. The functional J : X → R given by

J(u) =
∞

∑
m=1

1
m2 |xm(u)|

is well defined. It is coercive on each finite dimensional subspace X1 of X since corresponding
to X1 there is an integer m1 such that

J(u) =
m1

∑
m=1

1
m2 |xm(u)|, ∀u ∈ X1.

For un = nen we have ‖un‖ = n and J(un) =
1
n , so J is not coercive on X.

Now we state our existence result for problem (1.1).
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Theorem 3.2. Assume that conditions (H1)–(H3) hold. Then problem (1.1) admits at least one
generalized solution in the sense of Definition 1.1.

Proof. We construct a special minimizing sequence {vn}n≥1 ⊂ X of the functional I in (1.2).
The construction is done through a Galerkin basis {Xn}n≥1 of X, which exists because the
Banach space X is separable as known from assumption (H1).

It follows from (3.1) that for every n the functional I|Xn obtained restricting I to Xn is
bounded from below on Xn. Due to the coercivity of I on Xn as guaranteed by assumption
(H2), any minimizing sequence of I|Xn is bounded. Since I|Xn is also continuous and Xn is
finite dimensional (note requirement (i) in the definition of Galerkin basis in Section 2), there
exists vn ∈ Xn satisfying

I(vn) = min
v∈Xn

I(v). (3.2)

Then (3.2) implies
I(vn + t(v− vn)) ≥ I(vn), ∀t > 0, ∀v ∈ Xn,

which reads as

1
t
(F(vn + t(v− vn))− F(vn)) +

1
t
(Φ(jvn + t(jv− jvn))−Φ(jvn)) ≥ 0.

Passing to the limit as t→ 0 and then setting v = 0 lead to

〈DF(vn), vn〉 ≤ Φ0(jvn;−jvn), ∀n. (3.3)

On account of hypothesis (H3), we can infer from (3.3) that the sequence {vn} is bounded
in X. In view of the reflexivity of X (see hypothesis (H1)), along a relabeled subsequence we
have

vn ⇀ u in X (3.4)

for some u ∈ X. We shall show that u is a generalized solution to (1.1).
From condition (ii) in the definition of Galerkin basis (see Section 2) and (3.2), for every n

we can write
I(vn) = min

v∈Xn
I(v) ≥ min

v∈Xn+1
I(v) = I(vn+1) ≥ inf

v∈X
I(v).

Therefore the sequence {I(vn)} is nonincreasing and bounded due to (3.1). Set

l := lim
n→∞

I(vn) = inf
n≥1

I(vn).

We claim that
lim
n→∞

I(vn) = inf
w∈X

I(w). (3.5)

In order to prove (3.5), we argue by contradiction supposing that

l > inf
v∈X

I(v).

So, there exists ŵ ∈ X such that I(ŵ) < l. By the continuity of I, there exists an open
neighborhood U of ŵ in X such that

I(w) < l, ∀w ∈ U. (3.6)
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Then through condition (iii) in the definition of Galerkin basis (see Section 2) we derive

U ∩
(

∞⋃
n=1

Xn

)
6= ∅.

Hence there exists w̃ ∈ U ∩ Xñ for some ñ. Recalling that vñ is a minimizer of I|Xñ (see (3.2)),
from (3.6) we get the contradiction

min
v∈Xñ

I(v) ≤ I(w̃) < l ≤ min
v∈Xñ

I(v).

The obtained contradiction ensures the validity of (3.5).
Now we construct another minimizing sequence {un} of I in (1.2) that will satisfy condi-

tions (S1)–(S3) in Definition 1.1. To this end we notice from (3.1) that we can apply Theo-
rem 2.1 (Ekeland’s Variational Principle, see [6, 7]) to the functional I in (1.2). Through this
result, using the minimizing sequence {vn}n≥1, we can find a sequence {un}n≥1 in X with the
properties (a), (b), (c) in Theorem 2.1. From property (a) and (3.5) it is clear that

lim
n→∞

I(un) = inf
v∈X

I(v), (3.7)

so {un}n≥1 is a minimizing sequence of the functional I. Consequently, from (3.7) it turns out

lim
n→∞

I(un) ≤ I(u), (3.8)

with u ∈ X in (3.4). By property (b) in Theorem 2.1 and (3.4) we infer that

un ⇀ u in X, (3.9)

thus condition (S1) in Definition 1.1 is verified.
Using the compactness of the map j : X → Y and the weak convergence in (3.9), we note

that (3.8) amounts to saying that

lim sup
n→∞

F(un) + Φ(j(u)) = lim sup
n→∞

(F(un) + Φ(j(un)))

≤ F(u) + Φ(j(u)).

This proves property (S2) in Definition 1.1.
Insert w = un + t(v − un) in assertion (c) of Theorem 2.1, with t > 0 and an arbitrary

v ∈ X, finding that

1
t
(F(un + t(v− un))− F(un)) +

1
t
(Φ(jun + t(jv− jun))−Φ(jun)) ≥ −

1
n
‖v− un‖. (3.10)

The Gâteaux differentiability of F yields

lim
t→0

1
t
(F(un + t(v− un))− F(un)) = 〈DF(un), v− un〉, (3.11)

while the definition of generalized directional derivative Φ0 of Φ (see Section 2) shows

lim sup
t→0

1
t
(Φ(jun + t(jv− jun))−Φ(jun)) ≤ Φ0(jun; jv− jun). (3.12)
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Letting t→ 0 in (3.10), by making use of (3.11) and (3.12), we arrive at

〈DF(un), v− un〉+ Φ0(jun; jv− jun) ≥ −
1
n
‖v− un‖. (3.13)

Notice that (3.9) and the compactness of j : X → Y yield

jun → ju in Y. (3.14)

Then the upper semicontinuity of the generalized directional derivative Φ0 and the strong
convergence in (3.14) give

lim sup
n→∞

Φ0(jun; jv− jun) ≤ Φ0(ju; jv− ju). (3.15)

Letting n → ∞ in (3.13) and taking into account (3.15) as well as the boundedness of the
sequence {un}n≥1 we find that

lim inf
n→∞

〈DF(un), v− un〉

= lim inf
n→∞

(〈DF(un), v− un〉+ Φ0(jun; jv− jun)−Φ0(jun; jv− jun))

≥ lim inf
n→∞

(〈DF(un), v− un〉+ Φ0(jun; jv− jun)) + lim inf
n→∞

(−Φ0(jun; jv− jun))

≥ − lim sup
n→∞

Φ0(jun; jv− jun) ≥ −Φ0(ju; jv− ju), ∀v ∈ X.

Thus we are led to

lim inf
n→∞

〈DF(un), v− un〉+ Φ0(ju; jv− ju) ≥ 0, ∀v ∈ X,

which is just property (S3) in Definition 1.1. Therefore u ∈ X is a generalized solution to
problem (1.1). The proof is complete.

We illustrate the applicability of Theorem 3.2 with verifiable growth conditions.

Corollary 3.3. (i) Assume that the Gâteaux differentiable, continuous function F : X → R and the
locally Lipschitz function Φ : Y → R satisfy

F(v) ≥ a‖v‖r − a0 for all v ∈ X, (3.16)

with constants a > 0, a0 > 0, r > 0, and

Φ(w) ≥ −b‖w‖σ − b0 for all w ∈ Y, (3.17)

with constants b > 0, b0 > 0 and σ ∈ (0, r). Then condition (H2) holds true.
(ii) Assume that the Gâteaux differentiable, continuous function F : X → R, the linear compact

map j : X → Y and the locally Lipschitz function Φ : Y → R satisfy

〈DF(v), v〉 ≥ ã‖v‖r̃ − ã0 for all v ∈ X, (3.18)

with constants ã > 0, ã0 > 0, r̃ > 0, and

〈ξ, jv〉 ≥ −b̃‖jv‖σ̃ − b̃0 for all v ∈ X and ξ ∈ ∂Φ(jv), (3.19)

with constants b̃ > 0, b̃0 > 0 and σ̃ ∈ (0, r̃). Then condition (H3) is fulfilled.
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Proof. (i) From (3.16) and (3.17), we estimate the functional I in (1.2) from below

I(v) = F(v) + Φ(jv) ≥ a‖v‖r − a0 − b‖j‖σ‖v‖σ − b0

for all v ∈ X. Since r > σ, we infer that (3.1) holds true. Moreover, the preceding estimate
entails

I is coercive on X, i.e., I(u)→ +∞ as ‖u‖ → ∞,

which ensures that condition (H2) is verified.
(ii) We are going to show that the set

X0 := {v ∈ X : 〈DF(v), v〉 ≤ Φ0(jv;−jv)}

is bounded in X. On the basis of (3.18) and (3.19), for every v ∈ X0 we obtain

ã‖v‖r̃ − ã0 ≤ 〈DF(v), v〉 ≤ Φ0(jv;−jv) = max{〈ξ,−jv〉 : ξ ∈ ∂Φ(jv)}
= −min{〈ξ, jv〉 : ξ ∈ ∂Φ(jv)} ≤ b̃‖jv‖σ̃ + b̃0 ≤ b̃‖j‖σ̃‖v‖σ̃ + b̃0.

Taking into account that σ̃ < r̃, the boundedness of the set X0 in X follows.

Remark 3.4. Conditions (3.16), (3.17), (3.18) and (3.19) are compatible offering a large range
of applicability for Theorem 3.2.

4 Local boundary value problems without ellipticity

In this section we focus on the boundary value inclusion with discontinuities (1.3), which
extends the Dirichlet equation (1.6). For 1 < q < p < +∞ and µ ∈ R, we shall show that
problem (1.3), so a fortiori (1.6), is a special case of problem (1.1) treated in Section 3. The
principal point is that the leading operator −∆p + µ∆q exhibits a competing (p, q)-Laplacian
if µ is positive, thus the ellipticity fails.

We assume to be fulfilled:

(H) f the function f : R → R is measurable and there exist constants c > 0 and σ ∈ (1, p)
such that

| f (t)| ≤ c(1 + |t|σ−1) for a.e. t ∈ R.

From assumption (H) f it follows that f ∈ L∞
loc(R), hence the functions f : R → R and

f : R→ R introduced in (1.4) and (1.5), respectively, are well-defined.
The notion of generalized solution to problem (1.1) introduced in Definition 1.1 reads in

the case of (1.3) as follows: u ∈ W1,p
0 (Ω) is a generalized solution to (1.3) if there exists a

sequence {un}n≥1 ⊂W1,p
0 (Ω) such that

(S′1) un ⇀ u in W1,p
0 (Ω);

(S′2)

lim sup
n→∞

[
1
p
‖∇un‖p

p −
µ

q
‖∇un‖q

q

]
≤ 1

p
‖∇u‖p

p −
µ

q
‖∇u‖q

q; (4.1)

(S′3) lim inf
n→∞

〈−∆pun + µ∆qun, ϕ〉 ≥
∫

Ω
min{ f (u(x))ϕ(x), f (u(x))ϕ(x)}dx, ∀ϕ ∈W1,p

0 (Ω).
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Passing from (S3) in Definition 1.1 to formulation (S′3) is based on the Aubin–Clarke Theorem
for an integral functional (see [4, Theorem 2.7.5]).

Remark 4.1. If f is continuous, then the interval [ f (u(x)), f (u(x))] reduces to the singleton
f (u(x)) and (S′3) becomes

(S̃′3) −∆pun + µ∆qun ⇀ f (u) in W−1,p′(Ω), i.e.,

lim
n→∞
〈−∆pun + µ∆qun, ϕ〉 =

∫
Ω

f (u(x))ϕ(x)dx, ∀ϕ ∈W1,p
0 (Ω).

Indeed, (S′3) entails

lim inf
n→∞

〈−∆pun + µ∆qun, ϕ〉 ≥
∫

Ω
f (u(x))ϕ(x)dx, ∀ϕ ∈W1,p

0 (Ω).

Changing ϕ into −ϕ produces

lim sup
n→∞

〈−∆pun + µ∆qun, ϕ〉 ≤
∫

Ω
f (u(x))ϕ(x)dx, ∀ϕ ∈W1,p

0 (Ω),

whence the result.
If q = 2 < p < +∞, from (S′1) and the linearity of the Laplacian ∆ we deduce that (S̃′3)

requires −∆pun ⇀ −µ∆u + f (u) in W−1,p′(Ω).

Now we state our result on problems (1.3) and (1.6).

Theorem 4.2. Assume that condition (H) f holds. Then, for every µ ∈ R, problem (1.3) admits at least
one generalized solution. Every generalized solution is a weak solution provided µ ≤ 0. In particular,
problem (1.6) with f continuous possesses at least a generalized solution, which is a weak solution when
µ ≤ 0.

Proof. Our goal is to apply Theorem 3.2 by means of Corollary 3.3. To this end we choose
X = W1,p

0 (Ω), which is a separable and reflexive Banach space. Further, we take Y = Lp(Ω)

and let j : W1,p
0 (Ω) → Lp(Ω) be the inclusion map. By Rellich–Kondrachov Theorem j is

compact. Therefore assumption (H1) is satisfied.
With a fixed µ ∈ R, define the functional F : W1,p

0 (Ω)→ R as

F(v) =
1
p
‖∇v‖p

p −
µ

q
‖∇v‖q

q for all v ∈W1,p
0 (Ω).

It is clear that F : W1,p
0 (Ω) → R is continuously differentiable, so Gâteaux differentiable and

continuous. By (2.3), Young’s inequality and p > q, we infer that

F(v) ≥ 1
p
‖∇v‖p

p −
|µ|k

q
‖∇v‖q

p ≥
1

2p
‖∇v‖p

p − a0 for all v ∈W1,p
0 (Ω),

with a constant a0 > 0. Hence condition (3.16) is verified with r = p.
Next we consider the function g : R → R in (2.1) corresponding to f : R → R in the

right-hand side of (1.3). Thanks to assumption (H) f , g : R → R is locally Lipschitz and in
turn the functional Φ : Lp(Ω)→ R given by

Φ(v) = −
∫

Ω
g(v(x)) dx for all v ∈ Lp(Ω) (4.2)
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is locally Lipschitz. Precisely, Φ is Lipschitz continuous on the bounded subsets of Lσ(Ω) and
we use the continuous embedding Lp(Ω) ↪→ Lσ(Ω) with σ < p.

Hypothesis (H) f implies

|Φ(v)| ≤
∫

Ω
|g(v(x))|dx ≤ c‖v‖1 +

c
σ
‖v‖σ

σ ≤ c|Ω|
1
σ′ ‖v‖σ +

c
σ
‖v‖σ

p

≤ c0(1 + ‖v‖σ
σ), ∀v ∈ Lp(Ω),

with a constant c0 > 0 and σ′ = σ/(σ− 1). We derive (3.17) due to the continuous embedding
Lp(Ω) ↪→ Lσ(Ω). By Corollary 3.3 part (i), condition (H2) is fulfilled.

We note that
〈DF(v), v〉 = ‖∇v‖p

p − µ‖∇v‖q
q for all v ∈ X,

so condition (3.18) is satisfied with r̃ = p because p > q. Pick any v ∈W1,p
0 (Ω) and ξ ∈ ∂Φ(jv),

with Φ in (4.2). The Aubin–Clarke Theorem (see [4, Theorem 2.7.5]) and (2.2) guarantee that
ξ ∈ Lp′(Ω) and

− ξ(x) ∈ ∂g(v(x)) = [ f (v(x)), f (v(x))] for a.e. x ∈ Ω. (4.3)

Then by (4.2), (H) f , (4.3) (see also (1.4), (1.5)) and the continuous embedding Lp(Ω) ↪→ Lσ(Ω),
we infer that

〈ξ, jv〉 =
∫

Ω
ξ(x)jv(x)dx ≥ −

∫
Ω
|ξ(x)||jv(x)|dx

≥ −
∫

Ω
c(1 + |jv(x)|σ−1)|jv(x)|dx

≥ −b̃‖jv‖σ − b̃0 for all v ∈W1,p
0 (Ω) and ξ ∈ ∂Φ(jv),

with constants b̃ > 0 and b̃0 > 0. This confirms the validity of (3.19) with σ̃ = σ. From
Corollary 3.3 part (ii), assumption (H3) holds true.

We are in a position to apply Theorem 3.2, which ensures the existence of a generalized
solution to problem (1.3) in the sense of Definition 1.1. Specifically, we find u ∈ W1,p

0 (Ω) and
a sequence {un}n≥1 ⊂W1,p

0 (Ω) satisfying (S′1), (S
′
2) and

lim inf
n→∞

〈−∆pun + µ∆qun, ϕ〉+ Φ0(u; ϕ) ≥ 0, ∀ϕ ∈W1,p
0 (Ω), (4.4)

with Φ in (4.2). By the Aubin–Clarke Theorem applied to Φ in (4.2), (H) f and (2.2), we find

Φ0(u; ϕ) ≤
∫

Ω
max[−∂g(u(x))ϕ(x)]dx

= −
∫

Ω
min{ f (u(x))ϕ(x), f (u(x))ϕ(x)}dx, ∀ϕ ∈W1,p

0 (Ω). (4.5)

At this point it is enough to insert (4.5) in (4.4) to get that (S′3) holds, which proves the first
part of Theorem 4.2.

Suppose that u ∈ W1,p
0 (Ω) is a generalized solution to problem (1.3) with µ ≤ 0. We note

from property (ii) in Definition 1.1 that

lim sup
n→∞

[
1
p
‖∇un‖p

p −
µ

q
‖∇un‖q

q

]
≤ 1

p
‖∇u‖p

p −
µ

q
‖∇u‖q

q; .
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On the other hand, using the weak lower semicontinuity of the norm in conjunction with
µ ≤ 0 and (i) of Definition 1.1, it turns out

lim sup
n→∞

[
1
p
‖∇un‖p

p −
µ

q
‖∇un‖q

q

]
≥ 1

p
lim sup

n→∞
‖∇un‖p

p −
µ

q
lim inf

n→∞
‖∇un‖p

p

≥ 1
p

lim sup
n→∞

‖∇un‖p
p −

µ

q
‖∇u‖q

q.

By a simple comparison we are led to

lim sup
n→∞

‖∇un‖p ≤ ‖∇u‖p,

which implies the strong convergence un → u in W1,p
0 (Ω) because the space W1,p

0 (Ω) is uni-
formly convex (see, e.g., [2, Proposition 3.32]). On the basis of the strong convergence un → u,
we can utilize the continuity of −∆p : W1,p

0 (Ω)→W−1,p′(Ω) and −∆q : W1,q
0 (Ω)→W−1,q′(Ω)

with q < p, to pass to the limit in (S′3) obtaining (2.4). This amounts to saying that u is a weak
solution of (1.3). Since (2.6) is a particular case of (2.4), the proof is complete.

5 Nonlocal boundary value problems without ellipticity

This section deals with the nonlocal boundary value problem with discontinuities (1.7) and
its particular case (1.8) under the conditions 0 < s < 1, 1 < q < p < +∞, sq < N and µ ∈ R,
thus allowing that the local operator −∆p and the nonlocal operator (−∆)s

q be competing.
The function f : R → R in the right-hand side of (1.7) and (1.8) is required to satisfy

condition (H) f in Section 4. Subsequently, we use the notation in Section 2, in particular
the associated functions f : R → R and f : R → R have the meaning in (1.4) and (1.5),
respectively.

We rely on the continuous embedding W1,p
0 (Ω) ↪→Ws,q

0 (Ω). As in (2.7), there is a constant
C > 0 such that

‖u‖Ws,q
0 (Ω) ≤ C‖∇u‖p, ∀u ∈W1,p

0 (Ω) (5.1)

making the sum −∆pu + µ(−∆)s
qu well defined for u ∈W1,p

0 (Ω) in problems (1.7) and (1.8).
In accordance with Definition 1.1, by a generalized solution to nonlocal problem (1.7) we

mean any u ∈W1,p
0 (Ω) for which one can find a sequence {un}n≥1 ⊂W1,p

0 (Ω) satisfying

(S′′1 ) un ⇀ u in W1,p
0 (Ω);

(S′′2 ) lim sup
n→∞

[
1
p
‖∇un‖p

p +
µ

q
‖un‖q

Ws,q
0 (Ω)

]
≤ 1

p
‖∇u‖p

p +
µ

q
‖u‖q

Ws,q
0 (Ω)

; (5.2)

(S′′3 ) lim inf
n→∞

〈−∆p(un) + µ(−∆)s
q(un), ϕ〉

≥
∫

Ω
min{ f (u(x))ϕ(x), f (u(x))ϕ(x)}dx, ∀ϕ ∈W1,p

0 (Ω).

Here (S′′3 ) is obtained from (S3) in Definition 1.1 by applying the Aubin–Clarke Theorem (see
[4, Theorem 2.7.5]).

Our result on the nonlocal problems (1.7) and (1.8) is as follows.
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Theorem 5.1. Assume that condition (H) f holds. Then, for every µ ∈ R, problem (1.7) admits at
least one generalized solution, which is a weak solution provided µ ≥ 0. In particular, this is valid for
problem (1.8) with f continuous.

Proof. In order to address Theorem 3.2 and Corollary 3.3, we choose: X = W1,p
0 (Ω), Y = Lp(Ω)

and j : W1,p
0 (Ω)→ Lp(Ω) be the inclusion map, which is compact. Consequently, assumption

(H1) is verified.
For a fixed µ ∈ R, we introduce the functional F : W1,p

0 (Ω)→ R by

F(v) =
1
p
‖∇u‖p

p +
µ

q
‖u‖q

Ws,q
0 (Ω)

for all v ∈W1,p
0 (Ω).

This is possible thanks to (5.1). Using (2.8), it is seen that F is continuously differentiable with
the differential

〈DF(u), v〉 = 〈−∆p(un) + µ(−∆)s
q(un), v〉, ∀u, v ∈W1,p

0 (Ω).

By (5.1), Young’s inequality and p > q, we find the estimate

F(v) ≥ 1
p
‖∇v‖p

p −
|µ|
q
‖v‖q

Ws,q
0 (Ω)

≥ 1
2p
‖∇v‖p

p − a0 for all v ∈W1,p
0 (Ω),

with a constant a0 > 0. Condition (3.16) is thus verified with r = p.
Consider the function Φ : Lp(Ω) → R introduced in (4.2). Taking into account (H) f ,

condition (3.19) was already checked in the proof of Theorem 4.2. Gathering (3.16) and (3.19),
we are able to refer to Corollary 3.3, which yields that Theorem 3.2 can be applied. A reasoning
similar to the one in the proof of Theorem 4.2 enables us to conclude that there exists a
generalized solution to problem (1.7) and thus (1.8).

The last step in the proof is to show that any generalized solution of problems (1.7) and
(1.8) is a weak solution provided µ ≥ 0. We argue on the basis of assertion (S′′2 ) in the
definition of generalized solution. Given a generalized solution u ∈ W1,p

0 (Ω) of problem (1.7)
with µ ≥ 0, we compare inequality (5.2) in the definition of generalized solution and the
following inequality derived from weak lower semicontinuity of the norm (note (S′′1 ))

lim sup
n→∞

[
1
p
‖∇un‖p

p +
µ

q
‖un‖q

Ws,q
0 (Ω)

]
≥ 1

p
lim sup

n→∞
‖∇un‖p

p +
µ

q
lim inf

n→∞
‖un‖q

Ws,q
0 (Ω)

≥ 1
p

lim sup
n→∞

‖∇un‖p
p +

µ

q
‖u‖q

Ws,q
0 (Ω)

to deduce that
lim sup

n→∞
‖∇un‖p ≤ ‖∇u‖p.

In view of the uniform convexity of the space W1,p
0 (Ω), property (S′′1 ) entitles the strong con-

vergence un → u in W1,p
0 (Ω). From here and (S′′3 ), through the continuity of −∆p : W1,p

0 (Ω)→
W−1,p′(Ω) and (−∆)s

q : Ws,q
0 (Ω)→W−s,q′(Ω), we reach in the limit (2.9). Therefore u is a weak

solution to nonlocal problem (1.7). If f is continuous, we get (2.10), which completes the proof.

Remark 5.2. As established in [9], one always has Ws,p
0 (Ω) 6⊂ Ws,q

0 (Ω). For this reason we
cannot replace −∆p by the nonlocal operator (−∆)s

p in problems (1.7) and (1.8).
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