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Abstract. We establish the existence of positive solutions for the singular quasilinear
Schrödinger equation{

−∆u− ∆(u2)u = h(x)u−γ + f (x, u) in Ω,
u(x) = 0 on ∂Ω,

where Ω ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary ∂Ω, 1 < γ,
h ∈ L1(Ω) and h > 0 almost everywhere in Ω. The function f may change sign on
Ω. By using the variational method and some analysis techniques, the necessary and
sufficient condition for the existence of a solution is obtained.
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1 Introduction

In this paper we study the existence of solution for the following quasilinear Schrödinger
equation 

−∆u− ∆(u2)u = h(x)u−γ + f (x, u) in Ω,

u > 0 in Ω,

u(x) = 0 on ∂Ω,

(P)

where Ω ⊂ RN(N ≥ 3) is a bounded domain with smooth boundary ∂Ω, 1 < γ, h ∈ L1(Ω),
h > 0 almost everywhere (a.e.) in Ω and f : Ω×R −→ R is a Carathéodory function. We
assume that the function f satisfies one of the following conditions:

( f )1 f (x, s) = b(x)sp, where p ∈ (0, 1), b ∈ L∞(Ω) and b+ = max {b, 0} 6≡ 0.

BCorresponding author. Email: ricardoalveslima8@gmail.com

https://doi.org/10.14232/ejqtde.2020.1.60
https://www.math.u-szeged.hu/ejqtde/


2 R. Lima and M. Reis

( f )2 f (x, s) = −b(x)s22∗−1, where b ∈ L∞(Ω) and b ≥ 0 a.e. in Ω.

We say that a function u ∈ H1
0(Ω) is a weak solution (solution, for short) of (P) if u > 0

a.e. in Ω, and, for every ϕ ∈ H1
0(Ω),

hu−γ ϕ ∈ L1(Ω) (1.1)

and ∫
Ω
[(1 + 2u2)∇u∇ϕ + 2u|∇u|2ϕ] =

∫
Ω

h(x)u−γ ϕ +
∫

Ω
f (x, u)ϕ.

Consider the following quasilinear Schrödinger equation

− ∆u− ∆(u2)u = g(x, u) in Ω, (1.2)

where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω. When g : Ω×R −→ R is a
continuous function, recently, there appeared some works dealing with (1.2), see for example
[1,17,18] and its references. In these works the nonlinearity is non-singular, and so the authors
were able to combine the dual approach of [4] with classic results of variational methods to
prove their main results.

When g is singular, problems of type (1.2) was studied by Do Ó–Moameni [6], Liu–Liu–
Zhao [16], Wang [26] and Dos Santos–Figueiredo–Severo [24]. In [6] the authors studied the
problem 

−∆u− 1
2 ∆(u2)u = λ|u|2u− u− u−γ in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.3)

where Ω is a ball in RN centered at the origin, 0 < γ < 1 and N ≥ 2. They showed that
problem (1.3) has a radially symmetric solution u ∈ H1

0(Ω) for λ ∈ I, where I is an open
interval.

Liu–Liu–Zhao in [16] considered the problem
−∆su− s

2s−1 ∆(u2)u = h(x)u−γ + λup in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.4)

where N ≥ 3, ∆s is the s-Laplacian operator, 2 < 2s < p + 1 < ∞, 0 < γ and h ≥ 0 is
a nontrivial measurable function satisfying the following condition: there exist a function
φ0 ≥ 0 in C1

0(Ω) and q > N such that hφ
−γ
0 ∈ Lq(Ω). The authors used sub-supersolution

method, truncation arguments and variational methods to prove the existence of a λ∗ > 0
such that problem (1.4) has at least two solutions for λ ∈ (0, λ∗).

Wang in [26], by using minimax methods and some analysis techniques, showed the exis-
tence and uniqueness of solutions to the problem

−∆u− ∆(u2)u = h(x)u−γ − up−1 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where N ≥ 3, γ ∈ (0, 1), p ∈ [2, 22∗], h ∈ L
22∗

22∗−1+γ (Ω) and h > 0 a.e. in Ω.
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In [24], Dos Santos–Figueiredo–Severo studied the problem
−∆u− ∆(u2)u = h(x)u−γ + z(x, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.5)

where N ≥ 3, h is a nonnegative function, γ > 0 is a constant and the nonlinearity
z : Ω ×R −→ R is continuous and satisfies some conditions. By using sub-supersolution
method, truncation arguments and the Mountain Pass Theorem they showed the existence of
two solutions. We would like to emphasize that for the authors to use the sub-supersolution
method, the following assumption was very important: there exist φ0 ∈ C1

0(Ω), φ0 ≥ 0, and
q > N such that hφ

−γ
0 ∈ Lq(Ω). Furthermore, we note that our assumption on the function h

is different (see (1.7) below), because it does not guarantee that hv−γ
0 ∈ Lq(Ω) for some q > N.

Singular elliptic problems has been studied extensively in recent years, see [5, 7, 11–14, 21–
23, 25] and the references therein. Especially, Sun in [25] considered the problem

−∆u = h(x)u−γ + b(x)up in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.6)

where Ω ⊂ RN(N ≥ 3) is a bounded domain with smooth boundary ∂Ω, b ∈ L∞(Ω) is a non-
negative function, 0 < p < 1 < γ, h ∈ L1(Ω) and h > 0 a.e. in Ω. By using variational methods
the author showed that the existence of H1

0(Ω)–solutions of (1.6) is related to a compatibility
hypothesis between on the couple (h(x), γ). More precisely, problem (1.6) has a solution in
H1

0(Ω) if and only if there exists v0 ∈ H1
0(Ω) such that∫

Ω
h(x)|v0|1−γ < ∞. (1.7)

Motivated by above results, our main purpose in this paper is to investigate the existence
of H1

0(Ω)-solutions for problem (P). We shall show that the compatibility condition (1.7) on
the couple (h(x), γ) is also optimal for the existence of weak solutions to problem (P). Under
additional assumption on the function h we show that the solutions of (P) belong to C1,α(Ω)

for some α ∈ (0, 1), and as a consequence we obtain uniqueness of solution.
Before giving our main results, we need an additional assumption. The function d(x) =

d(x, ∂Ω) denotes the distance from a point x ∈ Ω to the boundary ∂Ω, where Ω = Ω ∪ ∂Ω is
the closure of Ω ⊂ RN .

We introduce the following assumption:

(bh) b ≥ 0 a.e. in Ω and there exist constants c > 0 and β ∈ (0, 1) such that

h(x) ≤ cdγ−β(x), ∀x ∈ Ω. (1.8)

Our first result is the following.

Theorem 1.1. If ( f )1 holds, then:

a) problem (P) admits a solution u ∈ H1
0(Ω) if and only if there exists a function v0 ∈ H1

0(Ω)

satisfying (1.7);
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b) under the additional assumption (bh) the solution u obtained in a) belongs to C1,α(Ω) for some
α ∈ (0, 1). In particular, problem (P) has a unique solution in H1

0(Ω).

It is worth pointing out that there are some differences between problems (P) and (1.5).
We give one in the following example.

Example 1.2. Let Ω0 be an open set with Ω0 ⊂ Ω and β, p ∈ (0, 1). Then the functions
h(x) = dγ−β(x), x ∈ Ω and f (x, s) = (2χΩ0

(x) − 1)sp, (x, s) ∈ Ω ×R satisfy (1.7) and ( f )1,
respectively (see Remark 3.3). Here we denote by χΩ0

the characteristic function of Ω0. We
claim that the functions h and f do not satisfy the assumption (h1) in [24]. To see this let
y ∈ ∂Ω and k, s > 0. Since limx→y−kh(x) = limx→y−kdγ−β(x) = 0, we can find ε > 0 such
that

f (x, s) = −sp < −kh(x) for every x ∈ {x ∈ Ω : |x− y| < ε} \Ω0.

This proves the claim.

Regularity results for singular elliptic equations have been studied in Giacomoni–
Schindler–Takáč [8], Giacomoni–Saoudi [9] and Marino–Winkert [19] in the particular con-
text of weak singularity, that is γ ∈ (0, 1). Specifically, in [8] the C1,α(Ω) regularity is proved.
In the present paper, we consider the opposite situation where γ > 1 (namely, strong singu-
larity) and give conditions on h which guarantee the C1,α(Ω) regularity of weak solutions of
(P). We observe that due to the difference between the types of singularities, and also due to
the structure of problem (PA) below, the regularity result of [8] can not be applied to prove
Theorem 1.1-b).

Now we state our second result.

Theorem 1.3. Suppose ( f )2 holds. Then problem (P) admits a unique solution u ∈ H1
0(Ω) if and

only if there exists a function v0 ∈ H1
0(Ω) satisfying (1.7).

To prove the existence of a solution for problem (P), we use the method of changing vari-
ables developed in Colin–Jeanjean [4]. With this approach, the energy functional associated to
the new problem has nonhomogeneous terms (see problem (PA)) and some difficulties arise.
For example, the techniques used by the works mentioned above do not apply directly here.
In order to deal with these difficulties, we make a careful analysis of the fiber maps associated
to the energy functional associated to the new problem and we will approach it in a new way.

We emphasize that Theorem 1.1 extends the main result of Sun [25] (see Theorem 1.2 in
[25]), in the sense that we consider the operator Lu = −∆u− ∆(u2)u instead of the Laplacian
operator and the potential b may change sign on Ω. As far as we know, the regularity of
solution (and consequently the uniqueness) obtained in Theorem 1.1-b) is new. Also, Theorem
1.3 extends Theorem 1.1 of Wang [26] in the sense that we consider the case γ > 1.

The paper is organized as follows. In the next section we reformulate problem (P) into
a new one which finds its natural setting in the Sobolev space H1

0(Ω) and we prove some
important lemmas. In section 3, we give the proof of Theorem 1.1. In section 4, we prove The-
orem 1.3 and in the Appendix we prove some properties of the positive solutions of problem
−∆u− ∆(u2)u = h(x)u−γ + λb(x)up in Ω, where the parameter λ ≥ 0 varies.

Notation. Throughout the paper we make use of the following notation:

• c, C denote positive constants, which may vary from line to line.

• H1
0(Ω) denotes the Sobolev space equipped with the norm ‖u‖ =

(∫
Ω |∇u|2dx

)2.
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• Ls(Ω), 1 ≤ s ≤ ∞, denotes the Lebesgue space with the norms ‖u‖s =
(∫

Ω |∇u|sdx
)1/s,

for 1 ≤ p < ∞, ‖u‖∞ = inf {C > 0 : |u(x)| ≤ C a.s. in Ω}.

• For 0 < α ≤ 1, C1,α(Ω) denotes the space of Hölder functions with exponent α. The
norm of C1,α(Ω) is denoted by | · |1,α.

• We denote by φ1 the L∞-normalized (that is, |φ1|∞ = 1) positive eigenfunction of (−∆,
H1

0(Ω)).

• If B is a measurable set in RN , we denote by χB the characteristic function of B.

2 Reformulation of the problem and preliminaries

The natural energy functional corresponding to the problem (P) is the following:

J(u) =
1
2

∫
Ω
(1 + 2u2)|∇u|2 + 1

γ− 1

∫
Ω

h(x)|u|1−γ −
∫

Ω
F(x, u), u ∈ D(J),

where

D(J) =
{

u ∈ H1
0(Ω) :

∫
Ω

h(x)|u|1−γ < ∞
}

and F(x, s) =
∫ s

0 f (x, t)dt.
However, this functional is not well defined, because

∫
Ω u2|∇u|2dx is not finite for all

u ∈ H1
0(Ω), hence it is difficult to apply variational methods directly. In order to overcome

this difficulty, we use the following change of variables introduced by [4], namely, v := g−1(u),
where g is defined by g′(t) = 1

(1+2|g(t)|2)
1
2

in [0, ∞),

g(t) = −g(−t) in (−∞, 0].

We list some properties of g, whose proofs can be found in Liu [15].

Lemma 2.1. The function g satisfies the following properties:

(1) g is uniquely defined, C∞ and invertible;

(2) g(0) = 0;

(3) 0 < g′(t) ≤ 1 for all t ∈ R;

(4) 1
2 g(t) ≤ tg′(t) ≤ g(t) for all t > 0;

(5) |g(t)| ≤ |t| for all t ∈ R;

(6) |g(t)| ≤ 21/4|t|1/2 for all t ∈ R;

(7) (g(t))2 − g(t)g′(t)t ≥ 0 for all t ∈ R;

(8) There exists a positive constant C such that |g(t)| ≥ C|t| for |t| ≤ 1 and |g(t)| ≥ C|t|1/2 for
|t| ≥ 1;

(9) g′′(t) < 0 when t > 0 and g′′(t) > 0 when t < 0;

(10) the functions (g(t))1−γ and (g(t))−γ are decreasing for all t > 0;
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(11) the function (g(t))pt−1 is decreasing for all t > 0;

(12) |g(t)g′(t)| < 1/
√

2 for all t ∈ R.

Proof. We only prove (10) and (11). From g(t), g′(t) > 0 for t > 0 and γ > 1, we obtain[
(g(t))1−γ

]′
= (1− γ)(g(t))−γg′(t) < 0, ∀t > 0

and [
(g(t))−γ

]′
= −γ(g(t))−γ−1g′(t) < 0, ∀t > 0,

which imply that (g(t))1−γ and (g(t))−γ are decreasing for all t > 0. Therefore, (10) has been
proved.
(11) Using the fact that p < 1 and (4) we find[

(g(t))pt−1
]′

= p(g(t))p−1g′(t)t−1 − (g(t))pt−2

= p(g(t))p−1(g′(t)t)t−2 − (g(t))pt−2

< t−2
[
(g(t))p−1g(t)− (g(t))p

]
= 0,

for all t > 0. Hence the function (g(t))pt−1 is decreasing for all t > 0. The lemma is proved.

After a change of variable v = g−1(u), we define an associated problem
−∆v = [h(x)(g(v))−γ + f (x, g(v))] g′(v) in Ω,

v > 0 in Ω,

v(x) = 0 on ∂Ω.

(PA)

We say that a function v ∈ H1
0(Ω) is a weak solution (solution, for short) of (PA) if v > 0

a.e. in Ω, and, for every ϕ ∈ H1
0(Ω),

h(x)(g(v))−γg′(v)ϕ ∈ L1(Ω)

and ∫
Ω
∇v∇ϕ =

∫
Ω

h(x)(g(v))−γg′(v)ϕ +
∫

Ω
f (x, g(v))g′(v)ϕ.

It is easy to see that problem (PA) is equivalent to our problem (P), which takes u = g(v)
as its solutions.

The energy functional associated with problem (PA) is defined as

Φ(v) =
1
2

∫
Ω
|∇v|2 + 1

γ− 1

∫
Ω

h(x)|g(v)|1−γ −
∫

Ω
F(x, g(v)), v ∈ D(Φ),

if D(Φ) 6= ∅, where

D(Φ) =

{
v ∈ H1

0(Ω) :
∫

Ω
h(x)|g(v)|1−γ < ∞

}
and F(x, s) =

∫ s
0 f (x, t)dt.

We shall justify that Φ is well defined by showing that D(Φ) 6= ∅. We first remark that if
v0 satisfies (1.7), then |v0| satisfies (1.7), too. Hence, without loss of generality we can assume
that v0 > 0 a.e. in Ω.

We have the following lemma.
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Lemma 2.2. Let v be Lebesgue measurable and suppose that v > 0 a.e. in Ω. The following statements
are equivalent:

(a)
∫

Ω
h(x)|v|1−γ < ∞;

(b)
∫

Ω
h(x)(g(v))−γg′(v)v < ∞;

(c)
∫

Ω
h(x)(g(v))1−γ < ∞.

In particular, if condition (1.7) holds, then D(Φ) 6= ∅.

Proof. (a)⇒ (b): First, we decompose Ω as Ω = A1 ∪ A2, where

A1 = {x ∈ Ω : |v(x)| ≤ 1} and A2 = {x ∈ Ω : |v(x)| > 1} .

It is easy to see that

h(x)(g(v))−γg′(v)v = h(x)(g(v))−γg′(v)vχA1 + h(x)(g(v))−γg′(v)vχA2 ,

thus ∫
Ω

h(x)(g(v))−γg′(v)v < ∞

if and only if

h(x)(g(v))−γg′(v)vχA1 ∈ L1(Ω) and h(x)(g(v))−γg′(v)vχA2 ∈ L1(Ω). (2.1)

Let us show that (2.1) holds, and consequently that
∫

Ω h(x)(g(v))−γg′(v)v < ∞. Indeed,
by Lemma 2.1 (4), (8) we have

|h(x)(g(v(x)))−γg′(v(x))v(x)| ≤ h(x)(g(v(x)))1−γ

≤ C1−γh(x)v1−γ(x), ∀x ∈ A1

and
|h(x)(g(v(x)))−γg′(v(x))v(x)| ≤ h(x)(g(v(x)))1−γ

≤ C1−γh(x)v(1−γ)/2(x)

≤ C1−γh(x), ∀x ∈ A2,

which shows (2.1), because h|v|1−γ, h ∈ L1(Ω).
(b)⇒ (c): By Lemma 2.1 (4) we obtain∫

Ω
h(x)(g(v))1−γ =

∫
Ω

h(x)(g(v))−γg(v) ≤ 2
∫

Ω
h(x)(g(v))−γg′(v)v < ∞.

(c)⇒ (a): From Lemma 2.1 (5) we find∫
Ω

h(x)|v|1−γ ≤
∫

Ω
h(x)(g(v))1−γ < ∞.

The proof of the lemma is completed.
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From now on we will assume (1.7) and as a consequence, by Lemma 2.2 we obtain D(J) 6=
∅ and D(Φ) 6= ∅. Moreover D(J) = D(Φ).

The fact that we are looking for positive solutions leads us to introduce the sets

V+ =
{

v ∈ H1
0(Ω) \ {0} : v ≥ 0

}
and

D+(J) = {v ∈ V+ : v ∈ D(J)} .

For each v ∈ D+(J) we define the fiber map φv : (0, ∞)→ R by

φv(t) := Φ(tv) =
t2

2

∫
Ω
|∇v|2 + 1

γ− 1

∫
Ω

h(x)(g(tv))1−γ −
∫

Ω
F(x, g(tv)).

In what follows, we will study the main properties of the fiber maps.

Lemma 2.3. If v ∈ D+(J), then φv ∈ C1((0, ∞), R).

Proof. It is clear that Γ̃ ∈ C1((0, ∞), R), where

Γ̃(t) =
t2

2

∫
Ω
|∇v|2 −

∫
Ω

F(x, g(tv)).

Therefore, it is sufficient to show that Γ ∈ C1((0, ∞), R), where Γ is defined by

Γ(t) =
∫

Ω
h(x)(g(tv))1−γ.

Let t > 0. For every s > 0, by the Mean Value Theorem there exists a measurable function
θ = θ(s, x) ∈ (0, 1) such that t + θ(s, x)s→ t as s→ 0 and

Γ(t + s)− Γ(t) = (1− γ)
∫

Ω
h(x)(g((t + θs)v))−γg′((t + θs)v)sv.

Since, by Lemma 2.1(9), (10), the function g−γg′ is decreasing on (0, ∞) it follows that

(g((t + θs)v))−γg′((t + θs)v) ≤ (g(tv))−γg′(tv) a.e. in Ω.

Furthermore, as a consequence of Lemma 2.2 we have h(g(tv))−γg′(tv)v ∈ L1(Ω). Hence,
applying the Lebesgue’s dominated convergence theorem we obtain

Γ′(t) = lim
s→0

Γ(t + s)− Γ(t)
s

= (1− γ)
∫

Ω
h(x)(g(tv))−γg′(tv)v,

that is, Γ is differentiable at t. Finally, using Lemma 2.2 and the Lebesgue’s dominated con-
vergence theorem we deduce that the function Γ′ : (0, ∞) −→ R defined by

Γ′(t) = (1− γ)
∫

Ω
h(x)(g(tv))−γg′(tv)v,

is continuous, namely, Γ ∈ C1((0, ∞), R). The proof is complete.

Our next result deals with the existence of global minima of φv, for every v ∈ D+(J).

Lemma 2.4. If v ∈ D+(J), then there exists a t(v) > 0 such that

φv(t(v)) = inf
t>0

φv(t).
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Proof. We only give here the proof for the case in which ( f )1 holds. The case that ( f )2 holds
is similar.

First, we claim that
lim
t→0

φv(t) = ∞ and lim
t→∞

φv(t) = ∞. (2.2)

In fact, by Lemma 2.1 (5) we have∫
Ω

h(x)(g(tv))1−γdx ≥ t1−γ
∫

Ω
h(x)|v|1−γ

and

tp+1
∫

Ω
|b(x)||v|p+1 ≥

∣∣∣∣∫Ω
b(x)(g(tv))p+1

∣∣∣∣ ≥ 0,

whence
lim
t→0

∫
Ω

h(x)(g(tv))1−γdx = ∞ and lim
t→0

∫
Ω

b(x)(g(tv))p+1 = 0.

Since γ > 1, we deduce from this that limt→0 φv(t) = ∞. Moreover, one has

lim
t→∞

φv(t) ≥ lim
t→∞

t2
[
‖v‖2 − tp−2 ‖b‖∞

p + 1

∫
Ω
|v|p+1dx

]
= ∞,

that is, limt→∞ φv(t) = ∞.
Finally, from the continuity of φv and (2.2) we deduce that there exists a t(v) > 0 such that

φv(t(v)) = inft>0 φv(t). This concludes the proof of the lemma.

The following pictures give the possible graphs of the fiber maps.

φv

t0
t(v)

a)

φv

t0 t(v)

b)

Figure 2.1: Possible graphs of the fiber maps.

Motivated by [25], we define the following constraint sets

N1 =

{
v ∈ V+ : ‖v‖2 −

∫
Ω

f (x, g(v))g′(v)v ≥
∫

Ω
h(x)(g(v))−γg′(v)v

}
and

N2 =

{
v ∈ V+ : ‖v‖2 −

∫
Ω

f (x, g(v))g′(v)v =
∫

Ω
h(x)(g(v))−γg′(v)v

}
.

Observe that if v is a solution of (PA) then v ∈ N2 and N2 ⊂ N1.
It should be noted that for γ > 1, N2 is not closed as usual (certainly not weakly closed).
We prove that every function in D+(J) may be projected on the set N2. In particular,

N1 6= ∅.
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Lemma 2.5. For any v ∈ D+(J) we have t(v)v ∈ N2.

Proof. From Lemma 2.4 we infer that t(v) is a global minimum of φv and hence, by Lemma 2.3
one has φ′v(t(v)) = 0. Thus

0 = t(v)φ′v(t(v))

= ‖t(v)v‖2 −
∫

Ω
h(x)(g(t(v)v))−γg′(t(v)v)(t(v)v)−

∫
Ω

f (x, t(v)v)g′(t(v)v)(t(v)v) = 0,

namely, t(v)v ∈ N2 ⊂ N1. The proof is complete.

We end this section with the following lemmas, which will be used to prove the regularity
of the solutions.

Lemma 2.6. Let Ω be a bounded domain in RN with smooth boundary ∂Ω. Let u ∈ L1
loc(Ω) and

assume that, for some k ≥ 0, u satisfies, in the sense of distributions,{
−∆u + ku ≥ 0 in Ω

u ≥ 0 in Ω.

Then either u ≡ 0, or there exists ε > 0 such that u(x) ≥ εd(x, ∂Ω), x ∈ Ω.

Proof. See Brezis–Nirenberg [3, Theorem 3].

Lemma 2.7. Let a ∈ L1(Ω) and suppose that there exist constants δ ∈ (0, 1) and C > 0 such that
|a(x)| ≤ Cφ−δ

1 (x), for a.e. x ∈ Ω. Then, the problem{
−∆u = a in Ω

u = 0 on ∂Ω,

has a unique solution u ∈ H1
0(Ω). Furthermore, there exist constants α ∈ (0, 1) and M > 0 depending

only on C, α, Ω such that u ∈ C1,α(Ω) and |u|1,α < M.

Proof. See Hai [11, Lemma 2.1, Remark 2.2].

Remark 2.8. For future use we recall that there exist constants l1, l2 > 0 such that

l1d(x, ∂Ω) ≤ φ1(x) ≤ l2d(x, ∂Ω), x ∈ Ω,

where φ1 is the first eigenfunction of (−∆, H1
0(Ω)).

Lemma 2.9. Let ψj : Ω× (0, ∞) −→ [0, ∞), j = 1, 2 are measurable functions such that

ψ1(x, s) ≤ ψ2(x, s) for all (x, s) ∈ Ω× (0, ∞),

and for each x ∈ Ω, the function s 7−→ ψ1(x, s)s−1 is decreasing on (0, ∞). Furthermore let u, v ∈
H1(Ω), with u ∈ L∞(Ω), u > 0, v > 0 on Ω are such that

−∆u ≤ ψ1(x, u) and − ∆v ≥ ψ2(x, v) on Ω.

If u ≤ v on ∂Ω and ψ1(·, u) (or ψ2(·, u)) belongs to L1(Ω), then u ≤ v on Ω.

Proof. See Mohammed [20, Theorem 4.1].
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3 Proof of Theorem 1.1

In this section, we shall prove Theorem 1.1. First, we shall show the existence of a global
minimum of Φ on N1. For this purpose, we need the following lemma.

Lemma 3.1. The set N1 is not empty and the functional Φ is coercive on N1.

Proof. Since (1.7) holds, Lemmas 2.2 and 2.5 imply N1 6= ∅. We now show that Φ is coercive
on N1. Indeed, for every v ∈ N1,

Φ(v) =
1
2

∫
Ω
|∇v|2 + 1

γ− 1

∫
Ω

h(x)(g(v))1−γ − 1
p + 1

∫
Ω

b(x)(g(v))p+1

≥ 1
2

∫
Ω
|∇v|2 − ‖b‖∞

p + 1

∫
Ω
(g(v))p+1,

and from Lemma 2.1 (5) and Sobolev embedding we obtain

Φ(v) ≥ 1
2

∫
Ω
|∇v|2 − ‖b‖∞

p + 1

∫
Ω
|v|p+1 ≥ ‖v‖

2

2
− C
‖v‖p+1

p + 1
,

for some constant C > 0. Since p ∈ (0, 1) one infers that Φ is coercive on N1.

As an immediate consequence of Lemma 3.1, we can deduce that

J1 = inf
v∈N1

Φ(v) and J2 = inf
v∈N2

Φ(v)

are well defined with J1, J2 ∈ R and J2 ≥ J1.
We now prove that the infimum of Φ on N1 is attained.

Lemma 3.2. There exists v ∈ N2 such that J1 = Φ(v) = J2.

Proof. Let {vn} ⊂ N1 be a minimizing sequence for Φ. From Lemma 3.1 the sequence {vn} ⊂
N1 is bounded and then, up to subsequences, there exists v ∈ H1

0(Ω) such that
vn ⇀ v in H1

0(Ω),

vn −→ v in Ls(Ω) for all s ∈ (0, 2∗),

vn −→ v a.e. in Ω.

Since vn > 0 a.e. in Ω, we have v ≥ 0 a.e. in Ω, that is, v ∈ V+. From the definition of N1

and Lemma 2.1 (3), (4), (5) it follows that for some constant C one has

1
2

∫
Ω

h(x)(g(vn))
1−γ ≤

∫
Ω

h(x)(g(vn))
−γg′(vn)vn

≤ ‖vn‖2 −
∫

Ω
b(x)(g(vn))

pg′(vn)vn

≤ ‖vn‖2 +
∫

Ω
|b(x)||vn|p+1

≤ ‖vn‖2 + c||vn||p+1

≤ C.
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Therefore, using Fatou’s lemma we get
∫

Ω θ(x) ≤ C < ∞, where

θ(x) =

{
h(x)(g(v(x)))1−γ, if v(x) 6= 0

∞, if v(x) = 0.

Since g(0) = 0 (by Lemma 2.1 (2)) and
∫

Ω θ(x) < ∞, it follows that v > 0 a.e. in Ω. Thus,
using Fatou’s lemma again, we obtain

0 <
∫

Ω
h(x)(g(v))−γg′(v)v ≤ C

and this jointly with Lemma 2.2 imply that v ∈ D+(J). As a consequence, Lemmas 2.4 and 2.5
apply yielding a global minimum t(v) > 0 such that φv(t(v)) = inft>0 φv(t) and t(v)v ∈ N2.
Furthermore, we have

J1 = lim
n→∞

Φ(vn) = lim inf
n→∞

Φ(vn)

= lim inf
n→∞

[
1
2

∫
Ω
|∇vn|2 +

1
γ− 1

∫
Ω

h(x)g(vn)
1−γ − 1

p + 1

∫
Ω

b(x)(g(vn))
p+1
]

≥ lim inf
n→∞

[
1
2

∫
Ω
|∇vn|2

]
+ lim inf

n→∞

[
1

γ− 1

∫
Ω

h(x)(g(vn))
1−γ

]
− 1

p + 1

∫
Ω

b(x)(g(v))p+1

≥ 1
2

∫
Ω
|∇v|2 + 1

γ− 1

∫
Ω

h(x)(g(v))1−γ − 1
p + 1

∫
Ω

b(x)(g(v))p+1 = φv(1)

≥ φv(t(v)) = Φ(t(v)v)

≥ J2

≥ J1.

Hence
J1 = φv(1) = Φ(v) = J2,

that is, φv(1) = φv(t(v)) = inft>0 φv(t). This implies φ′v(1) = 0 and consequently v ∈ N2 ⊂ N1.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. a) Necessity. Suppose that u ∈ H1
0(Ω) is a solution of (P), by taking ϕ = u

in (1.1), we have ∫
Ω

h(x)|u|1−γ < ∞.

Sufficiency. Let v be the global minimum obtained in Lemma 3.2. We will prove that v is a
solution of (PA). Let ϕ ∈ H1

0(Ω), ϕ ≥ 0. Applying Lemma 2.1 (10) we find∫
Ω

h(x)(g(v + εϕ))1−γ ≤
∫

Ω
h(x)(g(v))1−γ < ∞ ∀ε > 0,

namely, v+ εϕ ∈ D+(J) for every ε > 0. Then, from Lemmas 2.4 and 2.5 there exists a t(ε) > 0
such that φv+εϕ(t(ε)) = inft>0 φv+εϕ(t) and t(ε)(v + εϕ) ∈ N2. Therefore

Φ(v + εϕ) = φv+εϕ(1) ≥ φv+εϕ(t(ε)) = Φ(t(ε)(v + εϕ)) ≥ J2 = Φ(v),
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that is, ∫
Ω

h(x)(g(v + εϕ))1−γ − h(x)(g(v))1−γ

1− γ

≤ ‖v + εϕ‖2 − ‖v‖2

2
−
∫

Ω

b(x)(g(v + εϕ))p+1 − b(x)(g(v))p+1

p + 1
.

Thus, dividing both sides of the above inequality by ε > 0, passing to the limit inferior as
ε −→ 0 and using Fatou’s Lemma, we have∫

Ω
h(x)(g(v))−γg′(v)ϕ =

∫
Ω

lim inf
h(x)(g(v + εϕ))1−γ − h(x)(g(v))1−γ

1− γ

≤
∫

Ω
∇v∇ϕ−

∫
Ω

b(x)(g(v))pg′(v)ϕ. (3.1)

Finally, we can use an argument inspired by Graham–Eagle [10] to show that v is a solution
of (PA). Since v ∈ N2, one has

‖v‖2 −
∫

Ω
b(x)(g(v))pg′(v)v−

∫
Ω

h(x)(g(v))−γg′(v)v = 0.

For arbitrary ϕ ∈ H1
0(Ω) and ε > 0, set Ψ = (v + εϕ)+ and

Ωε
1 = {x ∈ Ω : b(x) < 0 and v(x) + εϕ(x) < 0} .

Then, inserting Ψ into (3.1) and using v ∈ N2, we obtain that

0 ≤
∫

Ω
∇v∇Ψ−

∫
Ω

b(x)(g(v))pg′(v)Ψ−
∫

Ω
h(x)(g(v))−γg′(v)Ψ

=
∫
[v+εϕ≥0]

∇v∇(v + εϕ)− b(x)(g(v))pg′(v)(v + εϕ)− h(x)(g(v))−γg′(v)(v + εϕ)

=

(∫
Ω
−
∫
[v+εϕ<0]

)
∇v∇(v + εϕ)− b(x)(g(v))pg′(v)(v + εϕ)− h(x)(g(v))−γg′(v)(v + εϕ)

= ‖v‖2 −
∫

Ω
b(x)(g(v))pg′(v)v−

∫
Ω

h(x)(g(v))−γg′(v)v

+ ε

[∫
Ω
∇v∇ϕ− b(x)(g(v))pg′(v)ϕ− h(x)(g(v))−γg′(v)ϕ

]
−
∫
[v+εϕ<0]

∇v∇(v + εϕ)− b(x)(g(v))pg′(v)(v + εϕ)− h(x)(g(v))−γg′(v)(v + εϕ)

≤ ε

[∫
Ω
∇v∇ϕ− b(x)(g(v))pg′(v)ϕ− h(x)(g(u))−γg′(v)ϕ

]
− ε

∫
[v+εϕ<0]

∇v∇ϕ + ε
∫

Ωε
1

b(x)(g(v))pg′(v)ϕ.

Since the measure of the domains of integration [v + εϕ < 0] and Ωε
1 tends to zero as ε → 0,

we then divide the above expression by ε > 0 to obtain

0 ≤
∫

Ω
∇v∇ϕ− b(x)(g(v))pg′(v)ϕ− h(x)(g(v))−γg′(v)ϕ,

as ε→ 0. Replacing ϕ by −ϕ we conclude:∫
Ω
∇v∇ϕ− b(x)(g(v))pg′(v)ϕ− h(x)(g(v))−γg′(v)ϕ = 0, ∀ϕ ∈ H1

0(Ω),
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and therefore v is a solution of (PA). This means that u = g(v) is a solution of problem (P).
We complete the proof of a).

b) Suppose that v is a solution of (PA). We will show that v ∈ C1,α(Ω) and hence, as g ∈ C∞

we get u = g(v) ∈ C1,α(Ω). Since v 6≡ 0 satisfies in the sense of distributions{
−∆v ≥ 0 in Ω,

v ≥ 0 in Ω,

we can apply Lemma 2.6 yielding a ε > 0 such that

v(x) ≥ εd(x, ∂Ω), x ∈ Ω,

εd(x, ∂Ω) < 1, x ∈ Ω. (3.2)

Then, by (1.8) and Lemma 2.1 (3), (8), (10) there exist constants c, C > 0 and β ∈ (0, 1)
such that

|h(x)(g(v))−γg′(v)| ≤ h(x)(g(εd(x, ∂Ω)))−γ ≤ h(x)C(εd(x, ∂Ω))−γ

≤ Ccdγ−β(x, ∂Ω)d−γ(x, ∂Ω)

= Cd−β(x, ∂Ω)

≤ Cφ
−β
1 (x) (3.3)

for every x ∈ Ω, and hence h(g(v))−γg′(v) ∈ L1(Ω). Thus, by Lemma 2.7 there exists a
solution Ψ1 ∈ C1,α1(Ω), for some α1 ∈ (0, 1), of the problem

−∆w = h(x)(g(v))−γg′(v) in Ω,

w > 0 in Ω,

w = 0 on ∂Ω.

Next, we prove that the problem
−∆w = b(x)(g(v))pg′(v) in Ω,

w > 0 in Ω,

w = 0 on ∂Ω,

(3.4)

has a unique solution Ψ2 ∈ C1,α2(Ω), for some α2 ∈ (0, 1).
Let δ := 1− p ∈ (0, 1). From (3.2) and Lemma 2.1 (8), (12) we have

|b(x)gp(v(x))g′(v(x))| ≤ ‖b‖∞g−δ(v(x))(g(v(x))g′(v(x))) ≤ Cφ−δ
1 (x),

that is,
|b(x)gp(v(x))g′(v(x))| ≤ Cφ−δ

1 (x),

for every x ∈ Ω and some constant C > 0. Therefore, by Lemma 2.7 problem (3.4) has a
unique solution Ψ2 ∈ C1,α2(Ω), for some α2 ∈ (0, 1).

We claim that v = Ψ1 + Ψ2. Indeed, using the fact that Ψ1, Ψ2 and v are solutions, we find∫
Ω
∇v∇ϕ =

∫
Ω

[
h(x)(g(v))−γg′(v) + b(x)(g(v))pg′(v)

]
ϕ =

∫
Ω
∇(Ψ1 + Ψ2)∇ϕ,
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for every ϕ ∈ H1
0(Ω). Therefore, v = Ψ1 +Ψ2, and then v ∈ C1,α(Ω), where α := min{α1, α2} ∈

(0, 1). Thus, the claim follows, and consequently u = g(v) ∈ C1,α(Ω) showing the regularity
of the solutions of (P).

Finally, we show the uniqueness of solution to (P). For this purpose, we show the unique-
ness of solution to (PA). Let v1 and v2 be two solutions of (PA). We will prove that v1 ≤ v2 in
Ω. First, let us set

j(x, s) := h(x)(g(s))−γg′(s) + b(x)(g(s))pg′(s).

Fix x ∈ Ω. According to Lemma 2.1 (9), (10), (11), the function s 7−→ j(x, s)s−1 is decreasing
on (0, ∞). Moreover, from (3.3) one has

0 ≤ j(x, vi) ≤ Cφ
−β
1 (x) + b(x)(g(vi(x)))pg′(vi(x)), x ∈ Ω,

hence j(x, vi) ∈ L1(Ω) for i = 1, 2. Thus, we can use Lemma 2.9 with ψi = j (i = 1, 2), u = v1

and v = v2 to get v1 ≤ v2 in Ω. Similarly we get v2 ≤ v1 in Ω, thus v1 = v2. This concludes
the proof of the theorem.

Remark 3.3. If (1.8) holds, then problem (P) has a solution. Indeed, choose v0 = φ1 ∈ H1
0(Ω).

From Remark 2.8 and (1.8) we have h|φ1|1−γ ≤ clβ−γ
1 |φ1|1−β ∈ L1(Ω). Theorem 1.1 a) then

guarantees the existence of a solution of (P).

4 Proof of Theorem 1.3

In this section, we assume ( f )2, that is, f (x, s) = −b(x)s22∗−1 with 0 ≤ b ∈ L∞(Ω) and b 6≡ 0.
Since the embedding H1

0(Ω) ↪→ L2∗(Ω) is not compact, the proof of Lemma 3.2 can not be
applied directly here. In order to overcome this difficulty, we use the Brezis–Lieb Theorem
(see [2]).

Now, we have

Φ(v) =
1
2

∫
Ω
|∇v|2 + 1

γ− 1

∫
Ω

h(x)(g(v))1−γ +
1

22∗

∫
Ω

b(x)(g(v))22∗ ,

for v ∈ D(J). From (1.7) and Lemmas 2.2 and 2.5, one has N1 6= ∅.
We will show the following.

Lemma 4.1. The functional Φ is coercive on N1

Proof. For every v ∈ N1, we have Φ(v) ≥ 1
2‖v‖2 and hence, Φ is coercive on N1.

As an immediate consequence of Lemma 4.1, we can deduce that

J1 = inf
v∈N1

Φ(v) and J2 = inf
v∈N2

Φ(v)

are well defined with J1, J2 ∈ R and J2 ≥ J1.
Next, we prove the following lemma.

Lemma 4.2. There exists v ∈ N2 such that J1 = Φ(v) = J2.
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Proof. Let {vn} ⊂ N1 be a minimizing sequence for Φ. From Lemma 4.1 the sequence {vn} ⊂
N1 is bounded in H1

0(Ω), so in L2∗(Ω) too, and then, up to subsequences, there exists v ∈
H1

0(Ω) such that 
vn ⇀ v in H1

0(Ω),

vn −→ v in Ls(Ω) for all s ∈ (0, 2∗),

vn −→ v a.s. in Ω.

As a consequence, by Lemma 2.1 (6), there exists a constant C > 0 such that∫
Ω

b(x)(g(vn))
22∗ =

∫
Ω

[
b

1
2∗
]2∗ [

(g(vn))
2]2∗ ≤ ‖b‖∞K22∗

0

∫
Ω
|vn|2

∗ ≤ C.

Moreover, b(x)(g(vn))22∗ −→ b(x)(g(v))22∗ a.s. in Ω. Hence, by virtue of the Brezis–Lieb
Theorem (see [2]) it follows that∫

Ω
b(x)(g(vn))

22∗ =
∫

Ω
b(x)(g(v))22∗ +

∫
Ω

b(x)|(g(vn))
22∗ − (g(v))22∗ |+ o(1)

≥
∫

Ω
b(x)(g(v))22∗ + o(1).

(4.1)

We can repeat the arguments used in Lemma 3.2 to prove the following.

• v > 0 a.e. in Ω and
∫

Ω
h(x)(g(v))−γg′(v)v < ∞;

• there exists t(v) > 0 such that t(v)v ∈ N2.

Then, by (4.1) and the Fatou’s lemma we find

J1 = lim Φ(vn)

= lim inf
[

1
2

∫
Ω
|∇vn|2 +

1
γ− 1

∫
Ω

h(x)(g(vn))
1−γ +

1
22∗

∫
Ω

b(x)(g(vn))
22∗
]

≥ 1
2

∫
Ω
|∇v|2 + 1

γ− 1

∫
Ω

h(x)(g(v))1−γ +
1

22∗

∫
Ω

b(x)(g(v))22∗

= φv(1)

≥ φv(t(v)) = Φ(t(v)v) ≥ J2 ≥ J1.

Hence
J1 = φv(1) = Φ(v) = J2,

that is, φv(1) = φv(t(v)) = inft>0 φv(t). This implies φ′v(1) = 0 and consequently v ∈ N2 ⊂ N1.
This ends the proof.

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Necessity. Repeating the argument used to prove the corresponding claim
in Theorem 1.1 a), the result follows.

Sufficiency. Let v be the global minimum obtained in Lemma 4.2. We will prove that v is a
solution of (PA). Let ϕ ∈ H1

0(Ω), ϕ ≥ 0 and ε > 0. We can repeat the arguments used in
Theorem 1.1 a) to prove the following.

• h(· )(g(v + εϕ))1−γ ∈ L1(Ω);



Quasilinear Schrödinger equation with singular nonlinearity 17

• there exists a t(ε) > 0 such that φv+εϕ(t(ε)) = inft>0 φv+εϕ(t) and t(ε)(v + εϕ) ∈ N2;

•
∫

Ω h(x)(g(v))−γg′(v)ϕ ≤
∫

Ω∇v∇ϕ +
∫

Ω b(x)(g(v))22∗−1g′(v)ϕ.

From this information, as in Theorem 1.1 a), we can apply an argument inspired by Graham-
Eagle [10] to get

0 ≤ ‖v‖2 +
∫

Ω
b(x)(g(v))22∗−1g′(v)v−

∫
Ω

h(x)(g(v))−γg′(v)v

+ ε

[∫
Ω
∇v∇ϕ + b(x)(g(v))22∗−1g′(v)ϕ− h(x)(g(v))−γg′(v)ϕ

]
−
∫
[v+εϕ<0]
∇v∇(v + εϕ) + b(x)(g(v))22∗−1g′(v)(v + εϕ)− h(x)(g(v))−γg′(v)(v + εϕ)

≤ ε

[∫
Ω
∇v∇ϕ + b(x)(g(v))22∗−1g′(v)ϕ− h(x)(g(v))−γg′(v)ϕ

]
− ε

∫
[v+εϕ<0]
∇v∇ϕ + b(x)(g(v))22∗−1g′(v)ϕ,

for every ϕ ∈ H1
0(Ω).

Since the measure of the domain of integration [v + εϕ < 0] tends to zero as ε → 0, we
then divide the above expression by ε > 0 to obtain

0 ≤
∫

Ω
∇v∇ϕ− b(x)(g(v))pg′(v)ϕ− h(x)(g(v))−γg′(v)ϕ,

as ε→ 0. Replacing ϕ by −ϕ we conclude:∫
Ω
∇v∇ϕ− b(x)(g(v))pg′(v)ϕ− h(x)(g(v))−γg′(v)ϕ = 0, ∀ϕ ∈ H1

0(Ω),

and therefore v is a solution of (PA). This means that u = g(v) is a solution of problem (P).
Finally, we show the uniqueness of solution to (P). For this purpose, we show the unique-

ness of solution to (PA). Let v1 and v2 be two solutions of (PA). We will prove that v1 = v2

in Ω. First, let us set

j(x, t) = −b(x)(g(t))22∗−1g′(t) + h(x)(g(t))−γg′(t),

for x ∈ Ω and t > 0. Note that j(., t) is decreasing by virtue of Lemma 2.1 (9), (10). Thus,

‖v1 − v2‖2 =
∫

Ω
(j(x, v1)− j(x, v2))(v1 − v2) < 0,

which yields v1 = v2. Hence, problem (PA) has a unique solution. The proof of the theorem is
complete.

Appendix A

Consider the problem 
−∆u− ∆(u2)u = h(x)u−γ + λb(x)up in Ω,

u > 0 in Ω,

u(x) = 0 on ∂Ω,

(Pλ)
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where λ ≥ 0, 0 < p < 1, 0 ≤ b ∈ L∞(Ω) and b 6≡ 0.
This appendix is devoted to the study of some properties of the solutions of (Pλ). From

now on we assume (1.7) holds. Therefore, by Theorem 1.1 problem (Pλ) has a solution, which
we denote by uλ.

The main result of this appendix is stated next.

Theorem A.1. The following properties are valid:

a) uλ ≥ u0 in Ω for every λ > 0.

b) uλ −→ u0 in H1
0(Ω) as λ −→ 0.

In order to prove Theorem A.1, we consider the problem
−∆v = h(x)(g(v))−γg′(v) + λb(x)(g(v))pg′(v) in Ω,

v > 0 in Ω,

v(x) = 0 on ∂Ω,

(Dλ)

and denote by vλ = g−1(uλ) the solution obtained in the proof of Theorem 1.1.
Let Φλ the energy functional associated to (Dλ). For each λ ≥ 0, let us set

Nλ =

{
v ∈ V+ : ||v||2 −

∫
Ω

λb(g(v))pg′(v)v ≥
∫

Ω
h(x)(g(v))−γg′(v)v

}
.

We can now state the key lemma for proving Theorem A.1.

Lemma A.2. The following properties hold true:

a) vλ ≥ v0 in Ω.

b) vλ −→ v0 in H1
0(Ω) as λ −→ 0.

c) lim
λ→0

Φλ(vλ) = Φ0(v0) > 0.

d) If (1.8) holds, then the function [0, ∞) 3 λ 7−→ Φλ(vλ) is continuous and decreasing.

Proof. a) Using the fact that v0 and vλ are solutions of (D0) and (Dλ), respectively, and Lemma
2.1 (9), (10) we have

−‖(vλ − v0)
−‖2 =

∫
Ω
((g(vλ))

−γg′(vλ)− (g(v0))
−γg′(v0) + λb(x)(g(vλ))

pg′(vλ))(vλ − v0)
−

≥
∫

Ω
((g(vλ))

−γg′(vλ)− (g(v0))
−γg′(v0))(vλ − v0)

−

=
∫
{vλ<v0}

((g(vλ))
−γg′(vλ)− (g(v0))

−γg′(v0))(vλ − v0)
− ≥ 0.

As a consequence one has ‖(vλ − v0)−‖ = 0, which implies vλ ≥ v0 in Ω.

b) Let {λn} ⊂ (0, ∞) be a sequence such that λn → 0 and denote by vλn = vn. We claim that
{vn} is bounded in H1

0(Ω). Indeed, since {vn} ⊂ Nλn it follows that

‖vn‖2 =
∫

Ω
h(x)(g(vn))

−γg′(vn)vn + λn

∫
Ω

b(g(vn))
pg′(vn)vn.
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Thus, from Lemma 2.1 (4), (5), (10) and vn ≥ v0 in Ω we get

‖vn‖2 ≤
∫

Ω
h(x)(g(vn))

1−γ + λn

∫
Ω

b(x)(g(vn))
p+1

≤
∫

Ω
h(x)(g(v0))

1−γ + λn

∫
Ω

b(x)|vn|p+1

≤
∫

Ω
h(x)(g(v0))

1−γ + λnC‖vn‖p+1

and hence {vn} is bounded in H1
0(Ω), because 0 < p < 1.

Therefore, there exists ψ ∈ H1
0(Ω), ψ ≥ 0 such that, up to a subsequence, we have

vn ⇀ ψ in H1
0(Ω),

vn → ψ in Ls(Ω) for all s ∈ (0, 2∗),

vn → ψ a.s. in Ω.

As in the proof of Lemma 3.2, we derive that ψ > 0 in Ω. This implies that

h(x)(g(vn))
−γg′(vn)(vn − ψ)→ 0 a.s. in Ω,

and by virtue of Lemma 2.1 (4), (9), (10) and vn ≥ v0 in Ω one finds

|h(x)(g(vn))
−γg′(vn)(vn − ψ)| ≤ h(x)(g(vn))

1−γ + h(x)(g(vn))
−γg′(vn)ψ

≤ h(x)(g(v0))
1−γ + h(x)(g(v0))

−γg′(v0)ψ,

where
h(x)(g(v0))

1−γ + h(x)(g(v0))
−γg′(v0)ψ ∈ L1(Ω),

because v0 is a solution of (D0). Hence, by the Lebesgue’s dominated convergence theorem
we get ∫

Ω
h(x)(g(vn))

−γg′(vn)(vn − ψ) −→ 0. (A.1)

As a consequence of (A.1) we have

lim
n→∞

(vn, vn − ψ) = lim
n→∞

∫
Ω
∇vn∇(vn − ψ) =

= lim
n→∞

[∫
Ω

h(x)(g(vn))
−γg′(vn)(vn − ψ) + λn

∫
Ω

b(x)(g(vn))
pg′(vn)(vn − ψ)

]
= 0,

and since vn ⇀ ψ, it follows that

lim
n→∞
‖vn − ψ‖2 = lim

n→∞
(vn, vn − ψ)− lim

n→∞
(ψ, vn − ψ) = 0,

namely, vn −→ ψ in H1
0(Ω) as n→ ∞.

To end the proof of b), it is sufficient to show that ψ = v0. Indeed, because vn is a solution
of (Dλn) one has∫

Ω
∇vn∇ϕ =

∫
Ω

h(x)(g(vn))
−γg′(vn)ϕ + λn

∫
Ω

b(x)(g(vn))
pg′(vn)ϕ, (A.2)
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for all ϕ ∈ H1
0(Ω). Moreover, from v0 ≤ vn in Ω and Lemma 2.1 (9), (10) we find

h(x)(g(vn))
−γg′(vn)ϕ −→ h(x)(g(ψ))−γg′(ψ)ϕ a.s. in Ω,

and

|h(x)(g(vn))
−γg′(vn)ϕ| ≤ h(x)(g(v0))

−γg′(v0)ϕ.

Therefore, letting n → ∞ in (A.2), and by using Lebesgue’s dominated convergence theorem
we obtain ∫

Ω
∇ψ∇ϕ =

∫
Ω

h(x)(g(ψ))−γg′(ψ)ϕ,

for every ϕ ∈ H1
0(Ω). This means that ψ is a solution of (D0), and by uniqueness of solutions

of (D0) we deduce that ψ = v0. This ends the proof of b).

c) From a) and b) it follows that vλ ≥ v0 for all λ > 0 and vλ −→ v0 in H1
0(Ω) as λ → 0.

Thus, reasoning as in b), and by using Lebesgue’s dominated convergence theorem we get
limλ→0 Φλ(vλ) = Φ0(v0).

d) We can argue as in b) to show that the function is continuous. In order to prove that it is
decreasing, let 0 ≤ λ < µ. Then,

Φλ(vλ) > Φµ(vλ) ≥ Φµ(tµ(vλ)vλ) ≥ Φµ(vµ),

that is, the function [0, ∞) 3 λ 7−→ Φλ(vλ) is decreasing. We complete the proof of the
lemma.

λ0

Φλ(vλ)

Φ0(v0)

Figure A.1: Graph of function [0, ∞) 3 λ 7−→ Φλ(vλ).

We are now in a position to prove Theorem A.1.

Proof of Theorem A.1. a) Let uλ = g(vλ) and u0 = g(v0). By Lemma A.2 a) we have vλ ≥ v0 in
Ω, for every λ ≥ 0. So, by virtue of Lemma 2.1 (3) we find

uλ = g(vλ) ≥ g(v0) = u0 in Ω.

This finishes the proof of a).

b) We first observe that ∇uλ = g′(vλ)∇vλ, for each λ ≥ 0. Then, as a consequence of the
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inequality (x + y)2 ≤ 2(x2 + y2), for x, y ≥ 0, and Lemma 2.1(3) we get∫
Ω
|∇uλ −∇u0|2 =

∫
Ω
|g′(vλ)∇vλ − g′(v0)∇v0|2

≤
∫

Ω
(g′(vλ)|∇vλ −∇v0|+|g′(vλ)− g′(v0)||∇v0|)2

≤ 2
∫

Ω
(g′(vλ))

2|∇vλ −∇v0|2 + 2
∫

Ω
|g′(vλ)− g′(v0)|2|∇v0|2

≤ 2
∫

Ω
|∇vλ −∇v0|2 + 2

∫
Ω
|g′(vλ)− g′(v0)|2|∇v0|2.

Hence, it is sufficient to prove that∫
Ω
|∇vλ −∇v0|2 −→ 0 and

∫
Ω
|g′(vλ)− g′(v0)|2|∇v0|2 −→ 0, as λ→ 0.

We already know (see Lemma A.2 b)) that
∫

Ω|∇vλ −∇v0|2 −→ 0 as λ → 0. Moreover, as
g′(t) ≤ 1 for every t ≥ 0, we can apply Lebesgue’s dominated convergence to infer that∫

Ω
|g′(vλ)− g′(v0)|2|∇v0|2 −→ 0 as λ→ 0.

This completes the proof of Theorem A.1.
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