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1 Introduction

Let I = (0, ∞) and u be a continuous and nonnegative function. Suppose that v is a positive
function such that it is sufficiently times continuously differentiable on the interval I and for
any a > 0 the function v−1 is integrable on the interval (0, a).

Let T ≥ 0, IT = (T, ∞) and Wn
2,v ≡ Wn

2,v(IT) be the space of functions f : IT → R

having generalized derivatives up to nth order on the interval IT, for which ‖ f (n)‖2,v < ∞,

where ‖g‖2,v =
( ∫ ∞

T v(t)|g(t)|2dt
) 1

2 is the standard norm of the weighted space L2,v(I) ≡
L2,v. From the conditions on the function v it easily follows the existence of the finite limit
limt→T+ f (i)(t) ≡ f (i)(T), i = 0, 1, . . . , n− 1, for any f ∈ Wn

2,v. Therefore, the space Wn
2,v is a

normalized space with the norm

‖ f ‖Wn
2,v

= ‖ f (n)‖2,v +
n−1

∑
i=0
| f (i)(T)|. (1.1)

Let M̊2(IT) = { f ∈Wn
2 (IT) : supp f ⊂ IT and supp f is compact}.
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By the assumptions on the function v we have that M̊2(IT) ⊂ Wn
2,v. Denote by W̊n

2,v =

W̊n
2,v(IT) the closure of the set M̊2 with respect to norm (1.1).

In the paper we investigate three related problems.

Problem 1. Establish criteria of strong oscillation and non-oscillation of the 2nth order differ-
ential equation

(−1)n(v(t)y(n)(t))(n) − λu(t)y(t) = 0, t ∈ I, (1.2)

where n > 1 and λ > 0.

A solution of equation (1.2) is a function y : I → R that is n times differentiable together
with the function v(t)y(n)(t) on the interval I, satisfying equation (1.2) for all t ∈ I.

Equation (1.2) is called [9, p. 6] oscillatory, if for any T > 0 there exists a (non-trivial)
solution of this equation, having more than one zero with multiplicity n to the right of T.
Otherwise equation (1.2) is called non-oscillatory. In the sequel, the expression “solution of
equation” will mean “non-trivial solution of equation” unless the opposite is specified.

Equation (1.2) is called strong non-oscillatory (oscillatory), if it is non-oscillatory (oscilla-
tory) for all values λ > 0.

In the mathematical literature, the most number of works is devoted to the oscillatory
properties of linear, semilinear and nonlinear second-order differential equations (see, e.g., [5]
and references given there). However, such studies for a higher order equation are relatively
rare due to the fact that not all methods of studying a second order equation are extended to
a higher order equation (see [6]). One of the more universal methods to study the oscillatory
properties of symmetric differential equations is the variational method. However, in the
variational method, the problem is reduced to solving Problem 3, which has not yet been
completely studied. Another method of studying an equation in the form (1.2) is to transfer
from equation (1.2) to the system of Hamilton’s equations, but even here it is difficult to
find the fundamental solutions of the Hamiltonian system, especially when the coefficients
of equation (1.2) are arbitrary functions. Therefore, in the works devoted to the problem of
oscillation or strong oscillation of higher order equations in the form (1.2), all or one of the
coefficients are power functions (see, [6–8] and references given there). In a more general case,
in terms of the coefficients of the equation, criteria for its strong oscillation and non-oscillation
are given in [20].

The oscillatory and non-oscillatory properties of higher order differential equations and
their relation to the spectral characteristics of the corresponding differential operators are well
presented in monograph [9].

Problem 2. Investigate the spectral properties of the self-adjoint differential operator L gener-
ated by the differential expression

l(y) = (−1)n 1
u(t)

(v(t)y(n))(n), (1.3)

in the Hilbert space L2,u ≡ L2,u(I) with inner product ( f , g)2,u =
∫ ∞

0 f (t)g(t)u(t)dt, where
u > 0.

The investigation of the spectral characteristics of the operator L is the subject of many
works (see, e.g., [2, 3], [9, Chapters 29 and 34] , [10, 14, 21] and references given there).
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Problem 3. Find necessary and sufficient conditions for the validity of the inequality∫ ∞

T
u(t)| f (t)|2dt ≤ CT

∫ ∞

T
v(t)| f (n)(t)|2dt, f ∈ W̊n

2,v (1.4)

and the sharp estimate of the constant CT.

The inequality of the type (1.4) was considered in many works (see, e.g., [1, 11, 17, 18] and
references given there). The history of the problem and the main achievements are shortly
presented in monographs [12] and [13]. Let us note that in [13, Chapter 4] the corresponding
comments are given wider than in [12].

We study all these three problems depending on an integral behavior of the function v in
a neighborhood of infinity. Problems 1 and 2 have been already investigated in the strong
singular case ∫ ∞

T
v−1(t)dt = ∞. (1.5)

Here we assume that ∫ ∞

T
v−1(t)dt < ∞ and

∫ ∞

T
v−1(t)t2dt = ∞ (1.6)

for any T ≥ 0.
The work is organized as follows. In Section 2 we give necessary and sufficient conditions

for the validity of inequality (1.4). In Section 3 on the basis of the results on inequality (1.4)
we find necessary and sufficient conditions for the functions u and v, under which equation
(1.2) is strong oscillatory or non-oscillatory. In Section 4, some spectral characteristics of the
operator L are obtained.

The symbol A � B means A ≤ CB with some constant C. If A � B � A, then we write
A ≈ B. Moreover, χM stands for the characteristic function of the set M.

2 Validity of inequality (1.4)

We investigate (1.4) under condition (1.6). First, we present the known results required for the
proof of the validity of inequality (1.4).

Let 0 ≤ a < b ≤ ∞. From the paper [13, p. 6 and 7], the following theorem follows.

Theorem A.
(i) The inequality(∫ b

a
u(x)

(∫ x

a
f (t)dt

)2

dx

) 1
2

≤ C
(∫ b

a
v(t) f 2(t)dt

) 1
2

, f ≥ 0, (2.1)

holds if and only if

A+ = sup
a<z<b

(∫ b

z
u(x)dx

) 1
2
(∫ z

a
v−1(t)dt

) 1
2

< ∞.

Moreover, A+ ≤ C ≤ 2A+, where C is the best constant in (2.1).
(ii) The inequality(∫ b

a
u(x)

(∫ b

x
f (t)dt

)2

dx

) 1
2

≤ C
(∫ b

a
v(t) f 2(t)dt

) 1
2

, f ≥ 0, (2.2)
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holds if and only if

A− = sup
a<z<b

(∫ z

a
u(x)dx

) 1
2
(∫ b

z
v−1(t)dt

) 1
2

< ∞.

Moreover, A− ≤ C ≤ 2A−, where C is the best constant in (2.2).
Let

A1 = sup
a<z<b

(∫ b

z
u(x)dx

) 1
2
(∫ z

a
(z− t)2(n−1)v−1(t)dt

) 1
2

,

A2 = sup
a<z<b

(∫ b

z
(x− z)2(n−1)u(x)dx

) 1
2
(∫ z

a
v−1(t)dt

) 1
2

.

The next statement follows from the results in the work [21].

Theorem B. The inequality

∫ b

a
u(z)

(∫ z

a
(z− t)n−1 f (t)dt

)2

dz ≤ C
∫ b

a
v(t) f 2(t)dt, f ≥ 0, (2.3)

holds if and only if max{A1, A2} < ∞. Moreover,

C ≈ max{A1, A2}, (2.4)

where C is the best constant in (2.3).

Assume that limt→∞ f (n−1)(t) ≡ f (n−1)(∞) and

LR(n−1)Wn
2,v =

{
f ∈Wn

2,v : f (i)(T) = 0, i = 0, 1, . . . , n− 1; f (n−1)(∞) = 0
}

,

LWn
2,v =

{
f ∈Wn

2,v : f (i)(T) = 0, i = 0, 1, . . . , n− 1
}

.

From Theorems 1 and 2 in [15] in view of the conditions on v−1 in a neighborhood of zero, it
follows the next statement.

Theorem C.

(i) If (1.5) holds, then
W̊n

2,v ≡ LWn
2,v; (2.5)

(ii) if (1.6) holds, then

W̊n
2,v ≡ LR(n−1)Wn

2,v and LWn
2,v(IT+1) ≡ LR(n−1)Wn

2,v(IT+1)⊕ P∞, (2.6)

where P∞ = {P(t) = cχIT+1(t)t
n−1 : c ∈ R}.

Assume that J( f )=
∫ ∞

T u(t)| f (t)|2dt∫ ∞
T v(t)| f (n)(t)|2dt

, CL = sup f∈LWn
2,v

J( f ) and CLR≡CT = sup f∈LR(n−1)Wn
2,v

J( f ).
It is obvious that CLR ≤ CL. We investigate the estimate of the value CLR under the assumption
CL = ∞, that in view of (2.6) is equivalent to the condition∫ ∞

α
u(x)x2(n−1)dx = ∞ (2.7)

for any α > T.
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Let τ be an arbitrary point of the interval IT. Assume

A1,1(T, τ) = sup
T<z<τ

∫ τ

z
u(x)dx

∫ z

T
(z− t)2(n−1)v−1(t)dt,

A1,2(T, τ) = sup
T<z<τ

∫ τ

z
u(x)(x− z)2(n−1)dx

∫ z

T
v−1(t)dt,

A1,3(T, τ) =
∫ ∞

τ
u(x)(x− τ)2(n−2)dx

∫ τ

T
(τ − t)2v−1(t)dt,

A1,4(T, τ) =
∫ ∞

τ
u(x)dx

∫ τ

T
(τ − t)2(n−1)v−1(t)dt,

A2,1(T, τ) = sup
z>τ

∫ ∞

z
u(x)(x− τ)2(n−2)dx

∫ z

τ
(t− τ)2v−1(t)dt,

A2,2(T, τ) = sup
z>τ

∫ z

τ
u(x)(x− τ)2(n−1)dx

∫ ∞

z
v−1(t)dt,

A(T, τ) = max
{

A1,1(T, τ), A1,2(T, τ), A1,3(T, τ), A1,4(T, τ), A2,1(T, τ), A2,2(T, τ)
}

.

Due to (2.6) inequality (1.4) can be written in the form∫ ∞

T
u(t)| f (t)|2dt ≤ CT

∫ ∞

T
v(t)| f (n)(t)|2dt, f ∈ LR(n−1)Wn

2,v.

In work [18] it is obtained that A(T, τ) < ∞ is necessary and sufficient condition for the
validity of this inequality, where

∫ τ
T v−1(t)dt =

∫ ∞
τ v−1(t)dt. Here we obtain a simpler criterion

that is usable for the application to Problem 1 and 2.

Theorem 2.1. Let T ≥ 0. Let (1.6) and (2.7) hold. Inequality (1.4) holds if and only if

lim
z→∞

∫ ∞

z
u(x)(x− τ)2(n−2)dx

∫ z

τ
(t− τ)2v−1(t)dt < ∞ (2.8)

and
lim
z→∞

∫ z

τ
u(x)(x− τ)2(n−1)dx

∫ ∞

z
v−1(t)dt < ∞. (2.9)

Moreover, there exists a point τT : T < τT < ∞ such that

CT ≈ A(T, τT) = max{A2,1(T, τT), A2,2(T, τT)}, (2.10)

where CT is the best constant in (1.4).

Proof. Sufficiency. Let (2.8) and (2.9) hold. Then, due to the conditions on the weight functions
u and v, we get that A(T, τ) < ∞ for any τ ∈ IT. Therefore, on the basis of the results in
[18], inequality (1.4) holds. Now, let us estimate the constant CT from above. From (2.6) it
follows that f (i)(T) = 0, i = 0, 1, . . . , n − 1, f (n−1)(∞) = 0 for any f ∈ W̊n

2,v. Hence, we
present f ∈ W̊n

2,v in the form f (x) = 1
(n−2)!

∫ x
T (x− s)n−2 f (n−1)(s)ds, x > T, where f (n−1)(s) =∫ s

T f (n)(t)dt = −
∫ ∞

s f (n)(t)dt, s > T. Let τ ∈ IT. Next, for T < s < τ we assume that
f (n−1)(s) =

∫ s
T f (n)(t)dt, and for s > τ we assume that f (n−1)(s) = −

∫ ∞
s f (n)(t)dt. Then

f (x) = 1
(n−2)!

∫ x
T (x− s)n−2

∫ s
T f (n)(t)dtds for T < x < τ and

f (x) =
1

(n− 2)!

∫ x

T
(x− s)n−2 f (n−1)(s)ds

=
1

(n− 2)!

[∫ τ

T
(x− s)n−2 f (n−1)(s)ds +

∫ x

τ
(x− s)n−2 f (n−1)(s)ds

]
=

1
(n− 2)!

[∫ τ

T
(x− s)n−2

∫ s

T
f (n)(t)dtds−

∫ x

τ
(x− s)n−2

∫ ∞

s
f (n)(t)dtds

]
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for x > τ. Therefore, we have∫ ∞

T
u(x)| f (x)|2dx =

∫ τ

T
u(x)| f (x)|2dx +

∫ ∞

τ
u(x)| f (x)|2dx

=
1

[(n− 2)!]2

∫ τ

T
u(x)

∣∣∣∣∫ x

T
(x− s)n−2

∫ s

T
f (n)(t)dtds

∣∣∣∣2 dx

+
1

[(n− 2)!]2

∫ ∞

τ
u(x)

∣∣∣∣∫ τ

T
(x− s)n−2

∫ s

T
f (n)(t)dtds−

∫ x

τ
(x− s)n−2

∫ ∞

s
f (n)(t)dtds

∣∣∣∣2 dx

=
1

[(n− 2)!]2
[
F1( f (n)) + F2( f (n))

]
, (2.11)

where

F1( f (n)) =
∫ τ

T
u(x)

∣∣∣∣∫ x

T
(x− s)n−2

∫ s

T
f (n)(t)dtds

∣∣∣∣2 dx

=
1

(n− 1)2

∫ τ

T
u(x)

∣∣∣∣∫ x

T
(x− t)n−1 f (n)(t)dt

∣∣∣∣2 dx,

F2( f (n)) =
∫ ∞

τ
u(x)

∣∣∣∣∫ τ

T
(x− s)n−2

∫ s

T
f (n)(t)dtds−

∫ x

τ
(x− s)n−2

∫ ∞

s
f (n)(t)dtds

∣∣∣∣2 dx

=
∫ ∞

τ
u(x)

∣∣∣∣∫ τ

T
(x− s)n−2

∫ s

T
f (n)(t)dtds−

∫ x

τ
(x− s)n−2

∫ x

s
f (n)(t)dtds

−
∫ x

τ
(x− s)n−2dx

∫ ∞

x
f (n)(t)dtds

∣∣∣∣2 dx.

Assume that f (n) = g, then
∫ ∞

T g(t)dt = 0 and the condition f ∈ W̊n
2,v is equivalent to the

condition g ∈ L̃2(IT) ≡ {g ∈ L2(IT) :
∫ ∞

T g(t)dt = 0}. Therefore, from (2.11) it follows that
inequality (1.4) is equivalent to the inequality

1
[(n− 2)!]2

[
F1(g) + F2(g)

]
≤ CT

∫ ∞

T
v(t)|g(t)|2dt, g ∈ L̃2(IT). (2.12)

Moreover, the best constants in inequalities (1.4) and (2.12) coincide.
On the basis of Theorem B we have

F1(g) =
1

(n− 1)2

∫ τ

T
u(x)

∣∣∣∣∫ x

T
(x− t)n−1g(t)dt

∣∣∣∣2 dx

� max{A1,1(T, τ), A1,2(T, τ)}
∫ τ

T
v(t)|g(t)|2dt. (2.13)

Now, we estimate F2(g).

F2(g) ≤
∫ ∞

τ
u(x)

∣∣∣∣∫ τ

T
(x− s)n−2

∫ s

T
|g(t)|dtds +

∫ x

τ
(x− s)n−2

∫ x

s
|g(t)|dtds

+
∫ x

τ
(x− s)n−2ds

∫ ∞

x
|g(t)|dt

∣∣∣∣2 dx

=
∫ ∞

τ
u(x)

∣∣∣∣∫ τ

T
|g(t)|

∫ τ

t
(x− s)n−2dsdt +

∫ x

τ
|g(t)|

∫ t

τ
(x− s)n−2dsdt

+
1

n− 1
(x− τ)n−1

∫ ∞

x
|g(t)|dt

∣∣∣∣2 dx
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≤ 3

[∫ ∞

τ
u(x)

∣∣∣∣∫ τ

T
|g(t)|

∫ τ

t
(x− s)n−2dsdt

∣∣∣∣2 dx

+
∫ ∞

τ
u(x)

∣∣∣∣∫ x

τ
|g(t)|

∫ t

τ
(x− s)n−2dsdt

∣∣∣∣2 dx

+
1

(n− 1)2

∫ ∞

τ
u(x)(x− τ)2(n−1)

(∫ ∞

x
|g(t)|dt

)2

dx

]

= 3
[

J0 + J1 +
J2

(n− 1)2

]
, (2.14)

where

J0 =
∫ ∞

τ
u(x)

∣∣∣∣∫ τ

T
|g(t)|

∫ τ

t
(x− s)n−2dsdt

∣∣∣∣2 dx,

J1 =
∫ ∞

τ
u(x)

∣∣∣∣∫ x

τ
|g(t)|

∫ t

τ
(x− s)n−2dsdt

∣∣∣∣2 dx,

J2 =
∫ ∞

τ
u(x)(x− τ)2(n−1)

(∫ ∞

x
|g(t)|dt

)2

dx.

Let us estimate J0, J1 and J2 separately. For the estimate of J0 using (x − s)n−2 =

(x− τ + τ − s)n−2 ≈ (x− τ)n−2 + (τ − s)n−2 and Hölder’s inequality, we get

J0 ≈
∫ ∞

τ
u(x)(x− τ)2(n−2)dx

(∫ τ

T
(τ − t)|g(t)|dt

)2

+
∫ ∞

τ
u(x)dx

(∫ τ

T
(τ − t)n−1|g(t)|dt

)2

� max{A1,3(T, τ), A1,4(T, τ)}
∫ τ

T
v(t)|g(t)|2dt. (2.15)

For the estimate of J1 using
∫ t

τ (x− s)n−2ds= 1
n−1

(
(x− τ)n−1 − (x− t)n−1)≈ (x− τ)n−2(t− τ)

and Theorem A, we get

J1 ≈
∫ ∞

τ
u(x)(x− τ)2(n−2)

(∫ x

τ
(t− τ)|g(t)|dt

)2

dx � A2,1(T, τ)
∫ ∞

τ
v(t)|g(t)|2dt. (2.16)

By Theorem A we have

J2 � A2,2(T, τ)
∫ ∞

τ
v(t)|g(t)|2dt. (2.17)

From (2.11), (2.12), (2.13), (2.14), (2.15), (2.16) and (2.17) it follows that there exist positive
numbers α and β such that the estimate∫ ∞

T
u(x)| f (x)|2dx ≤ βA0(T, τ)

∫ τ

T
v(t)| f (n)(t)|2dt + αA(T, τ)

∫ ∞

τ
v(t)| f (n)(t)|2dt (2.18)

holds, where A0(T, τ) = max{A1,1(T, τ), A1,2(T, τ), A1,3(T, τ), A1,4(T, τ)} and A(T, τ) =

max{A2,1(T, τ), A2,2(T, τ)}.
In view of (2.8) and (2.9), we have that the value A0(T, τ) satisfies the properties

limτ→T A0(T, τ) = 0 and limτ→∞A0(T, τ) = ∞, and the value A(T, τ) is non-increasing in τ

and limτ→∞A(T, τ) < ∞. Therefore, the following point

τT = sup{τ ∈ IT : βA0(T, τ) ≤ αA(T, τ)} (2.19)
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is defined. Then from (2.18) we have∫ ∞

T
u(t)| f (t)|2dt� A(T, τT)

∫ ∞

T
v(t)| f (n)(t)|2dt, (2.20)

i.e., inequality (1.4) holds with the estimate

CT � A(T, τT) (2.21)

for the best constant CT in (1.4).

Necessity. Let us use the technique used in works [17] and [18]. Let inequality (1.4) hold with
the best constant CT > 0. By condition (1.6) we have that

∫ ∞
T v−1(t)dt < ∞. Suppose that

γτT = γ(τT) > 0 and the function ρ : (T, τT)→ (τT, ∞) is such that∫ τT

T
v−1(t)dt = γτT

∫ ∞

τT

v−1(t)dt

and ∫ s

T
v−1(t)dt = γτT

∫ ∞

ρ(s)
v−1(t)dt, s ∈ (T, τT). (2.22)

It is obvious that the decreasing function ρ is locally absolutely continuous on the interval
(T, τT) and lim

s→T+
ρ(s) = ∞, lim

s→τT
ρ(s) = τT. The differentiation of the both sides of (2.22) gives

v−1(s) = −γτT v−1(ρ(s))ρ′(s) = γτT v−1(ρ(s))|ρ′(s)|

or
1

γτT

=
v−1(ρ(s))|ρ′(s)|

v−1(s)
(2.23)

for almost all s ∈ (T, τT). Let

K+(T, τT) =
{

g ∈ L1(T, τT) ∩ L2,v(T, τT) : g ≥ 0, g 6≡ 0
}

,

K−(τT, ∞) =
{

g ∈ L1(τT, ∞) ∩ L2,v(τT, ∞) : g ≤ 0, g 6≡ 0
}

.

Let us show that for every g2 ∈ K−(τT, ∞) there exists g1,2 ∈ K+(T, τT) such that for the
functions g(t) = g1,2(t), t ∈ (T, τT) and g(t) = g2(t), t ∈ (τT, ∞) we have that g ∈ L̃2,v(T, ∞).

For g2 ∈ K−(τT, ∞) we assume that g1,2(x) = −γτT g2(ρ−1(x)) v−1(x)
v−1(ρ−1(x)) . Then g1,2 ≥ 0.

Changing the variables ρ−1(x) = t and using (2.23), we have

∫ τT

T
g1,2(x)dx = γτT

∫ τT

T

∣∣g2(ρ
−1(x))

∣∣ v−1(x)
v−1(ρ−1(x))

dx = −γτT

∫ ∞

τT

|g2(t)|
v−1(ρ(t))

v−1(t)
ρ′(t)dt

= γτT

∫ ∞

τT

|g2(t)|
v−1(ρ(t))

v−1(t)
|ρ′(t)|dt =

∫ ∞

τT

|g2(t)|dt < ∞. (2.24)

From (2.24) it follows that
∫ τT

T g1,2(x)dx < ∞ and

∫ τT

T
g1,2(x)dx +

∫ ∞

τT

g2(t)dt =
∫ ∞

T
g(t)dt = 0. (2.25)
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Again, changing the variables ρ−1(x) = t and using (2.23), we have

∫ τT

T
|g1,2(t)|2v(t)dt = γ2

τT

∫ τT

T

∣∣∣∣∣g2(ρ
−1(x))

v−1(x)
v−1(ρ−1(x))

∣∣∣∣∣
2

v(x)dx

= γ2
τT

∫ ∞

τT

|g2(t)|2v(t)
v−1(ρ(t))

v−1(t)
|ρ′(t)|dt

= γτT

∫ ∞

τT

|g2(t)|2v(t)dt < ∞.

Hence,∫ ∞

T
|g(t)|2v(t)dt =

∫ τT

T
|g1,2(t)|2v(t)dt +

∫ ∞

τT

|g2(t)|2v(t)dt

= (1 + γτT )
∫ ∞

τT

|g2(t)|2v(t)dt < ∞, (2.26)

i.e., g ∈ L2,v(IT). The last and (2.25) give that g ∈ L̃2,v(IT).
Let g2 ∈ K−(τT, ∞) and g1,2 ∈ K+(T, τT) be a function defined by g2. Then g ∈ L̃2,v(IT),

where g(t) = g1,2(t), t ∈ (T, τT) and g(t) = g2(t), t ∈ (τT, ∞). Since g ∈ L̃2(IT), then replacing
the function g in (2.12) for τ = τT and taking into account that g1,2 ≥ 0, g2 ≤ 0, we have

1
[(n− 2)!]2

[
F1(g1,2) +

∫ ∞

τT

u(x)
(∫ τT

T
(x− s)n−2

∫ s

T
g1,2(t)dtds

+
∫ x

τT

(x− s)n−2
∫ ∞

s
|g2(t)|dtds

)2

dx

]
≤ CT

∫ ∞

T
v(t)|g(t)|2dt,

that together with (2.26) gives

∫ ∞

τT

u(x)
(∫ x

τT

(x− s)n−2
∫ ∞

s
|g2(t)|dtds

)2

dx

� (1 + γτT )CT

∫ ∞

τT

|g2(t)|2v(t)dt, g2 ∈ K−(τT, ∞). (2.27)

Since∫ x

τT

(x− s)n−2
∫ ∞

s
|g2(t)|dtds≥ (x− τT)

n−2
∫ x

τT

(t− τT)|g2(t)|dt+
1

n− 1
(x− τT)

n−1
∫ ∞

x
|g2(t)|dt,

then from (2.27) we have

∫ ∞

τT

u(x)(x− τT)
2(n−2)

(∫ x

τT

(t− τT)|g2(t)|dt
)2

dx

≤ (1 + γτT )CT

∫ ∞

τT

|g2(t)|2v(t)dt, g2 ∈ K−(τT, ∞), (2.28)

∫ ∞

τT

u(x)(x− τT)
2(n−1)

(∫ ∞

x
|g2(t)|dt

)2

dx

≤ CT(1 + γτT )
∫ ∞

τT

|g2(t)|2v(t)dt, g2 ∈ K−(τT, ∞). (2.29)
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For any τT < z < ∞ the functions g+2 (t) = −χ(τT ,z)(t)(t− τT)v−1(t), g−2 (t) = −χ(z,∞)(t)v−1(t)
belong to the set K−(τT, ∞). Replacing the functions g+2 and g−2 into (2.28) and (2.29), respec-
tively, we get

A(T, τT)� CT. (2.30)

This relation together with (2.21) gives (2.10). From the finiteness of the value A(T, τT) =

max{A2,1(T, τT), A2,2(T, τT)} we have (2.8) and (2.9). The proof of Theorem 2.1 is complete.

3 Oscillatory properties of equation (1.2)

The main aim of this Section is the investigation of strong oscillation and non-oscillation of
differential equation (1.2) in a neighborhood of infinity. Oscillatory properties of (1.2) we
investigate under conditions (1.6) and (2.7). Case (1.5) has been investigated in paper [20].

We consider the inequality∫ ∞

T
λu(t)| f (t)|2dt ≤ λCT

∫ ∞

T
v(t)| f (n)(t)|2dt, f ∈ W̊n

2,v, (3.1)

with a constant λCT, where CT is the best constant in (1.4).
We investigate the oscillatory properties of equation (1.2) by the variation method, i.e., on

the basis of the known variational statement.

Lemma A ([9, Theorem 28]). Equation (1.2) is non-oscillatory if and only if there exists T > 0 such
that ∫ ∞

T

[
v(t)| f (n)(t)|2 − λu(t)| f (t)|2

]
dt ≥ 0 (3.2)

for all f ∈ M̊2(IT).

Due to the compactness of the set supp f for f ∈ M̊2(IT), inequality (3.2) coincide with the
inequality ∫ ∞

T
λu(t)| f (t)|2dt ≤

∫ ∞

T
v(t)| f (n)(t)|2dt, ∀ f ∈ M̊2(IT). (3.3)

Lemma 3.1. Equation (1.2)

(i) is non-oscillatory if and only if there exists T > 0 such that inequality (3.1) holds with the best
constant λCT : 0 < λCT ≤ 1;

(ii) is oscillatory if and only if for any T > 0 the best constant is such that λCT > 1 in (3.1).

Proof. Let us prove the statement (i), the statement (ii) is the opposite of the statement (i).
If equation (1.2) is non-oscillatory, then for some T > 0 inequality (3.3) holds, which means
that inequality (3.1) holds with the best constant 0 < λCT ≤ 1. Inversely, if for some T > 0
inequality (3.1) holds with the best constant 0 < λCT ≤ 1, then inequality (3.3) holds and by
Lemma A equation (1.2) is non-oscillatory. The proof of Lemma 3.1 is complete.

On the basis of Lemma 3.1 and Theorem 2.1, we have the following statement.

Theorem 3.2. Let (1.6) and (2.7) hold. Then equation (1.2) is strong non-oscillatory if and only if

lim
z→∞

∫ ∞

z
u(x)(x− T)2(n−2)dx

∫ z

T
(t− T)2v−1(t)dt = 0 (3.4)

and
lim
z→∞

∫ z

T
u(x)(x− T)2(n−1)dx

∫ ∞

z
v−1(t)dt = 0. (3.5)
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Proof. Let equation (1.2) be strong non-oscillatory. Then by Lemma 3.1 for each λ > 0 there
exists Tλ = T(λ) > 0 such that λCTλ

≤ 1 in (3.1). This gives that limλ→∞ CTλ
= 0, and from

(2.10) we have
lim

λ→∞
A(Tλ, τT(λ)) = 0. (3.6)

From λ2CT(λ2) ≤ 1 it follows that λ1CT(λ2) ≤ 1 for 0 < λ1 ≤ λ2. Therefore, T(λ2) ≥
T(λ1), τT(λ2) ≥ τT(λ1) and limλ→∞ T(λ) = limλ→∞ τT(λ) = ∞.

Since the value A(T, τ) does not increase in τ > 0, from (3.6) we have limτ→∞A(T, τ) = 0,
i.e.,

lim
τ→∞

sup
z>τ

∫ ∞

z
u(x)(x− τ)2(n−2)dx

∫ z

τ
(t− τ)2v−1(t)dt = 0, (3.7)

lim
τ→∞

sup
z>τ

∫ z

τ
u(x)(x− τ)2(n−1)dx

∫ ∞

z
v−1(t)dt = 0. (3.8)

By the definition of the limit (3.7) for any ε > 0 there exists Tε = T(ε) > T such that∫ ∞

z
u(x)(x− Tε)

2(n−2)dx
∫ z

Tε

(t− Tε)
2v−1(t)dt ≤ ε

5 · 22n−3 (3.9)

for all z ≥ Tε. Then there exists T1(ε) ≥ Tε such that∫ ∞

z
u(x)(x− Tε)

2(n−2)dx
∫ Tε

T
(Tε − T)2v−1(t)dt ≤ ε

5 · 22n−3 , z ≥ T1(ε). (3.10)

From (3.9) and (3.10) we get∫ ∞

z
u(x)(x− Tε)

2(n−2)dx
∫ z

T
(t− T)2v−1(t)dt ≤ 4ε

5 · 22n−3 , z ≥ T1(ε). (3.11)

Further, there exists T2(ε) ≥ T1(ε) and∫ ∞

z
(Tε − T)2(n−2)u(x)dx

∫ z

T
(t− T)2v−1(t)dt ≤ ε

5 · 22n−3 , z ≥ T2(ε). (3.12)

Then from (3.11) and (3.12) we have∫ ∞

z
u(x)(x− T)2(n−2)dx

∫ z

T
(t− T)2v−1(t)dt ≤ ε

for all z ≥ T2(ε). It means that (3.4) holds. Similarly, we can prove that from (3.8) it follows
(3.5).

Sufficiency. Let (3.4) and (3.5) hold. From (3.5) we have

lim
z→∞

∫ z

τ
u(x)(x− τ)2(n−1)dx

∫ ∞

z
v−1(t)dt = 0

for any τ ≥ T. Thus,

lim
τ→∞

sup
z>τ

∫ z

τ
u(x)(x− τ)2(n−1)dx

∫ ∞

z
v−1(t)dt = lim

τ→∞
A2,2(T, τ) = 0.

Similarly, from (3.4) we have that limτ→∞ A2,1(T, τ) = 0. Then limτ→∞A(T, τ) = 0.
Since limT→∞ τT = ∞, then limT→∞A(T, τT) = 0. Hence, from (2.10) we have limT→∞ CT =

0. Therefore, for any λ > 0 there exists Tλ ≥ T such that λCTλ
≤ 1 and by Lemma 3.1 equation

(1.2) is non-oscillatory for any λ > 0. The proof of Theorem 3.2 is complete.
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Theorem 3.3. Let (1.6) and (2.7) hold. Then equation (1.2) is strong oscillatory if and only if

lim
z→∞

∫ ∞

z
u(x)(x− T)2(n−2)dx

∫ z

T
(t− T)2v−1(t)dt = ∞ (3.13)

or

lim
z→∞

∫ z

T
u(x)(x− T)2(n−1)dx

∫ ∞

z
v−1(t)dt = ∞. (3.14)

Proof. Necessity. Let equation (1.2) be strong oscillatory. Then by Lemma 3.1 λCT > 1 for any
T ≥ 0 and λ > 0. It means that CT > 1

λ and for λ→ 0+ it follows that CT = ∞ for any T > 0.
Then from (2.10) we have that A(T, τT) = ∞, i.e., A2,1(T, τT) = ∞ or A2,2(T, τT) = ∞ for all
T ≥ 0. Therefore, (3.13) or (3.14) holds, respectively.

Sufficiency. Let (3.13) or (3.14) hold. Then A2,1(T, τT) = ∞ or A2,2(T, τT) = ∞, respectively,
i.e., A(T, τT) = ∞ for any T ≥ 0. Then λA(T, τT) = ∞ for any λ > 0 and T ≥ 0. Hence, from
(2.10) we have λCT > 1 for any λ > 0 and T ≥ 0. It means that equation (1.2) is oscillatory for
any λ > 0. The proof of Theorem 3.3 is complete.

Next, we suppose that functions v and u are positive and n times continuously differen-
tiable on I. Then on the basis of the reciprocity principle [4] equation (1.2) and the reciprocal
equation

(−1)n(u−1(t)y(n)
)(n) − λv−1(t)y = 0 (3.15)

are simultaneously oscillatory or non-oscillatory.
Suppose that for equation (3.15) the following conditions

∫ ∞

T
u(t)dt < ∞,

∫ ∞

T
u(t)t2dt = ∞ and

∫ ∞

α
v−1(t)t2(n−1)dt = ∞ (3.16)

hold for any α ≥ T.
Applying the reciprocity principle, on the basis of Theorems 3.2 and 3.3 we get the follow-

ing theorems.

Theorem 3.4. Let T ≥ 0 and (3.16) hold. Then equation (1.2) is strong non-oscillatory if and only if

lim
z→∞

∫ ∞

z
v−1(x)(x− T)2(n−2)dx

∫ z

T
(t− T)2u(t)dt = 0, (3.17)

lim
z→∞

∫ z

T
v−1(x)(x− T)2(n−1)dx

∫ ∞

z
u(t)dt = 0. (3.18)

Theorem 3.5. Let T ≥ 0 and (3.16) hold. Then equation (1.2) is strong oscillatory if and only if

lim
z→∞

∫ ∞

z
v−1(x)(x− T)2(n−2)dx

∫ z

T
(t− T)2u(t)dt = ∞

or

lim
z→∞

∫ z

T
v−1(x)(x− T)2(n−1)dx

∫ ∞

z
u(t)dt = ∞.
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4 Spectral characteristics of L

Let the minimal differential operator Lmin be generated by differential expression (1.3) in the
space L2,u with inner product ( f , g)2,u =

∫ ∞
0 f (t)g(t)u(t)dt. It means that Lmin(y) = l(y) is an

operator with the domain

D(Lmin) =
{

y : I → R : y(i) ∈ ACloc(I), supp y(i) ⊂ I,

supp y(i) is compact, i = 0, 1, . . . , n− 1, l(y) ∈ L2,u

}
.

It is known that all self-adjoint extensions of the minimal differential operator L have the same
spectrums (see [9]).

Let us consider the problem of boundedness from below and discreteness of the operator
L in case (1.6). Case (1.5) was considered in [21].

The relation between the oscillatory properties of equation (1.2) and spectral properties of
the operator L is given in the following statement.

Lemma 4.1 ([9]). The operator L is bounded from below and has the discrete spectrum if and only if
equation (1.2) is strong non-oscillatory.

On the basis of Lemma 4.1, by Theorems 3.2 and 3.4 we have the following theorem.

Theorem 4.2.

(i) If conditions (1.6) and (2.7) hold, then the operator L is bounded from below and has the discrete
spectrum if and only if (3.4) and (3.5) hold;

(ii) If condition (3.16) holds, then the operator L is bounded from below and has the discrete spectrum
if and only if (3.17) and (3.18) hold.

The operator Lmin is non-negative. Therefore, it has the Friedrichs extension LF. By Theo-
rem 4.2 the operator LF has the discrete spectrum if and only if (i) (3.4) and (3.5) hold in case
(1.6) and (2.7); (ii) (3.17) and (3.18) hold in case (3.16).

From Theorem 2.1 we can state Theorem 4.3.

Theorem 4.3. Let (1.6) and (2.7) hold. Then the operator LF is positive defined if and only if
A(0, τ0) = max{A2,1(0, τ0), A2,2(0, τ0)} < ∞. Moreover, there exist constants α, β : 0 < α < β

such that the estimate αA(0, τ0) ≤ λ−1/2
1 ≤ βA(0, τ0) holds for the smallest eigenvalue λ1 of the

operator LF.

On the basis of Rellih’s Lemma [16, p. 183] and Theorem 2.1 it follows one more theorem.

Theorem 4.4. Let (1.6) and (2.7) hold. Then

(i) the embedding W̊n
2,v(I) ↪→ L2,u(I) is compact if and only if (3.4) and (3.5) hold;

(ii) the operator L−1
F is completely continuous on L2,u if and only if (3.4) and (3.5) hold.

The next statement is presented in [3].

Lemma B. Let H = H(I) be a certain Hilbert function space and C[0, ∞)∩ H be dense in it. For any
point x0 ∈ I we introduce the operator Fx0 f = f (x0) defined on C[0, ∞)∩H, which acts in the space of
complex numbers. Let us assume that Fx0 is a closure operator. Then the norm of this operator is equal
to the value

(
∑∞

n=1 |ϕn(x0)|2
)1/2 (finite or infinite), where {ϕn(·)}∞

n=1 is any complete orthonormal
system of continuous functions in H.



14 A. Kalybay, R. Oinarov and Ya. Sultanaev

Lemma 4.5. Let (1.6) and (2.7) hold. Then for x ∈ I

supτ∈I D(x, τ)

(n− 1)!
≤ sup

f∈W̊n
2,v

| f (x)|
‖ f (n)‖2,v

≤
√

2
infτ∈I D(x, τ)

(n− 1)!
, (4.1)

where τ ∈ I and

D(x, τ) =

[
χ(0,τ)(x)

∫ x

0
(x− s)2(n−1)v−1(s)ds

+χ(τ,∞)(x)(n− 1)2
∫ τ

0

(∫ τ

s
(x− t)n−2dt

)2

v−1(s)ds

+χ(τ,∞)(x)(n− 1)2
∫ x

τ

(∫ s

τ
(x− t)n−2dt

)2

v−1(s)ds

+χ(τ,∞)(x)(x− τ)2(n−1)
∫ ∞

x
v−1(s)ds

]1/2

.

Proof. Let f ∈ W̊n
2,v. Then due to (1.6) we have f ∈ LR(n−1)Wn

2,v. Let τ ∈ I. Similarly as in the
proof of sufficiency of Theorem 2.1, we get

f (x) =
1

(n− 1)!


∫ x

0 (x− s)n−1 f (n)(s)ds if 0 < x < τ;

(n− 1)
∫ τ

0 (x− t)n−2
∫ t

0 f (n)(s)dsdt

−(n− 1)
∫ x

τ (x− t)n−2
∫ ∞

t f (n)(s)dsdt if x > τ

or

f (x) =
1

(n− 1)!



∫ x
0 (x− s)n−1 f (n)(s)ds if 0 < x < τ;

(n− 1)
∫ τ

0 f (n)(s)
∫ τ

s (x− t)n−2dtds

−(n− 1)
∫ x

τ f (n)(s)
∫ s

τ (x− t)n−2dtds

−(x− τ)n−1
∫ ∞

x f (n)(s)ds if x > τ,

for all τ ∈ I. The last expression can be rewritten in the form

f (x) =
1

(n− 1)!

[
χ(0,τ)(x)

∫ x

0
(x− s)n−1 f (n)(s)ds

+χ(τ,∞)(x)(n− 1)
∫ τ

0
f (n)(s)

∫ τ

s
(x− t)n−2dtds

]
− χ(τ,∞)(x)

[
(n− 1)

∫ x

τ
f (n)(s)

∫ s

τ
(x− t)n−2dtds + (x− τ)n−1

∫ ∞

x
f (n)(s)ds

]
. (4.2)

Using Hölder’s inequality, we have

| f (x)| ≤ 1
(n− 1)!

{[
χ(0,τ)(x)

(∫ x

0
(x− s)2(n−1)v−1(s)ds

)1/2

+χ(τ,∞)(x)(n− 1)

(∫ τ

0

(∫ τ

s
(x− t)n−2dt

)2

v−1(s)ds

)1/2
(∫ τ

0
v(t)| f (n)(t)|2dt

)1/2

+ χ(τ,∞)(x)

(n− 1)

(∫ x

τ

(∫ s

τ
(x− t)n−2dt

)2

v−1(s)ds

)1/2

+(x− τ)n−1
(∫ ∞

x
v−1(s)ds

)1/2
](∫ ∞

τ
v(t)| f (n)(t)|2dt

)1/2
}

. (4.3)



Oscillation and spectral properties of higher order differential operators 15

One more time using Hölder’s inequality for sums in (4.3), we obtain

| f (x)| ≤ 1
(n− 1)!


χ(0,τ)(x)

(∫ x

0
(x− s)2(n−1)v−1(s)ds

)1/2

+χ(τ,∞)(x)(n− 1)

(∫ τ

0

(∫ τ

s
(x− t)n−2dt

)2

v−1(s)ds

)1/2
2

+ χ(τ,∞)(x)

(n− 1)

(∫ x

τ

(∫ s

τ
(x− t)n−2dt

)2

v−1(s)ds

)1/2

+(x− τ)n−1
(∫ ∞

x
v−1(s)ds

)1/2
2

1
2

×
(∫ τ

0
v(t)| f (n)(t)|2dt +

∫ ∞

τ
v(t)| f (n)(t)|2dt

) 1
2

≤ 1
(n− 1)!

[
χ(0,τ)(x)

∫ x

0
(x− s)2(n−1)v−1(s)ds

+χ(τ,∞)(x)(n− 1)2
∫ τ

0

(∫ τ

s
(x− t)n−2dt

)2

v−1(s)ds

+2χ(τ,∞)(x)(n− 1)2
∫ x

τ

(∫ s

τ
(x− t)n−2dt

)2

v−1(s)ds

+2χ(τ,∞)(x)(x− τ)2(n−1)
∫ ∞

x
v−1(s)ds

] 1
2
(∫ ∞

0
v(t)| f (n)(t)|2dt

) 1
2

for any τ ∈ I. Therefore,

| f (x)| ≤
√

2
(n− 1)!

inf
τ∈I

D(x, τ)

(∫ ∞

0
v(t)| f (n)(t)|2dt

)1/2

.

Then

sup
f∈W̊n

2,v

| f (x)|
‖ f (n)‖2,v

≤
√

2
(n− 1)!

inf
τ∈I

D(x, τ). (4.4)

Now, we estimate the value sup f∈W̊n
2,v

| f (x)|
‖ f (n)‖2,v

from below. In (4.2) we fix x ∈ I, so that we

choose a function f (n), depending on x, as follows

f (n)x (s) =


χ(0,x)(s)(x− s)n−1v−1(s) if 0 < x < τ;

χ(0,τ)(s)(n− 1)
∫ τ

s (x− t)n−2dtv−1(s)

−χ(τ,x)(s)(n− 1)
∫ s

τ (x− t)n−2dtv−1(s)

−χ(x,∞)(s)(x− τ)n−1v−1(s) if x > τ.
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Replacing this function in (4.2), we get the value of the function f ( f (n)x )(t) at the point t = x:

fx(x) =
1

(n− 1)!

(
χ(0,τ)(x)

∫ x

0
(x− s)n−1 f (n)x (s)ds

+χ(τ,∞)(x)(n− 1)
∫ τ

0
f (n)x (s)

∫ τ

s
(x− t)n−2dtds

− χ(τ,∞)(x)(n− 1)
∫ x

τ
f (n)x (s)

∫ s

τ
(x− t)n−2dtds

−χ(τ,∞)(x)(x− τ)n−1
∫ ∞

x
f (n)x (s)ds

)
.

If 0 < x < τ, then χ(τ,∞)(x) = 0. Hence, all terms of fx(x), except the first one, are equal to
zero. For the first term the variable s changes from 0 to x, i.e., χ(0,x)(s) 6= 0 and we replace

f (n)x (s) with (x− s)n−1v−1(s). If x > τ, then χ(0,τ)(x) = 0. It means that the first term is equal

to zero, so fx(x) is defined by the other three terms. In this case, we replace f (n)x (s) with its
values in the intervals (0, τ), (τ, x) and (x, ∞), respectively. Thus, we get

fx(x) =
1

(n− 1)!

(
χ(0,τ)(x)

∫ x

0
(x− s)2(n−1)v−1(s)ds

+χ(τ,∞)(x)(n− 1)2
∫ τ

0

(∫ τ

s
(x− t)n−2dt

)2

v−1(s)ds

+χ(τ,∞)(x)(n− 1)2
∫ x

τ

(∫ s

τ
(x− t)n−2dt

)2

v−1(s)ds

+χ(τ,∞)(x)(x− τ)2(n−1)
∫ ∞

x
v−1(s)ds

)
=

D2(x, τ)

(n− 1)!
(4.5)

for any τ ∈ I.

Let us calculate the norm L2,v of the function f (n)x . For 0 < x < τ we take f (n)x (s) =

χ(0,x)(s)(x− s)n−1v−1(s) and have

∫ ∞

0
v(s)| f (n)x (s)|2ds =

∫ x

0
v(s)

(
(x− s)n−1v−1(s)

)2ds =
∫ x

0
(x− s)2(n−1)v−1(s)ds. (4.6)

For x > τ we take the values of f (n)x on the intervals (0, τ), (τ, x) and (x, ∞), respectively, and
get

∫ ∞

0
v(s)| f (n)x (s)|2ds =

∫ τ

0
v(s)| f (n)x (s)|2ds +

∫ x

τ
v(s)| f (n)x (s)|2ds +

∫ ∞

x
v(s)| f (n)x (s)|2ds

= (n− 1)2
∫ τ

0

(∫ τ

s
(x− t)n−2dt

)2

v−1(s)ds

+ (n− 1)2
∫ x

τ

(∫ s

τ
(x− t)n−2dt

)2

v−1(s)ds

+ (x− τ)2(n−1)
∫ ∞

x
v−1(s)ds. (4.7)
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Then using the functions χ(0,τ)(x) and χ(τ,∞)(x), we combine (4.6) and (4.7) and obtain(∫ ∞

0
v(t)| f (n)x (t)|2dt

)1/2

=

[
χ(0,τ)(x)

∫ x

0
(x− s)2(n−1)v−1(s)ds

+ χ(τ,∞)(x)(n− 1)2
∫ τ

0

(∫ τ

s
(x− t)n−2dt

)2

v−1(s)ds

+ χ(τ,∞)(x)(n− 1)2
∫ x

τ

(∫ s

τ
(x− t)n−2dt

)2

v−1(s)ds

+ χ(τ,∞)(x)(x− τ)2(n−1)
∫ ∞

x
v−1(s)ds

]1/2

= D(x, τ) (4.8)

for any τ ∈ I.
From (4.5) and (4.8) we get

sup
f∈W̊n

2,v

| f (x)|
‖ f (n)‖2,v

≥ | fx(x)|
‖ f (n)x ‖2,v

=
supτ∈I D(x, τ)

(n− 1)!
.

This relation together with (4.4) gives (4.1). The proof of Lemma 4.5 is complete.

Let the operator L−1
F be completely continuous on L2,u. Let {λk}∞

k=1 be eigenvalues and
{ϕk}∞

k=1 be a corresponding complete orthonormal system of eigenfunctions of the operator
L−1

F .

Theorem 4.6. Let (1.6), (2.7), (3.4) and (3.5) hold. Then

(i)
supτ∈I D2(x, τ)

[(n− 1)!]2
≤

∞

∑
k=1

|ϕk(x)|2
λk

≤
√

2
infτ∈I D2(x, τ)

[(n− 1)!]2
; (4.9)

(ii) the operator L−1
F is nuclear if and only if infτ∈I

∫ ∞
0 u(x)D2(x, τ)dx < ∞. Moreover, there exists

τ = µ ∈ I and for the nuclear norm ‖L−1
F ‖σ1 of the operator L−1

F the relation

2
[(n− 1)!]2

D1(µ) ≤ ‖L−1
F ‖σ1 =

∞

∑
k=1

1
λk
≤ 2

√
2

[(n− 1)!]2
D1(µ) (4.10)

holds, where

D1(µ) = (n− 1)2
∫ ∞

µ
u(x)

∫ x

µ

(∫ s

µ
(x− t)n−2dt

)2

v−1(s)dsdx

+
∫ ∞

µ
u(x)(x− µ)2(n−1)

∫ ∞

x
v−1(s)dsdx.

Proof. By the condition of Theorem 4.4 we have that the operator L−1
F is completely continu-

ous on L2,u. In Lemma B we take W̊n
2,v(I) with the norm

( ∫ ∞
0 v(t)| f (n)(t)|2

)1/2 as the space
H(I). Since the system of functions {λ−1/2

k ϕk}∞
k=1 is complete orthonormal system in the space

W̊n
2,v(I), then by Lemma B we get

‖Fx‖2 =

 sup
f∈W̊n

2,v

| f (x)|
‖ f (n)‖2,v

2

=
∞

∑
k=1

|ϕk(x)|2
λk

,



18 A. Kalybay, R. Oinarov and Ya. Sultanaev

where Fx f = f (x). This and (4.1) give (4.9).
Since infs∈I D2(x, s) ≤ D2(x, τ) ≤ sups∈I D2(x, s) for any τ ∈ I, multiplying both sides of

(4.9) by u and integrating them with respect to x from zero to infinity, we get

1
[(n− 1)!]2

∫ ∞

0
u(x)D2(x, τ)dx ≤

∞

∑
k=1

1
λk
≤

√
2

[(n− 1)!]2

∫ ∞

0
u(x)D2(x, τ)dx (4.11)

for all τ ∈ I. Let us present the integral
∫ ∞

0 u(x)D2(x, τ)dx in the following way

∫ ∞

0
u(x)D2(x, τ)dx =

∫ τ

0
u(x)

∫ x

0
(x− s)2(n−1)v−1(s)dsdx

+ (n− 1)2
∫ ∞

τ
u(x)

∫ τ

0

(∫ τ

s
(x− t)n−2dt

)2

v−1(s)dsdx

+ (n− 1)2
∫ ∞

τ
u(x)

∫ x

τ

(∫ s

τ
(x− t)n−2dt

)2

v−1(s)dsdx

+
∫ ∞

τ
u(x)(x− τ)2(n−1)

∫ ∞

x
v−1(s)dsdx = D0(τ) + D1(τ),

where

D0(τ) =
∫ τ

0
u(x)

∫ x

0
(x− s)2(n−1)v−1(s)dsdx

+ (n− 1)2
∫ ∞

τ
u(x)

∫ τ

0

(∫ τ

s
(x− t)n−2dt

)2

v−1(s)dsdx,

D1(τ) = (n− 1)2
∫ ∞

τ
u(x)

∫ x

τ

(∫ s

τ
(x− t)n−2dt

)2

v−1(s)dsdx

+
∫ ∞

τ
u(x)(x− τ)2(n−1)

∫ ∞

x
v−1(s)dsdx.

The functions D0(τ), D1(τ) are continuous and the function D1(τ) is decreasing on the inter-
val I and limτ→∞ D1(τ) = 0. Since

∫ ∞

τ
u(x)

∫ τ

0

(∫ τ

s
(x− t)n−2dt

)2

v−1(s)dsdx

≈
∫ ∞

τ
u(x)(x− τ)2(n−2)dx

∫ τ

0
(τ − s)2v−1(s)ds

+
∫ ∞

τ
u(x)dx

∫ τ

0
(τ − s)2(n−1)v−1(s)ds,

then we get limτ→0+ D0(τ) = 0. Therefore, there exists a point τ = µ such that D0(µ) = D1(µ).
Hence, from (4.11) we have (4.10). The proof of Theorem 4.6 is complete.

Remark 4.7. In Theorems 4.3, 4.4 and 4.6 and in their proofs replacing v−1 by u, u by v−1

and conditions (3.4) and (3.5) by (3.17) and (3.18) in the required places, we get the similar
statements but under condition (3.16).
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