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Abstract. We consider semilinear parabolic equations with nonlinear boundary con-
ditions. We give conditions which guarantee global existence of solutions as well as
blow-up in finite time of all solutions with nontrivial initial data. The results depend
on the behavior of variable coefficients as t — 0.
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1 Introduction
We investigate the global solvability and blow-up in finite time for semilinear heat equation
up=Au+ua(t)f(u) forxeQ, t>0, (1.1)

with nonlinear boundary condition

ou(x,t)
ov

= B(t)g(u) forxe€oQ), t >0, (1.2)

and initial datum
u(x,0) =up(x) forxeQ, (1.3)

where () is a bounded domain in R” for n > 1 with smooth boundary 9d(), v is the unit exterior
normal vector on the boundary 0Q). Here f(u) and g(u) are nonnegative continuous functions
for u > 0, a(t) and B(t) are nonnegative continuous functions for t > 0, ug(x) € C}(Q),
up(x) > 0 in Q and satisfies boundary condition (1.2) as t = 0. We will consider nonnegative
classical solutions of (1.1)—(1.3).
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Blow-up problem for parabolic equations with reaction term in general form were consid-
ered in many papers (see, for example, [1,2,8,9,14,21,27] and the references therein). For the
global existence and blow-up of solutions for linear parabolic equations with B(¢) = 1in (1.2),
we refer to previous studies [16,17,22,24-26]. In particular, Walter [24] proved that if g(s) and
¢'(s) are continuous, positive and increasing for large s, a necessary and sufficient condition
for global existence is

+oo ds
/ OO

Some papers are devoted to blow-up phenomena in parabolic problems with time-
dependent coefficients (see, for example, [4-6,18-20,28]). So, it follows from results of Payne
and Philippin [20] blow-up of all nontrivial solutions for (1.1)—(1.3) with B(t) = 0 under the
conditions (2.15) and

f(s) >z(s) >0, s >0,

where z satisfies
R
/ —— < +co foranya >0
a

z(s)

and Jensen’s inequality

1 1
‘Q’/Qz(u)dx >z <‘Q’/Qudx). (1.4)

In (1.4), |Q| is the volume of Q).

The aim of our paper is study the influence of variable coefficients «(t) and B(t) on the
global existence and blow-up of classical solutions of (1.1)—(1.3).

This paper is organized as follows. Finite time blow-up of all nontrivial solutions is proved
in Section 2. In Section 3, we present the global existence of solutions for small initial data.

2 Finite time blow-up

In this section, we give conditions for blow-up in finite time of all nontrivial solutions of
(1.1)—(1.3).

Before giving our main results, we state a comparison principle which has been proved in
[7,23] for more general problems. Let Qr = Q x (0,T), St =9Q x (0,T), 't = St UQ x {0},
T >0.

Theorem 2.1. Let v(x,t), w(x,t) € C*(Qr) N CYP(Qr UTT) satisfy the inequalities:
t)f(w) in Qr,

on ST,

v —Av—a(t)f(v) <wp —Aw —w

avgaf/,t) _ B(t)g(0) < ow(x, t)

S
SN—
Q)
<
|
=
— —
—
N—
oQ
—
g
N—

Then
v(x,t) <w(x,t) in Qr.

The first our blow-up result is the following.

Theorem 2.2. Let ¢(s) be a nondecreasing positive function for s > 0 such that

+o ds
/ o < 2.1)
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and oo
/ B(t) dt = +oo. 2.2)
0
Then any nontrivial nonnegative solution of (1.1)—=(1.3) blows up in finite time.

Proof. We suppose that u(x,t) is a nontrivial nonnegative solution which exists in Qr for
any positive T. Then for some T > 0 there exists (¥,t) € Qr such that u(x,f) > 0. Since
ur — Au = a(t)f(u) > 0, by strong maximum principle u(x,t) > 0in Qr \ Qr. Let u(x4,ts) =0
in some point (x,,ts) € St \ S. According to Theorem 3.6 of [11] it yields du(x,, t.)/dv < 0,
which contradicts the boundary condition (1.2). Thus, u(x,t) > 0 in Qr U St \ Qy. Then there
exists ty > f such that B(tp) > 0 and

minu(x, ty) > 20, (2.3)
Q

where ¢ is a positive constant.
Let Gn(x,y;t — T) denote the Green’s function for the heat equation given by

uy—Au=0 forxe,t>0

with homogeneous Neumann boundary condition. We note that the Green’s function has the
following properties (see, for example, [12,13]:

Gn(x,y;t—17) >0, vye 0< <t (2.4)
/ GN(x,y;t—T)dy =1, xe 0<1t<t, (2.5)
0

Gn(xyt—1T) >0, X, YyeEQ, t—T>¢ (2.6)

|Gn(x,y;t — 1) —1/|Q|| < caexp[—c3(t — 1)), X, yeQ, t—T>¢

C4
Gyn(x,y;t—1)dS, < ,
/ao N(x Y T) y VE—T

for some small ¢ > 0. Here by ¢; (i € IN) we denote positive constants.
Now we introduce conditions on several auxiliary comparison functions. We suppose that
h(s) € C1((0,+00)) NC([0, +0)), h(s) >0 fors >0, h'(s) > 0 fors >0, g(s) > h(s) and

[T < e
W) =T

Let ¢(t) be a positive continuous function for t > t( such that

xeQ, 0<t—1<eg

/t e dt < : 2.7)

and 7y (t) be a positive continuous function for t > ty such that y(tp) = B(tp)h(20) and

t _
/ ’)/(T)/ Gn(x,yt —T1)dS,dt < 7 forxe O, t > to. (2.8)
to a0 2

We consider the following problem

vy =Av—{(t) for x € Q), t > ty,
ov(x, t)

v
v(x,tp) =20 for x € Q.

B(t)h(v) — y(t) for x €9Q), t > to, (2.9)




4 A. Gladkov and M. Guedda

To find lower bound for v(x, t) we represent (2.9) in equivalent form

v(x,t) = 2(7/0 Gn(x,y;t) d]/_/tt/QGN(x,y;t—r)g(T) dy dt
t O (2.10)
[ Gnlyt =) (B@h(o) ~ (r)) dsy

Using (2.7), (2.8) and the properties of the Green’s function (2.4), (2.5), we obtain from (2.10)

o(x, ) > 20 — /t &(t)dt — /t (1) /aQ G (x,y3t — T)dS, dT > 0. 2.11)

to fo

m(t) = /Q/v::) ho(lz)dx.

We observe that m(t) is well defined and positive for t > . Since v(x,t) is the solution of
(2.9), we get

As in [22] we put

Tig\ Ot . Av dx
m(t)_—/ﬂh(v)dx_— it 0 [ i

Applying the inequality h’'(v) > 0, Gauss theorem, the boundary condition in (2.9) and (2.11),
we obtain for t > tj

1 dv [9] QIE(t) + [902 v (t)
/ < _ / _ < — . .
m'(t) < o0 (o) v ds +¢(t) o) = |0QY|B(t) + 7o) (2.12)
Due to (2.2), (2.6)—(2.8) m(t) is negative for large values of . Hence v(x,t) blows up in finite
time Ty. Applying Theorem 2.1 to v(x,t) and u(x,t) in Qr \ Qy, for any T € (to, Tp), we prove
the theorem. O

Remark 2.3. If ug(x) is positive in () we can obtain an upper bound for blow-up time of the
solution. We put tp = 0 and v(x,0) = up(x) — € in (2.9) for ¢ € (0, ming ug(x)). Integrating
(2.12) over [0, T], we have

(e < m©) ~ oo [ pieyar+ [ IOEELE RO,

Since m(t) > 0 and ¢, (t), v(t) are arbitrary we conclude that the solution of (1.1)—(1.3) blows
up in finite time T}, where T, < T and

/Q/To) ,f(lz)dx — o0 /OT/s(t) n

Remark 2.4. We note that (1.1)-(1.3) with up(x) = 0 may have trivial and blow-up solutions
under the assumptions of Theorem 2.2. Indeed, let the conditions of Theorem 2.2 hold, a(t) =
0, B(t) =1and g(u) = uP, u € [0,7] for some v > 0 and 0 < p < 1. As it was proved in [3],
problem (1.1)—(1.3) has trivial and positive for ¢t > 0 solutions and last one blows up in finite
time by Theorem 2.2.
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To prove next blow-up result for (1.1)—(1.3) we need a comparison principle with unstrict
inequality in the boundary condition.

Theorem 2.5. Let § > 0 and v(x,t), w(x,t) € C*(Qr) N CY0(Qr UTT) satisfy the inequalities:

v —Av—a(t)f(v) +0 <wy — Aw —a(t)f(w) inQr,
v(x, t) < ow(x,t)

o T v
v(x,0) < w(x,0) inQ.

on ST,

Then
v(x,t) <w(x,t) inQr.

Proof. Let T be any positive constant such that T < T and a positive function y(x) € C?(Q)
satisfy the following inequality

M%) S0 onan.
ov
For positive ¢ we introduce
we(x,t) = w(x, t) + ey(x). (2.13)
Obviously,
v(x,0) < we(x,0) in O, Bv(aalc/,t) < awia(j't) on S..
Moreover,

v — Ao —a(t)f(v) < we — Awe — a(t) f(we) in Qx,
if we take € so small that
0 >eAy+a(t)[f(w+ey)— f(w)] in Q.
Applying Theorem 2.1 with B(t) = 0, we obtain
v(x,t) < we(x,t) in Q.
Passing to the limit as ¢ = 0 and T — T, we prove the theorem. O

Theorem 2.6. Let f(s) > 0 fors >0,

too g
B 214
IO 219
and
+o0
/0 a(t) dt = +oo. (2.15)

Then any nontrivial nonnegative solution of (1.1)—(1.3) blows up in finite time.

Proof. We suppose that u(x,t) is a nontrivial nonnegative solution which exists in Qr for any
positive T. In Theorem 2.2 we proved (2.3). Let {(t) be a positive continuous function for
t > to such that
+o0
maxf(s)/ () dt < o (2.16)

[o,20] to
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We consider the following auxiliary problem
(2.17)

We prove at first that
v(t) > o fort > t. (2.18)

Suppose there exist t; and t, such that
th >t > to, v(t1) = 20, v(t) =0,

and
v(t) >0 fort € [ty t2) and o(t) <20 fort € [t,t].

Integrating the equation in (2.17) over [t1, t2], we have due to (2.16)

t
o(t2) > — max f(s) / CE(B)dE+o(t) > 0.
[o,20] t
A contradiction proves (2.18).
From (2.17) we obtain
s [ lalr) -] @19)
—— = [ |la(T) = ¢(7)]dT. .
20 f (S) to
By (2.14)—(2.16) the left side of (2.19) is finite and the right side of (2.19) tends to infinity as
t — oo. Hence the solution of (2.17) blows up in finite time Ty. Applying Theorem 2.5 to v(t)

and u(x,t) in Qr \ Qy, for any T € (to, Tp), we prove the theorem. O

Remark 2.7. If ug(x) is positive in () we can obtain an upper bound for blow-up time of the
solution. Taking ty = 0, we conclude from (2.19) that the solution of (1.1)-(1.3) blows up in
finite time Ty, where T, < T and

+oo ds /T
— = w(t)dt.
/minﬂuo(x) f(S) 0 < )

Remark 2.8. Theorem 2.6 does not hold if f(s) is not positive for s > 0. To show this we
suppose that f(u1) = 0 for some 17 > 0, B(t) =0, uo(x) = u;. Then problem (1.1)—(1.3) has
the solution u(x,t) = uj.

Remark 2.9. We note that (2.14) is necessary condition for blow-up of solutions of (1.1)—(1.3)
with B(t) = 0. Let f(s) > 0 for s > 0 and
teods
flo ~
Then any solution of (1.1)-(1.3) is global. Indeed, let u(x,t) be a nontrivial solution of (1.1)-
(1.3). Then there exist tp > 0 and x € Q such that u(x,ty) > 0.
We consider the following problem

V() = (a(t) +E(1))f(0), t > to,
v(ty) > maxu(x,ty) >0, (2.20)
9
where ((t) is some positive continuous function for t > ty. Obviously, v(t) is global solution
of (2.20). Applying Theorem 2.5 to u(x,t) and v(t) in Qr \ Qy, for any T > t;, we prove the
theorem.
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Remark 2.10. Problem (1.1)-(1.3) with up(x) = 0 may have trivial and blow-up solutions under
the assumptions of Theorem 2.6. Indeed, let the conditions of Theorem 2.6 hold, B(t) = 0,
f(s) be a nondecreasing Holder continuous function on [0, €] for some € > 0 and

€ ds
— < Ho00.

o f(s)

As it was proved in [15], problem (1.1)—(1.3) has trivial and positive for t > 0 solutions and
last one blows up in finite time by Theorem 2.6.
3 Global existence
To formulate global existence result for problem (1.1)-(1.3) we suppose:
f(s) is a nonnegative locally Holder continuous function for s > 0, (3.1)

there exists p > 0 such that f(s) is a positive nondecreasing function for s € (0,p), (3.2)

ds _g(s) _
“+o00
| @@+ ) at < 4o G4
and there exist positive constants 7y, tp and K such that v > ¢y and
tB(r)dr
<K for t> 1. 3.5
t—tg V/t—T — ort=7 (35)

Theorem 3.1. Let (3.1)~(3.5) hold. Then problem (1.1)—(1.3) has bounded global solution for small
initial datum.

Proof. 1t is well known that problem (1.1)—(1.3) has a local nonnegative classical solution
u(x,t). Let y(x,t) be a solution of the following problem

yr=Ay, x€Q, t>0,
ayg:/,t) =&(t) +B(t), x €0, t >0, (3.6)
y(x,0) =1, x€Q,

where (t) is a positive continuous function that satisfies (3.4), (3.5) with B(t) = ¢(t). Accord-
ing to Lemma 3.3 of [10] there exists a positive constant Y such that

1<y(x,t) <Y, xeQ, t>0.

Due to (3.2), (3.3) for any a € (0, p), there exist €(a) and a positive continuous function #(t)
such that

0 < ¢&(a) <%, /()oon(t)dt<oo and ;fczz)>y/0°° (a(t) +7(t)) dt

for any e € (0,e(a)). Now for any T > 0 we construct a positive supersolution of (1.1)—(1.3) in
Qr in such a form that

u(x,t) =ez(t)y(x,t),



8 A. Gladkov and M. Guedda

where function z(t) is defined in the following way

eYz(t) dg t
/g o :y/o (a(T) + (7)) dr.

Y

It is easy to see that eYz(t) < a and z(t) is the solution of the following Cauchy problem

2 () — - (alt) +7(1) fleva() =0, =(0) =1,
After simple computations it follows that
u — A — a(t) f(u) = ez'y + ezy; — ezAy — a(t) f (ezy)
> w(t)(f(eYz(t)) — f(ezy)) +n(t)f(eYz(t)) >0, xeQ, t>0,

and

L) _ B1)g(a) = ex(t) (€(8) + B(1)) — BlB)g(ez()y 1)

> ez(HB(E) |1 — ‘Wy(x,t) >0

for small values of a. Thus, by Theorem 2.1 there exists bounded global solution of (1.1)—(1.3)
for any initial datum satisfying the inequality

up(x) < e. O

Remark 3.2. We suppose that g(s) is a nondecreasing positive function for s > 0, f(s) > 0 for
s > 0 and (2.1), (2.14) hold. Then by Theorem 2.2 and Theorem 2.6 (3.4) is necessary for global
existence of solutions of (1.1)—(1.3).

Let for any a > 0 g(s) > d(a) > 0if s > a. Then arguing in the same way as in the proof
of Lemma 3.3 of [10] it is easy to show that (3.5) is necessary for the existence of nontrivial
bounded global solutions of (1.1)—(1.3).
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