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Abstract. The object of this paper is to study the existence and nonexistence of an im-
portant orbit in a generalized Liénard type system. This trajectory is doubly asymptotic
to an equilibrium solution, i.e., an orbit which lies in the intersection of the stable and
unstable manifolds of a critical point. Such an orbit is called a homoclinic orbit.
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1 Introduction

Consider the planar system

ẋ = P(Q(y)− F(x))

ẏ = −g(x),
(1.1)

which is a generalized Liénard type system, where P, Q, F and g are continuous functions
satisfying suitable assumptions in order to ensure the existence of a unique solution to the
initial value problems. Moreover, suppose that the following assumptions hold under which
the origin is the unique critical point of system (1.1).

P(u) and Q(y) are strictly increasing and F(0) = P(0) = Q(0) = 0,

uP(u) > 0 for u 6= 0, yQ(y) > 0 for y 6= 0 and xg(x) > 0 for x 6= 0.

System (1.1) includes the classical Liénard system as a special case, which is of great impor-
tance in various applications (see [1] to [23] and the references cited therein).

Definition 1.1. In system (1.1), a trajectory is said to be a homoclinic orbit if its α- and ω-limit
sets are the origin (see Fig. 1.1).
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Figure 1.1: Homoclinic orbit

The main purpose of this paper is to give an implicit necessary and sufficient condition
and some explicit sufficient conditions on F(x), g(x), P(u) and Q(y) under which system (1.1)
has homoclinic orbits. These results extend and improve the results presented for special cases
of system (1.1) in [3, 11, 19].

The existence of homoclinic orbit is an important problem in nonlinear dynamical systems
and the theory of ordinary differential equations. The results about the existence of homoclinic
orbits for the other systems, such as the Lorenz system, Schrödinger systems, predator–prey
systems and Hamiltonian systems can be found in [13,18,22,23], respectively. Moreover, vari-
ous systems and equations such as generalized Euler equation [4] and predator–prey systems
[22] can be transformed to the Liénard type systems.

The existence of homoclinic orbits in the Liénard-type systems is closely connected with
the stability of the zero solution and the center problem (see [6, 11, 19, 21]). If system (1.1) has
a homoclinic orbit, then the zero solution is no longer stable. A homoclinic orbit and a center
cannot exist together in system (1.1). Our subject also has a near relation with the global
attractivity of the origin and oscillation of solutions and so on (see [9, 12, 20]).

The curve Γ = {(x, y)|y = Q−1(F(x))} is called the characteristic curve of (1.1). Let

Γ1 = {(x, y) | y = Q−1(F(x)) and x > 0},

and
Γ2 = {(x, y) | y = Q−1(F(x)) and x < 0}.

Then, Γ = Γ1
⋃

Γ2
⋃
(0, 0). Positive and negative orbits of (1.1) passing through p ∈ R2 are

shown by O+(p) and O−(p), respectively.
The following definitions are presented to state our main results.

Definition 1.2. System (1.1) has property (Z+
1 ) (resp., (Z+

3 )) if there exists a point p(x0, y0) ∈
Γ1 (resp., p(x0, y0) ∈ Γ2), such that the O+(p) of (1.1) starting at p approaches the origin
through only the first (resp., third) quadrant (see Fig. 1.2).

Definition 1.3. System (1.1) has property (Z−2 ) (resp., (Z−4 )) if there exists a point p(x0, y0) ∈
Γ2 (resp., p(x0, y0) ∈ Γ1), such that the O−(p) of (1.1) starting at p approaches the origin
through only the second (resp., fourth) quadrant.

If system (1.1) has both properties (Z+
1 ) and (Z−2 ), then a homoclinic orbit exists in the

upper half-plane. Similarly, if system (1.1) has both properties (Z+
3 ) and (Z−4 ), then a homo-

clinic orbit exists in the lower half-plane. In this paper we will find conditions for deciding
whether system (1.1) has homoclinic orbit.

Hara and Yoneyama in [9] considered system (1.1) with Q(y) = y and P(u) = u and
presented some sufficient conditions under which the system has or fails to have property
(Z+

1 ). Also, Sugie presented an implicit necessary and sufficient condition for system (1.1)
with P(u) = u to have property (Z+

1 ) [19]. Next, Aghajani and Moradifam in [3] considered
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Figure 1.2: Property (Z+
1 )

system (1.1) with P(u) = u and gave an implicit necessary and sufficient condition for the
system to have property (Z+

1 ) which improved some results in [19].
In the next section an implicit necessary and sufficient condition and some explicit suffi-

cient conditions are provided for system (1.1) to have property (Z+
1 ). Since some nonlinear

functions are added to the classical Liénard system in this article, our results are proper ex-
tensions of the known ones in [3], [9], [11] and [19].

2 Necessary and sufficient conditions for property of (Z+
1 )

In this section we will give necessary and sufficient conditions for system (1.1) to have prop-
erties (Z+

1 ) and (Z−2 ). First, consider the following lemma about asymptotic behavior of
solutions of (1.1).

Lemma 2.1. For each point H(c, Q−1(F(c))) with c > 0 or c < 0, the positive or negative semi-orbit
of (1.1) starting at H crosses the negative y-axis if the following condition holds.

(A1) There exists a δ > 0 such that F(x) < 0 for −δ < x < δ or F(x) has an infinite number of
positive zeroes clustering at x = 0.

Remark 2.2. Lemma 2.1 implies that system (1.1) fails to have properties (Z+
1 ) and (Z−2 ) if

(A1) holds. Hence, hereafter we assume that there exists a δ > 0 such that F(x) > 0 for
−δ < x < δ.

Theorem 2.3. System (1.1) has property (Z+
1 ) if and only if there exist a constant δ > 0 and a

continuous function φ(x) such that

0 ≤ φ(x) < F(x) and
∫ x

0

−g(η)
P(φ(η)− F(η))

dη ≤ Q−1(φ(x)) (2.1)

for 0 < x < δ.

Proof. First, note that the positive semi-orbit of (1.1) starting at H(x0, Q−1(F(x0))) is consid-
ered as a solution y(x) of

dy
dx

=
−g(x)

P(Q(y)− F(x))
, (2.2)

with y(x0) = Q−1(F(x0)).
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Sufficiency: Suppose that system (1.1) fails to have property (Z+
1 ). Thus, there exist a point

H(x0, Q−1(F(x0))) and x0 > 0 such that the positive semi-orbit of (1.1) starting at H does not
approach the origin through the first quadrant. Taking the vector field of (1.1) into account, it
is obvious that the positive semi-orbit rotates in clockwise direction about the origin. For this
reason, it crosses the curve y = Q−1(φ(x)) and meets the y-axis at a point (0, y1) with y1 < 0.
Let

x1 = inf{x : 0 < x < δ and y(x) > Q−1(φ(x))}.

Then, (x1, y(x1)) is the intersection point of O+(H) and the curve y = Q−1(φ(x)) nearest to
the origin, that is y(x1) = Q−1(φ(x1)) and y < Q−1(φ(x)) for 0 < x < x1. Hence, from (2.1),
it can be concluded that

Q−1(φ(x1)) < y(x1)− y1 =
∫ x

0

−g(η)
P(Q(y(η))− F(η))

dη

<
∫ x1

0

−g(η)
P(φ(η)− F(η))

dη ≤ Q−1(φ(x1)),

which is a contradiction.

Necessity: Suppose that O+(H) approaches the origin through the first quadrant. Then, its
corresponding solution y(x) satisfies

y(x)→ 0+ as x → 0. (2.3)

Let δ = x0 and φ(x) = Q(y(x)) for 0 < x < δ. It is obvious that φ(x) ≥ 0. Thus,

Q−1(φ(x)) = y(x) < Q−1(F(x)),

and therefore, φ(x) < F(x) for 0 < x < δ. Also, from (2.3) it can be easily seen that

∫ x

0

−g(η)
P(φ(η)− F(η))

dη =
∫ x

0

−g(η)
P(Q(y(η))− F(η))

dη = y(x)− lim
ε→0

y(ε)

= Q−1(φ(x)).

Thus, (2.1) holds and the proof is complete.

Remark 2.4. For P(u) = u, Theorem 2.3 gives the corresponding result of Sugie in [19].

Corollary 2.5. Suppose that there exists k ∈ (0, 1) and δ > 0 such that

1
Q−1(kF(x))

∫ x

0

−g(η)
P((k− 1)F(η))

dη ≤ 1 for 0 < x < δ. (2.4)

Then, system (1.1) has property (Z+
1 ).

Proof. Let φ(x) = kF(x). The following inequality is obtained from (2.4).

∫ x

0

−g(η)
P(φ(η)− F(η))

dη =
∫ x

0

−g(η)
P((k− 1)F(η))

dη ≤ Q−1(kF(x)),

for 0 < x < δ. Thus, by Theorem 2.3 system (1.1) has property (Z+
1 ).
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Corollary 2.6. Suppose that P(au) ≤ aP(u) for a ∈ (−1, 0) and u > 0. If there exist k ∈ (0, 1) and
δ > 0 such that

1
(1− k)Q−1(kF(x))

∫ x

0

g(η)
P(F(η))

dη ≤ 1 for 0 < x < δ,

then system (1.1) has property (Z+
1 ).

Remark 2.7. For P(u) = u and Q(y) = y and taking k = 1
2 , Corollary 2.6 gives the result of

Hara and Yoneyama in [9].

Corollary 2.8. If for every k ∈ [0, 1] there exists a constant γk > 0 such that

lim inf
x→0+

(
1

Q−1((k + γk)F(x))

∫ x

0

−g(η)
P((k− γk − 1)F(η))

dη

)
> 1, (2.5)

then system (1.1) fails to have property (Z+
1 ).

Proof. Suppose that there exist a constant δ > 0 and a continuous function φ such that condi-
tion (2.1) holds. Define k′ = lim infx→0+

φ(x)
F(x) . Then 0 ≤ k′ ≤ 1, and from the definition of k′ it

follows that for every ε > 0, there exist a b and a sequence {xn} with 0 < b < δ, 0 < xn ≤ b,
and xn → 0 as n→ +∞ such that

φ(x)
F(x)

> k′ − ε for 0 < x ≤ b and
φ(xn)

F(xn)
< k′ + ε.

Hence,
φ(x) > (k′ − ε)F(x) for 0 < x ≤ b and φ(xn) < (k′ + ε)F(xn).

Thus, from (2.1) it can be concluded that

0 ≥
∫ xn

0

−g(η)
P(φ(η)− F(η))

dη −Q−1(φ(xn))

>
∫ xn

0

−g(η)
P((k′ − ε)F(η)− F(η))

dη −Q−1((k′ + ε)F(xn)).

Consequently, for n ≥ 1 the following inequality holds.

1
Q−1((k′ + ε)F(xn))

∫ xn

0

−g(η)
P((k′ − ε− 1)F(η))

dη < 1. (2.6)

Thus, (2.6) contradicts (2.5) and the proof is complete.

Corollary 2.9. Suppose that P(au) ≥ aP(u) for a ∈ [−2,−1) and u > 0. If there exists β ∈ (1, 2]
such that

lim inf
x→0+

(
1

2Q−1((β + 1)F(x))

∫ x

0

g(η)
P(F(η))

dη

)
> 1, (2.7)

then system (1.1) fails to have property (Z+
1 ).

Proof. Suppose that (2.7) holds. Then, in (2.5) for every k ∈ [0, 1] let γk = (β − 1)k + 1. By
this argument, we have k− 1− γk = 2k− βk− 2 and k + γk = βk + 1. Since 1 < β ≤ 2 and
0 ≤ k ≤ 1, then

−2 ≤ 2k− βk− 2 < −1,
1
2
≤ 1

2 + (β− 2)k
< 1 and βk + 1 ≤ β + 1.
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Now, put the last relations in the left-hand side of (2.5) and get

lim inf
x→0+

(
1

Q−1((k + γk)F(x))

∫ x

0

−g(η)
P((k− γk − 1)F(η))

dη

)
= lim inf

x→0+

(
1

Q−1((βk + 1)F(x))

∫ x

0

−g(η)
P((2k− βk− 2)F(η))

dη

)
≥ lim inf

x→0+

(
1

(2 + (β− 2)k)Q−1((β + 1)F(x))

∫ x

0

g(η)
P(F(η))

dη

)
≥ lim inf

x→0+

(
1

2Q−1((β + 1)F(x))

∫ x

0

g(η)
P(F(η))

dη

)
> 1.

This completes the proof.

By choosing k = 0 in the proof of Corollary 2.9, the following corollary can be presented
with weaker conditions.

Corollary 2.10. Suppose that P(au) ≥ aP(u) for a ∈ [−2,−1) and u > 0. If

lim inf
x→0+

(
1

2Q−1(F(x))

∫ x

0

g(η)
P(F(η))

dη

)
> 1, (2.8)

then system (1.1) fails to have property (Z+
1 ).

The following corollaries can be obtained as results of Theorem 2.3 which are very useful
in applications.

Corollary 2.11. Suppose that system (1.1) with P(u) = P1(u) has (resp., fails to have) property (Z+
1 ).

If P2(u) ≤ P1(u) (resp., P2(u) ≥ P1(u)) for u < 0, then system (1.1) with P(u) = P2(u) has (resp.,
fails to have) property (Z+

1 ).

Corollary 2.12. Suppose that system (1.1) with Q(y) = Q1(y) has (resp., fails to have) property
(Z+

1 ). If Q2(y) ≤ Q1(y) (resp., Q2(y) ≥ Q1(y)) for y > 0 sufficiently small, then system (1.1) with
Q(y) = Q2(y) has (resp., fails to have) property (Z+

1 ).

By the same way, we can prove the following theorem about property (Z−2 ).

Theorem 2.13. System (1.1) has property (Z−2 ) if and only if there exist a constant δ > 0 and a
continuous function φ(x) such that

0 ≤ φ(x) < F(x) and
∫ x

0

−g(η)
P(φ(η)− F(η))

dη ≤ Q−1(φ(x))

for −δ < x < 0.

Similarly, other obtained results (Corollaries 2.5–2.10) can be formulated for property (Z−2 ).

3 Some explicit results

Condition (2.1) is implicit necessary and sufficient for system (1.1) to possess property (Z+
1 ).

However, in some cases, it is very difficult to find a suitable function φ(x) with a constant δ

satisfying (2.1). Therefore, in the following, some explicit sufficient conditions are provided
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for system (1.1) to have property (Z+
1 ). The results can also be formulated for the property

(Z+
3 ), (Z−2 ) or (Z−4 ). We leave the details to the reader. To state the results, define

H(y) =
∫ y

0
Q(η)dη and G(x) =

∫ x

0
g(η)dη.

Also, the inverse function of ω(y) = H(y)sgn(y) is denoted by H−1(ω).

Theorem 3.1. Suppose that P(au) ≤ aP(u) for a ∈ (−1, 0) and u > 0 and there exist α > 0 and
k ∈ [0, 1) such that

Q
(

x
α(1− k)

)
≤ kP−1(αQ(x)) (3.1)

for x > 0 sufficiently small. Then, system (1.1) has property (Z+
1 ) if

F(x) ≥ P−1(αQ(H−1(G(x)))), (3.2)

for x > 0 sufficiently small.

Proof. From (3.1) it is obvious that

u
α(1− k)Q−1(kP−1(αQ(u)))

≤ 1, (3.3)

for u > 0 sufficiently small. Since the function u(x) = H−1(G(x)) is increasing and continuous
on [0, ∞) and u(0) = 0, by (3.2) we obtain

H−1(G(x))
α(1− k)Q−1(kP−1(αQ(H−1(G(x)))))

≤ 1, (3.4)

for x > 0 sufficiently small. Since

d
dx

H−1(G(x)) =
g(x)

Q(H−1(G(x)))
,

from (3.4) we conclude that

1
(1− k)Q−1(kF(x))

∫ x

0

g(η)
P(F(η))

dη

≤ 1
(1− k)Q−1(kP−1(αQ(H−1(G(x)))))

∫ x

0

g(η)
αQ(H−1(G(η)))

dη

=
H−1(G(x))

α(1− k)Q−1(kP−1(αQ(H−1(G(x)))))
≤ 1,

for x > 0 sufficiently small. Hence, by Corollary 2.6 system (1.1) has property (Z+
1 ).

By choosing α = 2, k = 1
2 and P(u) = u, condition (3.1) holds for any function Q. In

this case, the following corollary is obtained about property (Z+
1 ) which is the corresponding

result of Sugie in [19].

Corollary 3.2. Suppose that
F(x) ≥ 2Q(H−1(G(x))), (3.5)

for x > 0 sufficiently small. Then, system (1.1) with P(u) = u has property (Z+
1 ).
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Theorem 3.3. Suppose that α > 0 and P(au) ≥ aP(u) for a ∈ [−2,−1) and u > 0. Also, assume
that there exists β ∈ (1, 2] such that

Q
(

x
2α

)
≥ (β + 1)P−1(αQ(x)) (3.6)

for x > 0 sufficiently small. Then, system (1.1) fails to have property (Z+
1 ) if

F(x) ≤ P−1(λαQ(H−1(G(x)))), (3.7)

for some λ < 1.

Proof. By (3.6) it is obvious that

u
αQ−1((β + 1)P−1(αQ(u)))

≥ 2.

By the similar argument to the proof of Theorem 3.1, it can be concluded that if (3.6) and (3.7)
hold, then

lim inf
x→0+

(
1

2Q−1((β + 1)F(x))

∫ x

0

g(η)
P(F(η))

dη

)
> 1.

Hence, by Corollary 2.9 system (1.1) fails to have property (Z+
1 ).

4 Homoclinic orbit

In this section some results will be presented about the existence of homoclinic orbit in the
upper half-plane for system (1.1). The following theorem is obtained by combining Theorem
2.3 and 2.13.

Theorem 4.1. System (1.1) has homoclinic orbit in the upper half-plane if and only if there exist a
constant δ > 0 and a continuous function φ(x) such that

0 ≤ φ(x) < F(x) and
∫ x

0

−g(η)
P(φ(η)− F(η))

dη ≤ Q−1(φ(x)) (4.1)

for 0 < |x| < δ.

The following two corollaries are obtained from Theorem 4.1, which provide explicit con-
ditions for system (1.1) to have homoclinic orbit in upper half-plane. Note that, in Remark 2.2,
it is assumed that there exists a δ > 0 such that F(x) > 0 for −δ < x < δ.

Corollary 4.2. Suppose that there exist k ∈ (0, 1) and δ > 0 such that

1
Q−1(kF(x))

∫ x

0

−g(η)
P((k− 1)F(η))

dη ≤ 1 for 0 < |x| < δ. (4.2)

Then, system (1.1) has homoclinic orbit in the upper half-plane.

Corollary 4.3. Suppose that P(au) ≤ aP(u) for a ∈ (−1, 0) and u > 0. If there exist k ∈ (0, 1) and
δ > 0 such that

1
(1− k)Q−1(kF(x))

∫ x

0

g(η)
P(F(η))

dη ≤ 1 for 0 < |x| < δ, (4.3)

then system (1.1) has homoclinic orbit in the upper half-plane.
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Remark 4.4. Suppose that F is an even and g is an odd function. It is easy to see that system
(1.1) has property (Z+

1 ) if and only if it has property (Z−2 ). Therefore, if system (1.1) has
property (Z+

1 ), then it has a homoclinic orbit in the upper half-plane.

Similarly, Theorem 3.1 and Corollary 3.2 and some other results can be formulated about
property (Z−2 ) and the existence of homoclinic orbits in the upper half-plane. Turning our
attention to the lower half-plane, all presented results can be formulated about properties
(Z+

3 ) and (Z−4 ) and finally about the existence of homoclinic orbit in the lower half-plane.
In the following, two examples will be presented to illustrate our results and show the

applications of the results.

Example 4.5. Consider the following Gause-type Predator-Prey system

u̇ = ur(u)− vs f (u)

v̇ = v(q(u)− D),
(4.4)

with f (u) = u, r(u) = β − γ|u − α|, q(u) = u2, D = α2 and β > αγ. In system (4.4), u(t)
and v(t) represent prey and predator densities, the function f (u) is functional response, q(u)
is the growth rate of the predator, r(u) is the growth rate of the prey in the absence of any
predators, and D > 0 is the natural death rate of the predator in the absence of any prey.
The constants α, β and γ are positive ecological parameters. System (4.4) has the positive
equilibrium E∗ = (α, β). By the change of variables

x = u− α, y = ln β− ln v and dt = uds,

system (4.4) will be transformed into system (1.1) with

P(u) = u, Q(y) = β(1− e−y), F(x) = γ|x| and g(x) = x + α− α2

x + α
. (4.5)

Functions F(x) and g(x) are defined on (−α,+∞) and satisfy F(0) = 0 and xg(x) > 0 for
x 6= 0. Also, Q(y) is defined on R satisfying Q(0) = 0 and yQ(y) > 0 for y 6= 0. The inverse
function of Q(y) is Q−1(y) = ln

( β
β−y

)
where defined on (−∞, β). For 0 < x < β

kγ , by using
Corollary 4.3, it can be written that

1
(1− k)Q−1(kF(x))

∫ x

0

g(η)
P(F(η))

dη =
1

γ(1− k) ln
(

β

β− kγx

)(x + α ln
(

1 +
x
α

))

<
2β

γ2(1− k)k
.

By choosing k = 1
2 , it can be concluded that

1
(1− k)Q−1(kF(x))

∫ x

0

g(η)
P(F(η))

dη <
8β

γ2 .

If 0 < 8β ≤ γ2, then
1

(1− k)Q−1(kF(x))

∫ x

0

g(η)
P(F(η))

dη < 1.

By a similar argument, it can be shown that for −α < x < 0

1
(1− k)Q−1(kF(x))

∫ x

0

g(η)
P(F(η))

dη < 1.
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Figure 4.1: Phase portrait for system (4.4) with α = 0.2, β = 0.75 and γ = 3.

Therefore, by Corollary 4.3 this system has a homoclinic orbit in the upper half-plane (see
Fig. 4.1).

Remark 4.6. Sugie and Kimoto in [22], under the assumption Q(y) ≤ my for y > 0, showed
that system (1.1) with functions in (4.5) has homoclinic orbits in the upper half-plane if 0 <

8β ≤ γ2. In this work, the existence of homoclinic orbits has been presented without the
assumption Q(y) ≤ my for y > 0.

Example 4.7. Consider system (1.1) with functions

P(u) = u3, Q(y) = sgn(y)
√
|y|, F(x) = 4

√
|x| and g(x) = x. (4.6)

By Corollary 2.5, it can be written that

1
Q−1(kF(x))

∫ x

0

−g(η)
P((k− 1)F(η))

dη =
4 4
√

x3

5k2(1− k)3 ≤ 1

for 0 < x <
( 3

5

)4 1
5 3√5

. Therefore, this system has property (Z+
1 ). Since F is even and g is

odd, Remark 4.4 implies that this system has a homoclinic orbit in the upper half-plane (see
Fig. 4.2).

The next example shows a new application which comes from articles treating the Liénard
equation with the differential operator related to the relativistic acceleration, that is

d
dt

(
ẋ√

1− (ẋ)2

)
+ f (x)ẋ + g(x) = 0, (4.7)

which, nowadays, is a quite interesting topic in works concerning the case of generalized
Liénard equations. The existence of a stable limit cycle and periodic solutions of relativistic
Liénard equation (4.7) has been investigated by Mawhin and Villari in [15]. Now, we apply
our results to a special case of this equation.

Equation (4.7) can easily be transformed to system (1.1) with

P(u) =
u√

1 + u2
, Q(y) = y and F(x) =

∫ x

0
f (η)dη.
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Figure 4.2: Phase portrait for system (4.6).

Example 4.8. Consider system (1.1) with

P(u) =
u√

1 + u2
, Q(y) = y, F(x) = x2 and g(x) =

x3

2
√

1 + x4
. (4.8)

Since P(au) ≤ aP(u) for −1 < a < 0 and u > 0, from Corollary 2.6, by choosing k = 1
2 , we

have
1

(1− k)Q−1(kF(x))

∫ x

0

g(η)
P(F(η))

dη =
2
x2

∫ x

0
ηdη = 1.

Therefore, this system has property (Z+
1 ). Since F is even and g is odd, Remark 4.4 implies

that this system has a homoclinic orbit in the upper half-plane (see Fig. 4.3).

Figure 4.3: Phase portrait for system (4.8).

Example 4.9. Consider system (1.1) with

F(x) = xm (m > 0 and even number), Q(y) = y3

P(u) = u3 and g(x) = |xq| sgn(x) with q =
10
3

m + 1.
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By choosing k = 1
2 , δ =

√
q−3m+1

8 3√2
and using Corollary 4.2 we have:

1
Q−1(kF(x))

∫ x

0

−g(η)
P((k− 1)F(η))

dη = 8 3
√

2
(∫ x

0 ηq−3mdη

x
m
3

)
=

8 3
√

2
q− 3m + 1

xq− 10
3 m+1 < 1

for 0 < |x| <
√

q−3m+1
8 3√2

.
Thus, system (1.1) has homoclinic orbit in the upper half-plane.
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