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1. Introduction

Let J = [a, b] be a compact interval on the real axis R, and y be a measurable Lebesgue
function, that is, y € Li(a,b). Let x € J and @ € R (0 < a < 1). The Riemann-Liouville

fractional integrals I3, and derivative DS, are defined by (see, for example, [1][2])

()@ = g [ ="y and (D)) = U (1)

We will work here following the definition of a sequential fractional derivative presented by

Miller and Ross [3]
Dy = Dgiy
ko a (k=1)ex (12)
@a_j’_y - a+@a+ Yy (k:27 37)

There is a close connection between the sequential fractional derivatives and the non sequen-
tial Riemann—Liouville derivatives. For example, in the case k = 2, 0 < o < 1/2 and the

Riemann-Liouville derivatives, the relationship between @fjﬁy and ij“ry is given by

—a a—1
(22y) () = (Dﬁi y(t) - <I;+ay><a+>%]> (a). (13)
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We shall consider the existence of solution of the periodic boundary value problem for a
fractional differential equation involving a Riemann—Liouville sequential fractional derivative,

by using the method of upper and lower solutions and Schauder fixed point theorem.
(Z35y) () = f(z, y. D5y), «€(0,T],
a0y (@) |o=0 = &' *Y(2) 2=, (1.4)
25 y) (@) |e=0 = 27 (Z5 ) (@) o=,

where 0 < T < 400, and f € C(]0,7] x R x R).

Remark 1.1 In the special case: a = 1, problem (1.4) becomes the periodic boundary value

problem for a second ordinary differential equation
{ y'(@) = f(z, y, ), x€(0,T],
y(0) =y(T), ¥ (0)=y(T).

Differential equations of fractional order occur more frequently in different research areas

(1.5)

and engineering, such as physics, chemistry, control of dynamical systems etc. Recently,
many researchers paid attention to existence result of solution of the initial value problem
for fractional differential equations, such as [4-7]. Some recent contributions to the theory
of fractional differential equations can be seen in [8-12].

In [4], the existence and uniqueness of solution of the following initial value problem for

a fractional differential equation

Dgu(t) = f(t’u(t))’ te (O,T],
tl_au(t)|t:0 = ug.

was discussed by using the method of upper and lower solutions and its associated monotone

iterative.

In [5], the global existence results for an initial value problem associated to a large class

of fractional differential equations

D (u = uo)(t) = f(t,u(t), t>0,
u(0) = up.
was presented by means of a comparison result and the fixed point theory.
In [7], the authors considered the existence of minimal and maximal solutions and unique-
ness of solution of the initial value problem for a fractional differential equation involving a

Riemann-Liouville sequential fractional derivative, by using the method of upper and lower

solutions and its associated monotone iterative method.
{ (Z8¢y)(@) = f(z, y. Dgy), = €(0,T),
27 (2)|a=0 = vo, TN D¢Y)(@)]e=0 = 1,
where 0 < T' < 400, and f € C(]0,7] x R x R).

While for the existence of solution of the periodic boundary value problem (1.4) for a

fractional differential equation a involving Riemann—Liouville sequential fractional derivative
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has not been given up to now, the research proceeds slowly and appears some new difficulties
in obtaining comparison results.

Now, in this paper, we shall discuss the properties of the well-known Mittag—Leffler func-
tion, and consider the existence of solution of the periodic boundary value problem (1.4) for
a fractional differential equation involving Riemann—Liouville sequential fractional derivative

by using the method of upper and lower solutions and Schauder fixed point theorem.

Let

c([0, 7)) = { y : y(z) is continuous on [0,T], |lyllc = m[g)l( ly(t )\}
C1-a([0.T]) = {y € C(0,T]: z'~y(x) € C([0,T]), lIyllci_a = ll='yllc}

Co([0.T]) ={y € C1-a([0,T]) : &'~(Z5,y)(x) € C([0, T))}-

Definition 1.1. We call a function y(z) a classical solution of problem (1.4), if: (i) y(z) €
C¢ ,([0,T]) and its fractional integral (I'"*y(t))(z), (I'"*Z y(t))(z) are continuously
differentiable for (0,77; (ii) y(z) satisfies problem (1.4).

For problem (1.4), we have the following definitions of upper and lower solutions.

Definition 1.2. A function p € C{_(]0,77) is called a lower solution of problem (1.4), if it
satisfies

(‘@O—i—p)( ) S f(.%', b, ‘@Oa—f—p)7 T e (O7T]7
21 7p(x)|a=0 = 21 7p(2) 2=, (1.6)
“UZ4 D) (@)|e=0 = 'y p) (2)|o=1-

Analogously, a function ¢ € C{_([0,7T7) is called an upper solution of problem (1.4), if

it satisfies
(Z§¢a)(x) = f(z, ¢, D§q), =€ (0,T],
21 7q(@)o=0 = ' q(@) 2=, (1.7)
"6 0)(@) =0 = 21D @) (@) |a=1-
In what follows, we assume that
{ p(@) < q(z), = €(0,T]: ='p(@)lo=0 < 2" q(2)]z=0,
~(Z54p) () ]2=0 < &' 7D 0) ()] 2=0,
and define that the ordered interval in space C{_ ([0, T7)
pal= {ue O (0.7): p(t) <ult) <q(t). te (0.7,
()] i=0 < 1 u(t)]i=0 < t'q(t)]i=0, (1.9)
(T8 D) (Ol < 17T, W) (Dm0 <128, 0) (o |-
The following is an existence result of the solution for the linear periodic boundary value

problem for a fractional differential equation and a property of Riemann—Liouville fractional
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calculus, which are important for us to obtain existence of solutions for problem (1.4).

Lemma 1.1 (see [1]) . Suppose that u € C1_,([0,T]), then the linear initial value problem
{ 7§, u(z) + Mu(z) = o(x), =€ (0,T],

xl—oz

(1.10)
w(x)|z=0 = o,

where M € R is a constant and o € C1_,[0, 7], has the following integral representation of

solution
u(z) = T(a)upea(—M, x) + [eq(—M,t) x o(t)](x), (1.11)
where
(o D) = [ gl — 07w (112
0
ea(N, 2) = 2° 1By 0(A2®) = 27 12Ak k"’il o (1.13)
0 2k
aalx) = Z: W is Mittag—Leffler function (see [1], [13]).

Remark 1.2 Obviously, 7§ eq(),2) = Xeq(A,2). For a = 1, initial problem (1.10) is
' (x) + Mu(z) = o(x), u(0) = ug and the solution given by (1.11) is valid (it is the classical

solution using the variation of constants formula).

Lemma 1.2 . Suppose that u € C1_,([0,7]), then the linear periodic boundary value
problem
P u(zr) + Mu(z) = o(xz), =€ (0,7T],
(1.14)
21 7%(1)|p=0 = up = 21 7%U(T)| =T,
where M € R is a constant and o € C1_4[0, 7], has the following integral representation of
solution
ea(—M,t) x o(t))(T
u(x): (Oé) (aiéf ) ( ))( )
To=1 —T'(a)eq(—M,T)

ea(—M,z) + [eq(—M,t) * o(t)](z). (1.15)

Proof By Lemma 1.1, we have that the linear initial value problem (1.14) has the integral
representation of solution (1.11). By the condition of periodic boundary value problem
(1.14), we have

(ea(=M,t) x o (t))(T)
To—1 —F(Oé)ea(—M,T). (116)

Substituting (1.16) into (1.11), we obtain (1.15). The proof of Lemma 1.2 is completed. [J

ug =

Lemma 1.3 . Suppose that v € C{_([0,7]), then the linear periodic boundary value

problem
(.@gf_‘u)(:ﬂ) + NDg u(x) + Mu(z) = o(x), =€ (0,T],
21 7%(2) | p=0 = ug = ' %U(T) | =1, (1.17)
"G ) (@) |a=0 = u1 = ' 1) (2)|o=r,
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where N > 0, M € R, N2 > 4M are constants and o € C;_,[0,T], has the following

representation of solution

u(x) = T(a)upeq (N2, )+ (@) yolea (Mg, t)xeq (A1, t)](x)+[ea (A2, t)xeq (A1, t)*xo(t)](z). (1.18)

where
o V- \/;\72 —AM _ N+ \/;\72 —ar (L.19)
y(z) = T(a)goea (A1, x) + [ea(A1,t) x o(t)](x), = € (0,T], (1.20)
Yo = u1 — Agug = T(SGEA_l71f)(;)Zit()))\ETT))a (1.21)
__(ea(Aa,t) x y(1))(T)
U0 = a1 fr(a)ea(AQ,T)' (1.22)
Proof Let
(75 — X)u(z) = y(x), x € (0,7T].
Then the problem (1.17) is equivalent to
{ (75} — M)y(x) = o(z), 2e(0,T],
(1.23)
'y () ]e=0 = Jo = w1 — Aoug = &' Y (2)|o=T,
and
{ (,@€+ - )\Q)U(x) = y(x)7 WS (OvTL (1.24)
21 7%(2)|p=0 = ug = 21 7%U(T)[p=1.

By the Lemma 1.2, we have that the linear periodic boundary value problems (1.23) and

(1.24) have the following representation of solutions
y(@) = T(@)goea(rr, 2) + [ea (A1, 1) * o (1)) (), (1.25)

u(z) = T(a)ugeq (A2, ) + [ea (A2, t) * y(t)](x), (1.26)

where 3o, ug are given by (1.21) and (1.22). Substituting (1.25) into (1.26), we obtain (1.18).
The proof of Lemma 1.3 is completed. [

Lemma 1.4 (see [7]) .

[ea(A2, t)xeq (A1, )] () = [ea (A1, t)*eq (A2, t)](x) ea()\l,t)—ea()\g,t)] (), zeR

(1.27)

T —

This paper is organized as follows. In Section 2 we give some preliminaries, including a
property of Mittag—Leffler function which will be used in our main result, a comparison

result. The main results are established in Section 3.
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2. A property of Mittag—Leffler function and some Lemmas

In the following, we shall use the definition and properties of the I' function which listed
as follows (see [14]).

I'a) = /+OO totemt e, (2.1)
0
ﬁ:nlir&ﬁa(l+a) (1+%)---<1+%), (2.2)
ﬁ:Ji_{gom(1+a)(1+%>---<1+%), (2.3)
Let
Yala) =a(l+a) (1+5) - (1+2). (2.4)
Then
L _ lim ;Qpn(a). (2.5)

Fla) ~ A e e

Lemma 2.1 (see [7]) For 0 < a < 1, there exist positive constants

B9 >0, by, >0, ---, b7 >0, such that o (ka) =Y b,Ciil. (2.6)
=0
Hence, we have
(k = )n(ka) = 3+ 200,042, (2.7)
=0
ko ka 1~ 1 .,
L)1+ =) =S —bi o 2.
aoake) (14 57) - (1 57) = 22 i 28)
Note
00 zk > gkl
F = Eoz « = — T~ = —_—
@)= B = & i pay 90" L TG 29
19 .%'k ’
W)= — 2
(@) kzz:o L(ko+1)
Lemma 2.2 (see [7]) For 0 < a <1, we have
F(z) >0, g(z) >0, h(x)>0, VreR=(—o00, +00). (2.10)
Lemma 2.3 For 0 < a <1, we have
1
O<F(x)<F(0):F—<F(y), for <0<y and
(a) (2.11)
1i111 F(z) = +oo, lim F(z)=0.
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Proof By means of F'(z) = g(z) >0, Vz € R, we have

O<F(x)<F(0):ﬁ<F(y), for z<0<y.

T 1 1 1
Py = FO0) + [ @) at> s+ g0 = s+

Hence, lim F(z) = +oo.

r— 400

ab/(z) = F(z), F(z) >0, h(z) >0, for z <0,

(—x)F(z) = / x)dt < / F(t (h(0) — h(x)) < ah(0) = a, for z <O0.

Therefore, 0 < F(z) < — for = <0, and lim F(x) = 0. The proof of Lemma 2.3 is

—X r— —00

completed. [J

The following results will play a very important role in this paper.

Lemma 2.4. (a comparison result) If w € C1_,([0,7]) and satisfies the relations

D%w(t) + Mw(t) >0, te (0,71,

(2.12)
= w(t)|i=0 > 0,

where M € R is a constant. Then w(t) >0, ¢¢€ (0,T].

Proof By Lemma 2.3, we know that E, o(—Mt*) > 0, t € (0,7]. Hence en(—M,t) >
0, t € (0,7]. Let t'=%w(t)|4=o = wo, D%w(t) + Mw(t) = o(t), t € (0,7]. Then wy >
0, o(t) >0, te(0,7]. By the formula (1.11) of Lemma 1.1, we obtain that w(t) >0, t¢€
(0,7). O

r(1+ o)

Remark 2.1 In this result, we delete the condition M > — of the Lemma 2.1 of

paper [4], so this result is an essential improvement of the paper [4]
Lemma 2.5. (a comparison result) If w € C1_,([0,7]) and satisfies the relations
DYw(t) + Mw(t) >0, te(0,T],
(2.13)
2w (t)|i=0 = t1%w(t)| =T,
where M > 0 is a constant. Then w(t) >0, ¢e (0,7T].
Proof Let t!™%w(t)|=o = wo, D%w(t) + Mw(t) = o(t), t € (0,T]. Then o(t) >0, te
(0,T). By the proof of Lemma 1.2, we have

w(z) = T(a)woea (=M, z) + [ea(—M, t) * o(t)]|(z), (2.14)

Tl—a
1 —-T(a)Eya(—

T
wo = T /0 (T — 5)* By o(—M(T — 5)*)o(s) ds.

By Lemma 2.3, we know that 0 < E,, o(—MT%) < o) and Ey, o(—Mt*) >0, t € (0,T7.
a
Hence eo(—M,t) > 0, t € (0,7] and wy > 0. The (2.13) and (2.14) imply that w(t) >
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0, te(0,7]. O

Lemma 2.6. (a comparison result) If w e Cf (]0,7]) and satisfies the relations

(Z3w)(z) + NO§, w(z) + Mw(z) = o(z) >0, =€ (0,7,
21 7%(2) | p=0 = wo = 21 "%0(7)| =1, (2.15)
1—a(

2D w) (@) |a=0 = w1 = 217Dy w) () ]a=r,

where N >0, M € R, N? > 4M are constants such that

_ N VN'ZAM N+ VNN
_ -

Ay = A1 5

0. (2.16)

Then w(t) >0, te€(0,7).

Proof By means of Lemma 2.3, we know that e, (A1,z) > 0, en(Ae,z) > 0, = € (0,T].
Therefore, [ea(Aa, ) * ea(M, )](2) > 0, [ea(ha,1) ealh, 1)+ o(8)](z) > 0, 2 € (0, T]. Since
Ao < A1 < 0, by the proof of Lemmas 1.3, 2.3 and 2.5, we obtain that

I=a(e * 0

_ T (ea(Xa,t) * y()(T)

ug =

[T (@Baa(aT?) =" 219

where y(t) is given by (1.20). Hence, from (1.18), w(t) > 0, ¢ € (0,7T]. The proof of Lemma
2.6 is completed. [

3. Main results

On the basis of Lemmas 1.2-1.4 and 2.3-2.6, using the method of upper and lower
solutions and Schauder fixed point theorem, we shall show the existence theorem of solutions

for PBVP (1.4). For convenience, we list the following conditions:

(H1): there exist constants N >0, M € R, N? > 4M such that

f(t, a, Z5rq9) — f(t, v, D54p) > —N(Z5q — Z64p) — M(q —p), (3.1)
p, q € C{_([0,T]) are lower and upper solutions of problem (1.4);

(H2): there exist constants N > 0, M € R, N? > 4M such that (H1) holds, and for
r€(0.7], plx) <2< <ala), Di(x) <z < Dlx), i=1, 2 such that

f(x’ Y1, Zl) - f(t’ Y2, 22) > _N(Zl - 22) - M(yl - y2)a (32)
where
Dy(x) = (Z01p)(x)+X2(q(x)—p()), Da(x) = (75} q)(x)=Aa(q(x)—p(z)), = € (0,T], (3.3)

N —N—\/N2—4M< —N+\/N2—4M<
2: =
2 2

A1 0. (3.4)

EJQTDE, 2011 No. 87, p. 8



In view of (3.2), the function
flt,u,v) + Mu+ No

is monotone nondecreasing in u, v for u, v € C1_,([0,T]).

Lemma 3.1. Let (H1) be satisfied. Then

28 (q —p)(x) = Xo(q —p)(x) >0, =€ (0,T]. (3.5)

Hence,

26+ (0)(@) = A2(q — p)(@) = D54 (p) (%) = D5y (p) () + A2(q — p) (@), @€ (0,T],
where A < 0 is given by (3.4).
Proof Let 2(z) = 8. (q — p)(«) — Ma(q — p)(x), € (0,T]. Then
75 2(x) = Mz(z) = 25 (g — p) (@) — (M + X2) Zg, (q — p) (@) + Mda(g — p) (@)
> [z, 4, Z5vq) — f(=, p, Z54p) + NZg, (g — p)(x) + M(q —p)(x) >0, € (0,T],
2! 2(x)]z=0 = @1 — p1 — Aa(go — po) > 0.

By Lemma 2.4, we have that z(x) > 0, « € (0,T]. This complete the proof of Lemma 3.1.
U

Lemma 3.2. Let (H1) be satisfied. Then
Q={nelpq: Di(x) < (Zgn)(z) < Da(x), @€ (0,7]}. (3.6)

is a convex closed set, where Dj(x), Dy(z) are given by (3.3).

Theorem 3.1. Assume that p, ¢ € C{__([0,T]) are lower and upper solutions of problem
(1.4), such that (1.8) holds, and f € C([0,T] x R x R) satisfies (H1) and (H2). Then there
exists one solution u of PBVP (1.4) such that

p(z) <u(x) <qz), Di(z) < (Z5,u)(z) < Da(z), € (0,T],
where Dy(z), Da(x) are given by (3.3).
Proof of Theorem 3.1. Let
o(n)(x) = f(z,n(x), Z54n(x)) + NZgn(x) + Mn(z), =€ (0,T], VneQ  (3.7)

For any n € €2, consider the linear PBVP

(22u)(2) + ND&, u(z) + Mu(z) = o(n)(z), =€ (0,T),

10U o = 2 OU(E) o (3.8)

' (D5 ) () a=0 = &' (D ) () =T
By Lemma 1.3, (3.8) has exactly one solution u € C¢__([0,T]) given by

u(z) = (An)(z) = L(a)uo(n)ea(rz,z) + Ia)ho(n)[ea (A2, t) * ea(A1,1)](x)

(3.9)
+lea(Az, 1) x ea(A1, 1) x o (n)(t)](z),
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and

Area (A1, 1) — Aaeq (A2, t)] (z)
A1 — Ao (3.10)

(Z5An)(z) = T(a) (uO(n)AQGa(AM) + 5o(n)

+7)\1 i " [)\160{()\1, t) * O'(?])(t) — )\QGQ()\Q, t) * 0(77) (t)} (gc),
where
o _ (eaAn,t) x o () (1))(T)
o(n) = (wn = Aauo) (n) = 5 S (3.11)
wlr) = el MR, 3.12)
y(n)(x) = T(@)foca(Ar, @) + [ea(h, t) * o ()(B)(z), = € (0,T]. (3.13)

And then A is an operator from €2 into C{__ ([0, 7]) and 7 is a solution of PBVP(1.4) if and
only if n = An.
Let w(z) = (Ap — p)(z), z € (0,T]. Then by (1.6), w(x) satisfies the relations

(Z3%w)(z) + NG§ w(z) + Mw(z) = (283 Ap)(z) + NS Ap(z) + M Ap(z)
~[(Z8p)(x) + NZ§, p(x) + Mp(z)]
= f(t.p. 750 ) (@) = (Z33p)(@) 2 0, z € (0,7,

270w (T) om0 = 2" W (@) o1, UL W) (@)a=0 = 2D w) () ]a=1-

By means of Lemma 2.6, we obtain that w(x) >0, z € (0,T]. Hence, p(z) < (Ap)(x), z €
(0, 7). Similarly, by (1.7) we can easily obtain that (Aq)(x) < ¢(x), x € (0,T].
By (3.2), we have

f@, p, Z§yp) + N(Zg,p) (@) + Mp(z) < f(z, n, Z5n) + N(Zgn)(x) + Mn(z)
{ < f(z, ¢, Z5+9) + N(Zg1.9)(x) + Mq(z), 2 € (0,T], Vne.
Hence, by means of Lemma 2.6, (1.6), (1.7), (3.2), (3.9) and (3.10), we can obtain
p<Ap<An<Ag<gq, Vneq, (3.14)
and
if p<m<m<qg neQ, i=1, 2, then
o(m) < o(m), uolm) <uo(n2),  olm) < Go(n2), (3.15)
and Am < Ans.
By the proof of Lemma 3.1, we know that
z1() = I (An = p)(x) = Aa(An —p)(z) 2 0, 2 € (0,T], Ve
Hence,

D (An)(z) = 76, (p) () + A2(An — p)(z)
> 78 (p)(x) + Xa2(q — p)(x) = D1(x), 2 € (0,T], VneQ.
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Similarly, we can obtain that 7§, (An)(z) < Da(z), = € (0,T], Vn € Q. Therefore, A(Q2) C Q.
In the following, we shall show that A(f2) is a relatively compact set in C{[0,7]. For
any n € [p,q], by (1.6), (1.7) and (3.2), we have

(Z5¢p)(x) + N(Zgp)(x) + Mp(x) < f(z, p, I5.p) + N(Z5.p)(x) + Mp(z)
< f(z, m, Z5:m) + N(Zgn) () + Mn(z) < f(z, q, Z§1q) + N(Z519)(x) + Mg(x)
< (Z§%a)(x) + N(Zg,q)(x) + Mg(x), x € (0,T].

Since Q € Cf_ [0, T] are bounded sets, therefore, {a(n)(t) = f(x, n, D§.n)+N(Dg,n)(x)+

Mn(z) | n € Q} is a bounded set also. Hence, there exists a constant L > 0 such that

= tl-o B <L 9]
o)l Orgtaggl o)) <L, ¥YneQ, .10
< lo(n)®)| < Lt* 1, VvV te€(0,T], Vneq,

(1l + ) (@)
Juo(n)| < C Vneq,
P(Qa) [1 - P(O‘)Eoz,a()‘QTa)] (3.17)
LT°T () Yoeq

U, <
)| S Py = T(0) Ban N T
On the other hand, from (1.27), {(An)(t) | V n € Q} satisfies (3.9) and (3.10). Let

G(\ist) =t Yeq( N, t) xa(n)()], t€[0,T], i=1,2. (3.18)

(Without loss of generality, we assume 0 < t; < to <T. ) Since A\ < A\; < 0, we have

LT« o o
G t1)—G(A )] < ﬁ\m,&(xitl)—Ea,au@-tz)w

2L («)
I'(2a)

(ta—t1)*, i=1,2. (3.19)

From E, (t) € C[0,T], Ve > 0,36 = 6(e), when |t; — t2| < 0 (without loss of generality, we
assume 0 < t; <ty <T ), we have

‘Eaa()\lt‘f) — Baa(Mt)] < ==, (3.20)

’ ' 814

g

|Baa(t) = Eaalotd)] < o, (3.21)

8Lo

13
bty —11)" < = 3.22
(b2 = 01)" < g7 (3.22)
where

ID()go(m)A1|  LT(w)
L; = max , ,
! { A=A 7 A= Ao

S A

20T (o)
L3=——————1(]|\ Al ).
3 P(Qa)\Al—)\Q](‘ 2|+ | 1‘)
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From (3.10), (3.16)—(3.22) and by a direct computation, we obtain that

(728, (An)(t1) — t5 D5 (An)(t2)] < \F(a)uo(n)Azl(Eava(M?) = Eoa(Mot5)

I'(a)yo(n N . § )
% (1701 Baa 1) — B )] + Mol B aOhat) — Ean(Rat)|
LT« N . X )
ﬁ |Ea,a(MtY) = Eaa(Mt3)] + | Ba,a(Xatf) — Ea,a(Ath)‘]
2L («) .
m(lAzHIMI)(tz—tl) <e.

This means A(f2) is equi-continuity in C{* [0,7], by means of the Arzela-Ascoli theorem,
we have that A(Q) is a relatively compact set of C{ [0, T1.

By the assumption of function f, the function o is continuous. Hence A : Q@ — Q is
continuous and completely continuous. By means of Schauder fixed point theorem, A has a

fixed point p € €, that is, p satisfies the integral equation

p(z) = (Ap)(z) = DI(a)uo(p)ea(A2; ) + (@) (u1r — Aguo)(p)[ea (M2, t) * ea (M1, 1)](2)

+lea(A2,t) x eq (A1, ) x o(p)(t)](x), =z € (0,T].
(3.23)

That is, p(z) is an integral representation of the solution to problem (3.8), that is, p(t) is
an integral representation of the solution to problem (1.4). By assumptions of functions f
and Lemma 1.3, p is a classical solution of periodic boundary value problem (1.4). Thus, we

complete this proof. [J
Example Consider the following PBVP

1 a
(Z50)(@) = 922D (1 2/ IV — 2 +uP (Z5, ), w € (0.7 (3.24)

2 U(@)]a=0 = 21 U(@) =1, LG ) (@) om0 = 27Dy u) (@) ]o=r,
where 0 < a < 1, 0 < 01, 0 < d2. Then PBVP (3.24) has a solution u such that 0 < u(x) <
q(z), x € (0,T], where
p(z) =0, q(@)=92""", € (0,T],

p is a lower solution and ¢ an upper solution. The proof is omitted.
Acknowledgments The authors would like to thank the referee for some valuable sug-

gestions and comments.
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