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Abstract. We consider a nonlinear elliptic system of type

−Dα Aα
i (x, Du) = Dα f α
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1 Introduction.

In this paper we give conditions guaranteeing that the first derivatives of weak solutions to
the Dirichlet problem for a nonlinear elliptic system{

−Dα Aα
i (x, Du) = Dα f α

i , i = 1, . . . , N, α ∈ Rn, |α| = 1, x ∈ Ω,

u(x) = g(x), x ∈ ∂Ω .
(1.1)

Here Ω ⊂ Rn, n ≥ 3 is a bounded C1,1 domain with points x = (x1, . . . , xn), u : Ω →
RN , u(x) = (u1(x), . . . , uN(x)), N ≥ 2 is a vector-valued function with gradient Du =

(D1u, . . . , Dnu), Dα = ∂/∂xα and coefficients Aα
i are continuously differentiable with respect

to Du and Hölder continuous with respect to x and in the following we will specify our as-
sumptions imposed on the function ( f α

i ) and boundary datum g (throughout the whole text
we use the summation convention over repeated indexes).

It is well known that elliptic systems in general do not conserve the regularizing property
of Laplace equation and the attempts to find conditions guaranteeing the smoothness of weak
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solutions as well as to construct counterexamples are rich and far reaching. The positive re-
sults, i.e. proof that weak solutions of systems of order 2k have (under suitable assumptions)
continuous partial derivatives of order k, started already with pioneering work of Ch. B. Mor-
rey in 1937 for domains Ω in R2 (see [16]) and continued by deep results of E. De Giorgi (see
[7]) who proved that weak solutions of one equation of second order with linear growth and
bounded and measurable coefficients on Ω ⊂ Rn have continuous first derivatives. The case
of nonlinear systems on plane domains was solved in paper by J. Stará (see [23]) in 1971 for
systems of higher order.

In dimensions n ≥ 3 analogous results do not hold as was shown by counterexamples of
E. De Giorgi (see [8]) and E. Giusti and M. Miranda in 1968 (see [10]), J. Nečas in 1975 (see
[19]) and L. Šverák and X. Yan in 2002 (see [24]).

The system (1.1) has been extensively studied in the papers [1, 2, 9, 12, 15, 17, 20] and for
detailed and well-arranged informations, see [15]. If n ≥ 3, it is known that Du can be
discontinuous. Campanato in [3] proved for the system (1.1) that Du ∈ L2,θ

loc(Ω, RnN) with

n− 2 < θ < n, and also u ∈ C0,(θ−n+2)/2
loc (Ω, RN) if n = 3, 4. More important for our work is a

more general result from Kristensen–Melcher [13].
There are known many conditions on the coefficients which guarantee that solutions of

nonlinear elliptic system of equations have required smoothness and, vice versa, counterex-
amples illustrating that generally such assertions do not hold.

In the present paper, that is extending the articles [4], [5] and [6], we introduce another
conditions on coefficients of a nonlinear elliptic system (1.1) and we show that if the first
derivatives of weak solutions u to Dirichlet problem for the system satisfy (1.11) with givenM
and Ψ̃ from (1.10) then the gradient of weak solutions are locally BMO or Hölder continuous
on domains Ω in R3 and R4. The condition (1.11) shows that the our result is applicable to
broader class of problems for smaller value ofM. Finally, the reality of our theoretical result
is illustrated by means of numerical examples.

By a weak solution to the Dirichlet problem for (1.1) we understand u ∈W1,2(Ω, RN) such
that u− g ∈W1,2

0 (Ω, RN), g ∈W1,2(Ω, RN), f ∈ L2(Ω, RnN) and∫
Ω

Aα
i (x, Du(x)) Dα ϕi(x) dx = −

∫
Ω

f α
i (x)Dα ϕi(x) dx, ∀ ϕ ∈W1,2

0 (Ω, RN). (1.2)

Further the symbol Ωo ⊂⊂ Ω stands for Ωo ⊂ Ω, dΩ = diam(Ω) and for the sake of simplicity
we denote by | · | the norm in Rn as well as in RN and RnN . If x ∈ Rn and r is a positive real
number, we set Br(x) = {y ∈ Rn : |y− x| < r}, (i.e., the open ball in Rn), Ωr(x) = Ω ∩ Br(x).
Denote by ux,r = ur =

∫
Ωr(x) u(y) dy/mn(Ωr(x)) =

∫
Ωr(x)− u(y) dy the mean value of the func-

tion u ∈ L(Ω, RN) over the set Ωr(x). Here mn(Ωr(x)) is the n-dimensional Lebesgue measure
of Ωr(x) and we set Ur(x) =

∫
Ωr(x) |Du(y) − (Du)x,r|2 dy/rn =

∫
Ωr(x)− |Du(y) − (Du)x,r|2 dy,

φ(x, r) =
∫

Ωr(x) |Du(y)− (Du)x,r|2 dy.
The coefficients (Aα

i )i=1,...,N,α=1,...,n have linear controlled growth and satisfy strong uni-
form ellipticity condition. Without loss of generality we can suppose that Aα

i (x, 0) = 0. We
suppose that Aα

i (x, p) ∈ C1(RnN) for all x ∈ Ω and

(i) the strong ellipticity condition holds, i.e. there exist ν, M > 0 such that for every x ∈ Ω
and p, ξ ∈ RnN

ν|ξ|2 ≤
∂Aα

i

∂pj
β

(x, p)ξ i
αξ

j
β ≤ M|ξ|2, (1.3)
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(ii)

|Aα
i (x, p)| ≤ M(1 + |p|), ∑

i,j,α,β

∣∣∣∣∣∣∂Aα
i

∂pj
β

(x, p)

∣∣∣∣∣∣ ≤ M, (1.4)

for all (x, p) ∈ Ω×RnN ,

(iii) for all x, y ∈ Ω and p ∈ RnN

|Aα
i (x, p)− Aα

i (y, p)| ≤ CH |x− y|χ|p|, CH > 0 (1.5)

where χ = 1 for n = 3, 4,

(iv) there is a real function ω continuous on [0, ∞), which is bounded, nondecreasing, con-
cave, ω(0) = 0 and such that for all x ∈ Ω and p, q ∈ RnN

∣∣∣∣∣∣∂Aα
i

∂pj
β

(x, p)−
∂Aα

i

∂pj
β

(x, q)

∣∣∣∣∣∣ ≤ ω (|p− q|) . (1.6)

We denote ω∞ = limt→∞ ω(t) and clearly ω(t) ≤ 2M.
It is well known (see [9], p.169) that for uniformly continuous ∂Aα

i /∂pj
β there exists a real

function ω satisfying (iv) and, viceversa, (1.6) implies uniform continuity of ∂Aα
i /∂pj

β and
absolute continuity of ω on [0, ∞). By pointwise derivative ω′ we will understand the right
derivative of ω which is finite on (0, ∞).

Here we will consider the function ω from (1.6) given by the formula

ω(t) =


ωo(t), for 0 ≤ t ≤ to, to > 0

ω1(t) =
√

ε

tγ
o

tγ , for to < t < t1,

ω∞ for t ≥ t1

(1.7)

where ωo is arbitrary continuous, concave, nondecreasing function such that ωo(0) = 0 and
the constants 0 < γ ≤ 0.44, to > 0 are selected in such a way that ω is continuous and concave
on [0, ∞).

For example we can choose

ωo(t) =
2
√

ε

2 + ln to
t

for 0 < t ≤ to,

and this function fail to satisfy Dini condition. It is obvious that in such case the coefficients
∂Aα

i /∂pj
β are only continuous.

It is well known that on the above assumptions the Dirichlet problem{
div (A(x, Du) + f ) = 0 in Ω,

u− g ∈W1,2
0 (Ω, RN)

(1.8)

has for any function f , g ∈W1,2(Ω, RN) the unique solution u in the same space.
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For the problem (1.8) the following estimate holds∫
Ω
− |Du− (Du)Ω|2 dy

≤ 12
(

M
ν

)2 ∫
Ω
− |Dg− (Dg)Ω|2 dx +

(
10E

ν

)2
(

E
ν
+

M
ν

+ 3
(

M
ν

)2
) ∫

Ω
−|Dg|2 dx

+ 20
(

nN
ν

)2
(

1 +
(

4E
ν

)2
) ∫

Ω
− | f − ( f )Ω|2 dx (1.9)

where E = nNCHdχ
Ω (see Appendix A for the proof of (1.9)).

In the following we will use the function Ψ̃(u) = ueu2/(2µ−1)
, here u ≥ 0, µ ≥ 17 (for detailed

information for Ψ̃, see (2.6)) and we can define the value

M = sup
to<t<∞

Ψ̃
(

ω2(t)
ε

)
− Ψ̃

(
ω2(to)

ε

)
t− to

< ∞ (1.10)

where ω is from (1.7), ε = ω2
∞/Cα

µ, α > 1− 2/n and Cµ =
(
(n−2)µ

2e

)µ
.

Now we can formulate the main theorem.

Theorem 1.1. Let Ωo ⊂⊂ Ω ⊂ Rn, do = dist(Ωo, ∂Ω)/2, n = 3, 4. Assume that g ∈W1,2(Ω, RN),
Dg ∈ L2,ζ(Ω, RnN), ζ > 2, f ∈W1,2 ∩L2,ξ(Ω, RN), n < ξ ≤ n+ 2, n ≤ ϑ < λ = min{2χ+ ζ, ξ}
and moreover div f ∈ Lζ(Ω, RnN). Let u ∈ W1,2(Ω, RN) be a weak solution to the system (1.1)
satisfying the conditions ∫

Ω
− |Du− (Du)Ω|2 dy <

1
M2 , (1.11)

(1.13) and

CMC2
H + [ f ]2L2,ξ (Ω,RnN) ≤

|Ω|
(

1− (4εo)
λ
ϑ−1
)

ε3
o ν2

8dn
o max{dλ

o , dλ−n
o }M2

(1.12)

where εo = 1/4(2n+5L)
ϑ

n+2−ϑ , the constants L, CH, CM come from Lemma 2.5, (1.5) and (3.8), respec-
tively. Then Du ∈ C0,(ϑ−n)/2(Ωo, RnN) in the case ϑ > n and Du ∈ BMO(Ωo, RnN) for ϑ = n.

Remark 1.2. In the foregoing formulas the constants µ ≥ 17, α > 1− 2/n have to be such that

C
n

n−2 α−1
µ ≥ 2

6
n−2

(
20CS

Mω∞

ν2

(
|Ω|

(2do)n

) 1
2n
) 2n

n−2

ε
− n

n−2
o . (1.13)

Here CS is the Sobolev embedding constant.

The theorem we formulated above tells that, if coefficients of a nonlinear system satisfy
(iv) with some ω given (1.7) and (1.11)–(1.13) are fulfilled, then the gradient of u is Hölder
continuous on Ωo.

In most partial regularity results for the system (1.1) the regular points x ∈ Ω of solution u
are characterized in such a way that for some rx > 0 the quantity Urx(x) (for its definition see
first section) has to be sufficiently small, but our condition regularity (1.11) allows Ur(x) not
to be necessarily small. Moreover, the condition (1.11) is global condition (we do not know
an analogous condition from the literature) and has fundamental meaning for domain Ω in
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which it is possible ensure that the ratio |Ω|/(2do)n is not extremely great (e.g. for the ball,
see (1.13)).

For the function ω from (1.7) the right-hand side of (1.11) can be chosen in the following
form

1
M2 =

t2
o
4

min

 1
3γ

,
C
(−1+ 1

2γ )α
µ

eC
2α

2µ−1
µ


2

. (1.14)

(see Appendix B for more information and for µ and α see Remark 1.2).

Remark 1.3. We would like to point that, in the case of (1.8), the left-hand side of (1.11) could
be substituted with the right-hand side of (1.9). We can present some consequences of our
theorem that follow from estimate (1.9).

g = const. ∧ f = const. =⇒
∫

Ω
− |Du− (Du)Ω|2 dy = 0 =⇒ u = P1

g = P1 ∧ f = const. ∧ CH = 0 =⇒
∫

Ω
− |Du− (Du)Ω|2 dy = 0 =⇒ u = P1

g = P1 ∧ f = const. ∧ dΩ ↘ 0 =⇒
∫

Ω
− |Du− (Du)Ω|2 dy↘ 0

g = P1 ∧ f ∈ L2,ξ(Ω, RnN), ξ > n ∧ CH = 0 ∧ dΩ ↘ 0 =⇒
∫

Ω
− |Du− (Du)Ω|2 dy↘ 0

where P1 is a polynom of at most first degree. We note that the last mentioned condition
involves the data of the problem (1.8) only.

Remark 1.4. It is useful to point out that in the case when the ratio ω∞/ν is small enough, the
regularity of solution to the problem (1.8) is guaranteed by the Proposition 2.4 from [4].

2 Preliminaries and notations

Beside the usually used space C∞
0 (Ω, RN), Hölder space C0,α(Ω, RN) and Sobolev spaces

Wk,p(Ω, RN), Wk,p
loc (Ω, RN), Wk,p

0 (Ω, RN) (see, e.g.[22]) we use the following Campanato and
Morrey spaces.

Definition 2.1 (Campanato and Morrey spaces). Let υ ∈ [0, n]. The Morrey space L2,υ(Ω, RN)

is the subspaces of such functions u ∈ L2(Ω, RN) for which

‖u‖2
L2,υ(Ω,RN) = sup

r>0,x∈Ω
r−υ

∫
Ωr(x)

|u(y)|2 dy < ∞.

Let υ ∈ [0, n + 2]. The Campanato space L2,υ(Ω, RN) is the subspace of such functions u ∈
L2(Ω, RN) for which

[u]2L2,υ(Ω,RN) = sup
r>0,x∈Ω

r−υ
∫

Ωr(x)

|u(y)− ux,r|2 dy < ∞.

Remark 2.2. It is worth recalling the trivial but basic property that
∫

Ω |u − uΩ|2dx =

minc∈RN

∫
Ω |u− c|2 dx holds for each u ∈ L2(Ω, RN).

For more details see [1], [9] and [22]. In particular, we will use:
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Proposition 2.3. For a bounded domain Ω ⊂ Rn with a Lipschitz boundary we have the following

(a) L2,υ(Ω, RN) is isomorphic to the C0,(υ−n)/2(Ω, RN), for n < υ ≤ n + 2,

(b) L2,υ(Ω, RN) is isomorphic to the L2,υ(Ω, RN), 0 ≤ υ < n,

(c) the imbedding L2,υ1(Ω, RN) ⊂ L2,υ2(Ω, RN) is continuous for all 0 ≤ υ2 < υ1 ≤ n + 2,

(d) L2,n(Ω, RN) is isomorphic to the L∞(Ω, RN)  L2,n(Ω, RN).

The following lemma is a modification of a lemma from [5].

Lemma 2.4. Let A > 1, d be positive numbers, C, B1, B2 ≥ 0, n ≤ δ < β, δ < α ≤ n + 2 and
0 < s ≤ 1. Then there exist positive constants k1, k2 so that for any nonnegative nondecreasing
function ϕ defined on [0, d] and satisfying the inequalities

ϕ(σ) ≤ A
( σ

R

)α
ϕ(R)

+
1
2

(
1 + A

( σ

R

)α) [
(B1 + B2Us

2R) ϕ(2R) + CRβ
]

, ∀ 0 < σ < R ≤ d
2

(2.1)

and

B1 + B2Us
d ≤

1
4

τδ, B2

(
Cm

2βτδ(1− τβ−δ)

)s

≤ 1
4

τδ (2.2)

where UR = φ(R)/Rn, m = max{dβ, dβ−n} and τ = 1/(2α+1A)
1

α−δ . Then it holds

Uσ ≤ σδ−n(k1ϕ(d) + k2), ∀ σ ∈ (0, d] . (2.3)

Proof. I. We will prove by induction that

ϕ(τkd) ≤ τkδ

(
ϕ(d) +

Cm
2βτδ

k−1

∑
j=0

τ(β−δ)j

)
, Uτkd ≤ τk(δ−n)

(
Ud +

Cm
2βτδ

k−1

∑
j=0

τ(β−δ)j

)
. (2.4)

Let k = 1. Putting σ = τd, R = d/2 in (2.1) we obtain thanks to (2.2) and the assumption
on τ

ϕ(τd) ≤ 2α Aτα ϕ
(

d
2

)
+ 1

2 (1 + 2α Aτα)

[
(B1 + B2Us

d) ϕ(d) + C
(

d
2

)β
]

≤ (2α Aτα + B1 + B2Us
d) ϕ(d) + C

(
d
2

)β
= τδ

(
ϕ(d) + Cm

2βτδ

)
.

Also by means of (2.2) we get

Uτd ≤ τδ−n
(

Ud +
Cm

2βτδ

)
, B1 + B2Us

τd ≤
1
2

τδ .

Next put σ = τk+1d, R = τkd/2 into (2.1) we get

ϕ(τk+1d) ≤ 2α Aτα ϕ
(

1
2 τkd

)
+ 1

2 (1 + 2α Aτα)
[(

B1 + B2Us
τkd

)
ϕ(τkd) + Cdβ

2β τkβ
]

≤
(
2α Aτα + B1 + B2Us

τkd

)
ϕ(τkd) + Cdβ

2βτδ τkβ+δ ≤ τδ ϕ(τkd) + Cm
2βτδ τ(k+1)δ
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because 2α Aτα + B1 + B2Us
τkd ≤ τδ. Using (2.4) we get

ϕ(τk+1d) ≤ τδ ϕ(τkd) + Cdβ

2βτδ τ(k+1)δ ≤ τ(k+1)δ

(
ϕ(d) +

Cm
2βτδ

k−1

∑
j=0

τ(β−δ)j

)
+

Cm
2βτδ

τ(k+1)δ

= τ(k+1)δ

(
ϕ(d) +

Cm
2βτδ

k

∑
j=0

τ(β−δ)j

)
.

It immediately implies the estimate of Uτk+1d.
II. Let now σ be an arbitrary positive number less than d. Then there is an integer k such

that τk+1d ≤ σ < τkd. Using monotonicity of ϕ, this inequality and (2.4) we get

ϕ(σ) ≤ ϕ(τkd) ≤ τkδ

(
ϕ(d) +

Cm
2βτδ

k−1

∑
j=0

τ j(β−δ)

)
≤ σδ

(τd)δ

(
ϕ(d) +

Cm
2βτδ(1− τβ−δ)

)

and this estimate together with the choice of k1 = 1/(τd)δ, k2 = Cm/(2βdδτ2δ(1 − τβ−δ))

completes the proof.

For the statement of following Lemma see e.g. [1, 9, 20].

Lemma 2.5. Consider system of the type (1.1) with Aα
i (x, p) = Aαβ

ij pj
β, Aαβ

ij ∈ R (i.e. linear
system with constant coefficients) satisfying (i), (ii) and (iii). Then there exists a constant L =

L(n, N, M/ν) ≥ 1 such that for every weak solution v ∈ W1,2(Ω, RN) and for every x ∈ Ω and
0 < σ ≤ R ≤ dist(x, ∂Ω) the following estimate∫

Bσ(x)
|Dv(y)− (Dv)x,σ|2 dy ≤ L

( σ

R

)n+2 ∫
BR(x)

|Dv(y)− (Dv)x,R|2 dy

holds.

Remark 2.6. The constant L from the previous lemma can be stated as

L = c(n, N)

(
M
ν

)2(2+[ n
2 ])

and, because of a better presentment, choosing n = 3, N = 2 we can compute L < 1.4 ·
108(M/ν)6.

In the paper [4, p. 108] a system for n = N = 3 of type (1.1) was presented for which we
can compute L ≈ 108.

Lemma 2.7. [25, p. 37] Let φ : [0, ∞] → [0, ∞] be non decreasing function which is absolutely
continuous on every closed interval of finite length, φ(0) = 0. If w ≥ 0 is measurable and E(t) =

{y ∈ Rn : w(y) > t} then ∫
Rn

φ ◦ w dy =
∫ ∞

0
mn (E(t)) φ′(t) dt .

In the proof of Theorem 1.1 we will use an inequality which is a consequence of Natanson’s
lemma (see e.g. [18, p. 262]) and Fatou’s lemma. It can be read as follows.
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Lemma 2.8. Let f : [a, ∞) → R be a nonnegative function which is integrable on [a, b] for all
a < b < ∞ and

N = sup
0<h<∞

1
h

∫ a+h

a
f (t) dt < ∞

is satisfied. Let g : [a, ∞) → R be an arbitrary nonnegative, non-increasing and integrable function.
Then ∫ ∞

a
f (t)g(t) dt

exists and ∫ ∞

a
f (t)g(t) dt ≤ N

∫ ∞

a
g(t) dt

holds.

In the proof of Theorem 1.1 we use an inequality which can be read as follows.

Proposition 2.9 (see [4]). Let u ∈ W1,2(Ω, RN) be a weak solution to (1.1) satisfying (i), (ii), (iii)
and (iv). Then for every ball B2R(x) ⊂ Ω and arbitrary constants µ ≥ 2, b > 0, 1 < q ≤ n/(n− 2)
and c ∈ RnN we have∫

BR(x)
|Du− (Du)x,R|2 lnµ

+

(
b|Du− (Du)x,R|2

)
dy

≤ 2n(q−1)
(

5CS
M
ν

)2q( µ

(q− 1)e

)µ( b
(2R)n

∫
B2R(x)

|Du− c|2 dy
)q−1∫

B2R(x)
|Du− c|2 dy (2.5)

where CS is the Sobolev embedding constant.

Hereafter we shall use conjugate Young functions Φ, Ψ

Φ(u) = u lnµ
+(au) for u ≥ 0, Ψ(u) ≤ Ψ(u) =

1
a

ueu
2

2µ−1
for u ≥ 0, (2.6)

where a > 0 and µ ≥ 2 are constants,

ln+(au) =

{
0 for 0 ≤ u < 1

a ,

ln(au) for u ≥ 1
a .

Then Young inequality for Φ, Ψ reads as

xy ≤ Φ(x) + Ψ(y), ∀ x, y ∈ R. (2.7)

3 Proof of Theorem 1.1

Let xo be any point of Ωo ∩ S (it means that
∫

BR(xo)
|Du− (Du)xo ,R|2 dx > 0) and R ≤ do.

Where no confusion can result, we will use the notation BR, UR, φ(R) and (Du)R instead of
BR(xo), UR(xo), φ(xo, R) and (Du)xo ,R. Denoting Aαβ

ij,0 = Aαβ
ij (xo, (Du)R),

Ãαβ
ij =

∫ 1

0
Aαβ

ij (xo, (Du)R + t (Du− (Du)R)) dt ,

we can rewrite the system (1.1) as

−Dα

(
Aαβ

ij,0Dβuj
)
=− Dα

((
Aαβ

ij,0 − Ãαβ
ij

) (
Dβuj −

(
Dβuj

)
R

))
− Dα (Aα

i (xo, Du)− Aα
i (x, Du)) + Dα ( f α

i (x)− ( f α
i )R) .
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Split u as v + w where v is the solution of the Dirichlet problem

−Dα

(
Aαβ

ij,0Dβvj
)
= 0 in B(R)

v− u ∈W1,2
0

(
BR, RN

)
.

and w ∈W1,2
0 (BR, RN) is the weak solution of the system

−Dα

(
Aαβ

ij,0Dβwj
)
=− Dα

((
Aαβ

ij,0 − Ãαβ
ij

) (
Dβuj −

(
Dβuj

)
R

))
− Dα (Aα

i (xo, Du)− Aα
i (x, Du)) + Dα ( f α

i (x)− ( f α
i )R) .

For every 0 < σ ≤ R from Lemma 2.5 it follows∫
Bσ

|Dv− (Dv)σ|2 dx ≤ L
( σ

R

)n+2 ∫
BR

|Dv− (Dv)R|2 dx

hence ∫
Bσ

|Du− (Du)σ|2 dx ≤ 2L
( σ

R

)n+2 ∫
BR

|Dv− (Dv)R|2 dx + 4
∫

BR

|Dw|2 dx

≤ 4L
( σ

R

)n+2 ∫
BR

|Du− (Du)R|2 dx + 4
(

1 + 2L
( σ

R

)n+2
) ∫

BR

|Dw|2 dx. (3.1)

Now w ∈W1,2
0 (BR, RN) satisfies∫

BR

Aαβ
ij,0DβwjDα ϕi dx ≤

∫
BR

∣∣∣Aαβ
ij,0 − Ãαβ

ij

∣∣∣ ∣∣∣Dβuj − (Dβuj)R||Dα ϕi
∣∣∣ dx

+
∫

BR

|Aα
i (xo, Du)− Aα

i (x, Du)|
∣∣∣Dα ϕi

∣∣∣ dx

≤
(∫

BR

ω2 (|Du− (Du)R|) |Du− (Du)R|2 dx
)1/2 (∫

BR

|Dϕ|2 dx
)1/2

+

(∫
BR

|Aα
i (xo, Du)− Aα

i (x, Du)|2 dx
)1/2 (∫

BR

|Dϕ|2 dx
)1/2

+

(∫
BR

| f − fR|2 dx
)1/2 (∫

BR

|Dϕ|2 dx
)1/2

for any ϕ ∈W1,2
0 (BR, RN). Hence, choosing ϕ = w, we get

ν2
∫

BR

|Dw|2 dx ≤ 2
∫

BR

ω2 (|Du− (Du)R|) |Du− (Du)R|2 dx

+ 4
∫

BR

|Aα
i (xo, Du)− Aα

i (x, Du)|2 dx + 4
∫

BR

| f − fR|2 dx. (3.2)

From (3.1) and (3.2) we have

φ(σ) =
∫

Bσ

|Du− (Du)σ|2 dx ≤ 4L
( σ

R

)n+2 ∫
BR

|Du− (Du)R|2 dx

+
8
(

1 + 2L
(

σ
R

)n+2
)

ν2

[∫
BR

ω2 (|Du− (Du)R|) |Du− (Du)R|2 dx

+ 2
∫

BR

|Aα
i (xo, Du)− Aα

i (x, Du)|2 dx + 2
∫

BR

| f − fR|2 dx
]

= 4L
( σ

R

)n+2
φ(R) +

8
(

1 + 2L
(

σ
R

)n+2
)

ν2 (I1 + 2I2 + 2I3) (3.3)
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We use the Young inequality (2.7) (here complementary functions are defined through
(2.6)) and for any 0 < ε < ω2

∞ we obtain

I1 =
∫

BR

ω2 (|Du− (Du)R|) |Du− (Du)R|2 dx

≤ ε
∫

BR

|Du− (Du)R|2 ln+

(
aε |Du− (Du)R|2

)
dx +

∫
BR

Ψ
(

ω2
R

ε

)
dx = εJ1 + J2 (3.4)

where ω2
R(x) = ω2 (|Du(x)− (Du)R|).

The term J1 can be estimated by means of Proposition 2.9 (here q = n/(n− 2)) and we get

J1 ≤ CCµ (aεU2R)
q−1 φ(2R) (3.5)

where

C = 2(q−1)n
(

5CS
M
ν

)2q

, Cµ =

(
n− 2

2e
µ

)µ

.

Taking in Lemma 2.7 w(y) = |v(y)− vx,R| on BR(x) and w = 0 otherwise, we have ER(t) =
{y ∈ BR(x) : |v(y)− vx,R| > t} and for the the second integral J2 we get

J2 =
1
a

∫ ∞

0

d
dt

Ψ̃
(

ω2(t)
ε

)
mn (ER(t)) dt (3.6)

where Ψ̃ = aΨ.
We have (we use Lemma 2.8) for ∀ ε > 0

∫ ∞

0

d
dt

Ψ̃
(

ω2(t)
ε

)
mn (ER(t)) dt

≤
∫ to

0

d
dt

Ψ̃
(

ω2(t)
ε

)
mn (ER(t)) dt +

∫ ∞

to

d
dt

Ψ̃
(

ω2(t)
ε

)
mn (ER(t)) dt

≤ κnRn
∫ to

0

d
dt

Ψ̃
(

ω2(t)
ε

)
dt + sup

to<t<∞

(
1

t− to

∫ t

to

d
ds

Ψ̃
(

ω2(s)
ε

)
ds
) ∫ ∞

to

mn (ER(s)) ds

≤ κnΨ̃
(

ω2(to)

ε

)
Rn + sup

to<t<∞

 Ψ̃
(

ω2(t)
ε

)
− Ψ̃

(
ω2(to)

ε

)
t− to

 ∫
BR

|Du− (Du)R| dx

≤ κnΨ̃
(

ω2(to)

ε

)
Rn +Mκ1/2

n Rn/2φ1/2(R)

≤

κn

2n

Ψ̃
(

ω2(to)
ε

)
U2R

+
(κn

2n

)1/2 M√
U2R

 φ(2R) ≤

 Ψ̃
(

ω2(to)
ε

)
U2R

+
M√
U2R

 φ(2R) . (3.7)

If for some R > 0 the average UR = 0 then it is clear that xo is the regular point. So next
we can suppose UR is positive for all R > 0.

From [2] and [13] we have that Du ∈ L2,ζ(Ω, RnN), ζ ∈ (2, 3) and also

∫
BR

|Du|2 dx ≤ c2(ζ, M/ν, CH, χ, Ω)

ν2

(
‖ f ‖2

L2,ζ (Ω,RnN) + ‖Dg‖2
L2,ζ (Ω,RnN)

)
Rζ

= CM Rζ , ∀ 0 < R ≤ do . (3.8)
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From the assumptions (iii) follows

I2 ≤ CMC2
HR2χ

∫
BR

|Du|2 dx ≤ CMC2
HR2χ+ζ (3.9)

and
I3 ≤ [ f ]2L2,ξ (Ωo ,RnN)R

ξ . (3.10)

We get from (3.3) and (3.4) by means of (3.5), (3.7), (3.9) and (3.10)

φ(σ) ≤ 4L
( σ

R

)n+2
φ(2R)

+ 8
(

1+2L
( σ

R

)n+2
){[

CCµ ε

ν2 (aεU2R)
q−1+

1
aν2

(
Ψ̃
(

ω2(to)

ε

)
1

U2R
+
M√
U2R

)]
φ(2R)

+2CM

(
CH

ν

)2

R2+ζ +
2
ν2 [ f ]2L2,ξ (Ωo ,RnN)R

ξ

}

≤ 4L
( σ

R

)n+2
φ(2R) + 8

(
1 + 2L

( σ

R

)n+2
)
×

×
{[

CCµε

ν2 (aεU2R)
q−1 +

1
aν2

(
Ψ̃
(

ω2(to)

ε

)
1

U2R
+
M√
U2R

)]
φ(2R)

+
2
ν2

(
CMC2

H + [ f ]2L2,ξ (Ωo ,RnN)

)
Rλ

}
(3.11)

where λ = min{2χ + ζ, ξ}.
In (3.11) we can choose

ε =
ω2

∞
Cα

µ

, a =
128|Ω|1/2

(2do)
n/2 ν2εo U2R

for U(2R) > 0 (3.12)

where εo =
1

4(2n+5L)ϑ/(n+2−ϑ) and µ ≥ 17, α > 1− 2/n are suitable constants.
We set P = ω∞/ν. Then we obtain for U2R > 0

φ(σ) ≤ 4L
( σ

R

)n+2
φ(R) +

1
2

(
1 + 2L

( σ

R

)n+2
)

×


16CP2

Cα−1
µ

(
128|Ω|1/2P2

(2do)n/2 Cα
µ εo

)q−1

+
(2do)n/2ν2

8|Ω|1/2

(
Ψ̃
(

ω2(to)

ε

)
+M

√
U2R

)
εo

 φ(2R)

+
32
ν2

(
CMC2

H + [ f ]2L2,ξ (Ωo ,RnN)

)
Rλ


≤ 4L

( σ

R

)n+2
φ(R) +

1
2

(
1 + 2L

( σ

R

)n+2
)

×


 27q−3CP2q

Cqα−1
µ ε

q−1
o

(
|Ω|

(2do)n

) q−1
2

+
1
8

(
3 +

(2do)n/2

|Ω|1/2 M
√

U2R

)
ε0

 φ(2R)

+
32
ν2

(
CMC2

H + [ f ]2L2,ξ (Ωo ,RnN)

)
Rλ


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for all 0 < σ ≤ R ≤ do (for the estimate Ψ̃(ω2(to)/ε) ≤ 3, see Appendix).
In the last term of the foregoing inequality we employed the estimate from (1.11). The

constants α > 1− 2/n and µ ≥ 17 can be always chosen in such a way that

27q−3CP2q

Cqα−1
µ ε

q−1
o

(
|Ω|

(2do)n

) q−1
2

≤ 1
2

εo ⇐⇒ Cqα−1
µ ≥ 27q−3CP2q

ε
q
o

(
|Ω|

(2do)n

) q−1
2

(3.13)

and we get

φ(σ) ≤ 4L
( σ

R

)n+2
φ(R) +

1
2

(
1 + 2L

( σ

R

)n+2
)

×


[

7
8

εo +
1
8

εoM
(2do)n/2

|Ω|1/2

√
U2R

]
φ(2R) +

32
(

CMC2
H + [ f ]2L2,ξ (Ω,RnN)

)
ν2 Rλ


for all 0 < σ ≤ R ≤ do.

We can put A = 4L, α = n + 2,

B1 =
7
8

εo, B2 =
M (2do)n/2

8|Ω|1/2 εo, C =
32
(

CMC2
H + [ f ]2L2,ξ (Ω,RnN)

)
ν2 ,

s = 1/2, β = λ, δ = ϑ, τδ/4 = εo and d = do. Now from (1.11) follows that B2
√

U2do(x) ≤
εo/8 and if (1.12) is satisfied we can using Lemma 2.4. In conclusion we get

φ(σ) ≤ σϑ(k1φ(2do) + k2), ∀ 0 < σ ≤ do, n ≤ ϑ < λ .

�

4 Illustrating examples and comments

Example 4.1. We will consider the system (1.1) with ω from Example 1.7 for Ω = BR(0),
Ωo = BR/2(0) and also do = R/4. Supposing n = 3, N = 2, q = 3, ϑ = 3.1, ω∞ = ν, M/ν = 10,
CS = 10, εo ≈ 10−28 (the value εo seems to be realistic, see Remark 2.6, here L ≈ 1014), χ = 1
and λ = 4 we can get as follows:

ω∞ = 1030 1050 1070 1090 10110 10130

to = 103 1011 1018 1024 1030 1036

ω(to) ≈ 108 1028 1048 1068 1088 10108

t1 ≈ 1058 1067 1073 1079 1085 1091

ω(ω∞) ≈ 1019 1044 1069 1090 10110 10130

real value 1
M2 ≈ 105 1021 1035 1047 1059 1071

estimate 1
M2 by means of (1.14) ≈ 105 1021 1035 1047 1059 1071

ω
( 1
M2

)
≈ 1010 1032 1055 1078 10100 10122

α = 1.9 1.92 1.92 1.92 1.91 1.9
γ = 0.39 0.39 0.39 0.39 0.39 0.39
µ = 30.3 30.1 30.1 30.1 30.2 30.3

the right-hand side of (1.12) ≈ 10−16

ZR

1040

ZR

1094

ZR

10146

ZR

10198

ZR

10250

ZR
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Here t1 is the point for which ω(t1) = ω∞ and ZR = max{(R/4)4, R/4}. It is necessary to re-
member that the condition (1.13) from the main Theorem is satisfied for the above-mentioned
parameters.

In conclusion is possible to say, that the theorem gives good results if ν ≥ 1/εo =

4(2n+5L)
ϑ

n+2−ϑ .

Appendix A

First we have to estimate of
∫

Ω |Du|2 dx. We can rewrite the system (1.1) as∫
Ω

[
Ãαβ

ij

(
Dβuj − Dβgj

)
+ (Aα

i (x, Du)− Aα
i (xo, Du)) + ˜̃Aαβ

ij Dβgj
]

Dα ϕi dx

=
∫

Ω
( f α

i − ( f α
i )Ω) Dα ϕi dx (A.1)

where Ãαβ
ij =

∫ 1
0 Aαβ

ij (xo, Dg + t(Du− Dg)) dt and ˜̃Aαβ

ij =
∫ 1

0 Aαβ
ij (xo, tDg) dt.

We put in (A.1) ϕi = ui − gi and we get as follows∫
Ω

Ãαβ
ij DβujDαui dx +

∫
Ω

Ãαβ
ij DβgjDαgi dx

=
∫

Ω
Ãαβ

ij

(
DβujDαgi + DβgjDαui

)
dx−

∫
Ω

˜̃Aαβ

ij DβgjDαui dx +
∫

Ω

˜̃Aαβ

ij DβgjDαgi dx

−
∫

Ω
(Aα

i (x, Dg)− Aα
i (xo, Dg))

(
Dαui − Dαgi

)
dx

+
∫

Ω
( f α

i − ( f α
i )Ω) Dαui dx−

∫
Ω
( f α

i − ( f α
i )Ω) Dαgi dx

From ellipticity (1.3) we have

ν
∫

Ω
|Du|2 dx + ν

∫
Ω
|Dg|2 dx

≤
∫

Ω

∣∣∣Ãαβ
ij

∣∣∣ (|Dβuj||Dαgi|+ |Dβgj||Dαui|
)

dx

+
∫

Ω

∣∣∣∣ ˜̃Aαβ

ij

∣∣∣∣ |Dβgj||Dαui| dx +
∫

Ω

∣∣∣∣ ˜̃Aαβ

ij

∣∣∣∣ |Dβgj||Dαgi| dx

+
∫

Ω
|Aα

i (x, Dg)− Aα
i (xo, Dg)| |Dαgi| dx

+
∫

Ω
| f α

i − ( f α
i )Ω| |Dαui| dx +

∫
Ω
| f α

i − ( f α
i )Ω| |Dαgi| dx

= I1 + I2 + I3 + I4 + I5 + I6 . (A.2)

By means of Young’s inequality we get by choosing ε = ν/2M

I1 ≤ 2
∫

Ω
|Du||Dg|∑

∣∣∣Ãαβ
ij

∣∣∣ dx ≤ 1
2

ν
∫

Ω
|Du|2 dx +

2M2

ν

∫
Ω
|Dg|2 dx ,

I2 ≤
∫

Ω
|Du||Dg|∑

∣∣∣∣ ˜̃Aαβ

ij

∣∣∣∣ dx ≤ 1
4

ν
∫

Ω
|Du|2 dx +

M2

ν

∫
Ω
|Dg|2 dx ,

I3 ≤
∫

Ω
|Dg||Dg|∑

∣∣∣∣ ˜̃Aαβ

ij

∣∣∣∣ dx ≤ M
∫

Ω
|Dg|2 dx ,

I4 ≤ CH

∫
Ω
|x− xo|χ|Dg|∑ |Dαgi| dx ≤ nNCHdχ

Ω

∫
Ω
|Dg|2 dx ,
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ε = ν/4

I5 =
∫

Ω
| f α

i − ( f α
i )Ω||Dαui| dx ≤

∫
Ω
|Du|∑ | f α

i − ( f α
i )Ω| dx

≤ 1
8

ν
∫

Ω
|Du|2 dx +

2n2N2

ν

∫
Ω
| f − ( f )Ω|2 dx ,

ε = 2ν

I6 =
∫

Ω
∑ | f α

i − ( f α
i )Ω||Dαgi| dx ≤

∫
Ω
|Dg|∑ | f α

i − ( f α
i )Ω| dx

≤ 2ν
∫

Ω
|Dg|2 dx +

n2N2

8ν

∫
Ω
| f − ( f )Ω|2 dx .

Together from (A.2) we have

∫
Ω
|Du|2 dx ≤ 8

(
nNCHdχ

Ω
ν

+
M
ν

+ 3
(

M
ν

)2
)∫

Ω
|Dg|2 dx +

18n2N2

ν2

∫
Ω
| f − ( f )Ω|2 dx .

(A.3)
Now we can rewrite the system (1.1) as∫
Ω

[
Ãαβ

ij

(
Dβuj − (Dβgj)Ω

)
+ (Aα

i (x, Du)− Aα
i (xo, Du))

]
Dα ϕi dx

=
∫

Ω
( f α

i − ( f α
i )Ω) Dα ϕi dx (A.4)

where Ãαβ
ij =

∫ 1
0 Aαβ

ij (xo, (Dg)Ω + t (Du− (Dg)Ω)) dt.
We put in (A.4) ϕi =

(
ui − (Dαgi)Ωxα)− (gi − (Dαgi)Ωxα

)
and we get as follows∫

Ω
Ãαβ

ij

(
Dβuj − (Dβgj)Ω

) (
Dαui − (Dαgi)Ω

)
−
∫

Ω
Ãαβ

ij

(
Dβuj − (Dβgj)Ω

) (
Dαgi − (Dαgi)Ω

)
dx

+
∫

Ω
(Aα

i (x, Du)− Aα
i (xo, Du))

(
Dαui − (Dαgi)Ω

)
dx

−
∫

Ω
(Aα

i (x, Du)− Aα
i (xo, Du))

(
Dαgi − (Dαgi)Ω

)
dx

=
∫

Ω
( f α

i (x)− ( f α
i )Ω)

(
Dαui − (Dαgi)Ω

)
dx−

∫
Ω
( f α

i (x)− ( f α
i )Ω)

(
Dαgi − (Dαgi)Ω

)
dx .

From ellipticity (1.3) we have

ν
∫

Ω
|Du− (Dg)Ω|2 dx ≤

∫
Ω

∣∣∣Ãαβ
ij

∣∣∣ ∣∣∣Dαui − (Dαgi)Ω

∣∣∣ ∣∣∣Dαgi − (Dαgi)Ω

∣∣∣ dx

+
∫

Ω
|Aα

i (x, Du)− Aα
i (xo, Du)|

∣∣∣Dαui − (Dαgi)Ω

∣∣∣ dx

+
∫

Ω
|Aα

i (x, Du)− Aα
i (xo, Du)|

∣∣∣Dαgi − (Dαgi)Ω

∣∣∣ dx

+
∫

Ω
| f α

i (x)− ( f α
i )Ω|

∣∣∣Dαui − (Dαgi)Ω

∣∣∣ dx

+
∫

Ω
| f α

i (x)− ( f α
i )Ω|

∣∣∣Dαgi − (Dαgi)Ω

∣∣∣ dx

= I1 + I2 + I3 + I4 + I5 . (A.5)
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By means of Young inequality we get by choosing ε = ν/M

I1 ≤
∫

Ω
|Du− (Dg)Ω| |Dg− (Dg)Ω|∑

∣∣∣Ãαβ
ij

∣∣∣ dx

≤ 1
2

ν
∫

Ω
|Du− (Dg)Ω|2 dx +

M2

2ν

∫
Ω
|Dg− (Dg)Ω|2 dx ,

ε = ν/2

I2 ≤
∫

Ω
|Du− (Dg)Ω|∑ |Aα

i (x, Du)− Aα
i (xo, Du)| dx

≤ 1
4

ν
∫

Ω
|Du− (Dg)Ω|2 dx +

n2N2

ν

∫
Ω
|A(x, Du)− A(xo, Du)|2 dx

≤ 1
4

ν
∫

Ω
|Du− (Dg)Ω|2 dx +

n2N2C2
Hd2χ

Ω
ν

∫
Ω
|Du|2 dx ,

ε = ν

I3 ≤
∫

Ω
|Dg− (Dg)Ω|∑ |Aα

i (x, Du)− Aα
i (xo, Du)| dx

≤ 1
2

ν
∫

Ω
|Dg− (Dg)Ω|2 dx +

n2N2

2ν

∫
Ω
|A(x, Du)− A(xo, Du)|2 dx

≤ 1
2

ν
∫

Ω
|Dg− (Dg)Ω|2 dx +

n2N2C2
Hd2χ

Ω
2ν

∫
Ω
|Du|2 dx ,

I5 ≤
∫

Ω
| f α

i (x)− ( f α
i )Ω|

∣∣∣Dαgi − (Dαgi)Ω

∣∣∣ dx

≤ 1
2

ν
∫

Ω
|Dg− (Dg)Ω|2 dx +

n2N2

2ν

∫
Ω
| f − ( f )Ω|2 dx ,

ε = ν/4

I4 ≤
∫

Ω
| f α

i (x)− ( f α
i )Ω|

∣∣∣Dαui − (Dαgi)Ω

∣∣∣ dx

≤ 1
8

ν
∫

Ω
|Du− (Dg)Ω|2 dx +

2n2N2

ν

∫
Ω
| f − ( f )Ω|2 dx .

Together we get

∫
Ω
|Du− (Du)Ω|2 dx ≤

∫
Ω
|Du− (Dg)Ω|2 dx ≤ 4

(
2 +

(
M
ν

)2
) ∫

Ω
|Dg− (Dg)Ω|2 dx

+
20n2N2

ν2

∫
Ω
| f − ( f )Ω|2 dx +

12n2N2C2
Hd2χ

Ω
ν2

∫
Ω
|Du|2 dx . (A.6)

By means of (A.3) we are getting from (A.6) final estimate∫
Ω
|Du− (Du)Ω|2 dx ≤ 4

(
2 +

(
M
ν

)2
) ∫

Ω
|Dg− (Dg)Ω|2 dx

+
96n2N2C2

Hd2χ
Ω

ν2

[
nNCHdχ

Ω
ν

+
M
ν

+ 3
(

M
ν

)2
] ∫

Ω
|Dg|2 dx

+
4n2N2

ν2

[
5 +

54n2N2C2
Hd2χ

Ω
ν2

] ∫
Ω
| f − ( f )Ω|2 dx .
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Appendix B

We give estimates of the constantM defined by (1.10) where ω is defined by (1.7). We consider
to > 0, α > 1− 2/n, µ ≥ 17 and 0 < γ ≤ 0.44.

h′(t) =

 Ψ̃
(

ω2(t)
ε

)
− Ψ̃

(
ω2(to)

ε

)
t− to

′

=

ω(t)
[

2ω′(t)
(

1+ 2
2µ−1

(
ω2(t)

ε

) 2
2µ−1
)
(t− to)−ω(t)

]
e
(

ω2(t)
ε

) 2
2µ−1

+ ω2(to)e
(

ω2(t0)
ε

) 2
2µ−1

ε(t− to)2

=
ω(t)

[
2ω′(t)

(
1+ a

(
ω2(t)

ε

)a)
(t− to)−ω(t)

]
e
(

ω2(t)
ε

)a

+ω2(to)e
(

ω2(t0)
ε

)a

ε(t− to)2 , 0 < to < t < t1.

where a = 2/(2µ− 1) < 0.06 (µ ≥ 17).
For ω(t) = ω1(t) = ktγ, k =

√
ε/tγ

o we get

h′(t) =

k2

t2γ
[
2γ
(

1 + a
(

k2t2γ

ε

)a) (
1− to

t

)
− 1
]

e
(

k2t2γ

ε

)a

+ t2γ
o e

(
k2t2γ

o
ε

)a


ε(t− to)2

=

2γ

(
1 + a

(
t
to

)2aγ
) (

1− to
t

)
+
( to

t

)2γ
e
(

1−( t
to )

2aγ
)
− 1

(t− to)2

(
t
to

)2γ

e(
t

to )
2aγ

=
g1(t) + g2(t)− 1

(t− to)2

(
t
to

)2γ

e(
t

to )
2aγ

, 0 < to < t < t1 . (B.1)

We prove that there exists at most one point to < tm ≤ t1 such that h′(t) < 0 on (to, tm)

and h′(t) > 0 on (tm, ∞). For the proof, that h′(t) < 0 on (to, tm) is sufficiently show, that

g1(t) + g2(t)− 1 < 0, ∀ to < t < tm.

If we put t = to + h, h > 0 and ξ = 2aγ we have

g1(to + h) + g2(to + h) = 2γ

(
1 + a

(
1 +

h
to

)ξ
)

h
to + h

+

(
1− h

to + h

)2γ

e1−(1+ h
to )

ξ

< 1.

Now we development the functions (1 + h/to)ξ , (1− h/(to + h))2γ and e1−(1+h/to)ξ
to power

series we can rewrite the previous ones into the form

2γ + ξ

to + h
h +

ξ2

to(to + h)
h2 + o1(h2) +

(
1− 2γ

to + h
h− γ(1− 2γ)

(to + h)2 h2 + o2(h2)

)
×
(

1− ξ

to
h +

ξ(1− ξ)

2t2
o

h2 + o1(h2) +
1
2

(
− ξ

to
h +

ξ(1− ξ)

2t2
o

h2 + o1(h2)

)2

+ o3(h2)

)
< 1 .

After some adjustment and if we suppose that h ≤ to we can write(
ξ2 + 2γξ

to(to + h)
− γ(1− 2γ)

(to + h)2

)
h2 +

c(a, γ)

t3
o

h3 < 0 .
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It is also sufficient to prove

γ

to + h

(
4a2γ + 4aγ

to
− 1− 2γ

to + h

)
h2 +

c(a, γ)

t3
o

h3 < 0

⇐⇒
[
2(1 + 2a + 2a2)γ− 1

]
to + c1(a, γ)h < 0

and because limh→0+ c1(a, γ)h = 0 we can rewrite for sufficiently small 0 < h ≤ to preceding
inequality as follows

γ <
1

2
(

1 + 4
2µ−1 +

8
(2µ−1)2

) > 0.44, ∀ µ ≥ 17 . (B.2)

From this consideration we have

M = sup
to<t<t1

Ψ̃
(

ω2(t)
ε

)
− Ψ̃

(
ω2(to)

ε

)
t− to

= max


(

d
dt

Ψ̃
(

ω2(t)
ε

))
t=to

,
Ψ̃
(

ω2(t1)
ε

)
− Ψ̃

(
ω2(to)

ε

)
t1 − to


= max

6γ

to
,

Cα
µeC

2α
2µ−1
µ − e

to(C
α

2γ
µ − 1)

 ≤ 1
to

max

6γ,
Cα

µeC
2α

2µ−1
µ − e

C
α

2γ
µ − 1


≤ 2

to
max

3γ,
eC

2α
2µ−1
µ

C
(−1+ 1

2γ )α
µ

 . (B.3)

For the term Ψ̃
(ω2(to)

ε

)
from the definition ofM we get

Ψ̃
(

ω2(to)

ε

)
=

ω2(to)

ε
e

(
ω2(to)

ε

)2/(2µ−1)

= e, ∀ to > 0 .
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