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Abstract. In this article, we study the multiplicity of solutions for a class of fourth-order
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1 Introduction and main results

In this article, we consider the multiplicity results of solutions of the following fourth-order
elliptic equation: {

∆2u− ∆u + u = f (x)|u|q−2u + |u|p−2u, in RN ,

u ∈ H2(RN),
(1.1)

where N > 4, 1 < q < 2 < p < 2∗(2∗ = 2N/(N − 4)), the weight function f satisfies the
following condition:

(F) f ≥ 0, f ∈ Lrq(RN) ∩ L∞(RN) where rq =
r

r−q for some r ∈ (2, 2∗).

Associated with (1.1), we consider the C1-functional I f , for each u ∈ H2(RN),

I f (u) =
1
2
‖u‖2 − 1

q

∫
RN

f (x)|u|qdx− 1
p

∫
RN
|u|pdx,

where ‖u‖ =
(∫

RN

(
|∆u|2 + |∇u|2 + u2) dx

)1/2 is the norm in H2(RN). It is well known that
the solutions of (1.1) are the critical points of the energy functional I f [14].
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In reality, elliptic equations with concave ang convex nonlinearities in bounded domains
have been the focus of a great deal of research in recent years. Ambrosetti et al. [1], for
example, considered the following equation:

−∆u = λuq−1 + up−1, in Ω,

u > 0, in Ω,

u ∈ H1
0(Ω),

(1.2)

where Ω is a bounded domain in RN with 1 < q < 2 < p < 2∗ (2∗ = 2N
N−2 if N ≥ 3; 2∗ =

∞ if N = 1, 2) and λ > 0. They found that there is λ0 > 0 such that (1.2) admits at least two
positive solutions for λ ∈ (0, λ0), has a positive solution for λ = λ0 and no positive solution
exists for λ > λ0. Actually, many scholars have also obtained the same results in the unit ball
BN(0; 1), see [2, 6, 10, 13].

Furthermore, it is also an important subject to deal with elliptic equation with concave-
convex nonlinearities when a bounded domain Ω is replaced by RN . Wu [18] studied the
concave-convex elliptic problem:

−∆u + u = fλ(x)uq−1 + gµ(x)up−1, in RN ,

u > 0, in RN ,

u ∈ H1(RN),

(1.3)

where 1 < q < 2 < p < 2∗ (2∗ = 2N/(N − 2) if N ≥ 3, 2∗ = ∞ if N = 1, 2),

fλ = λ f+ + f− ( f± = ±max{0,± f } 6= 0)

is sign-changing, gµ = a + µb and the parameters λ, µ > 0. When the functions f+, f−, a, b
satisfy appropriate hypotheses, author obtained the multiplicity of positive solutions for the
problem (1.3). Hsu and Lin [9] dealt with the existence and multiplicity of positive solutions
for the following semilinear elliptic equation:

−∆u + u = λa(x)|u|q−2u + b(x)|u|p−2u, in RN ,

u > 0, in RN ,

u ∈ H1(RN),

(1.4)

where a, b are measurable functions and meet the right conditions. They obtained the result
of multiple solutions of the equation (1.4).

Inspired by the existing literature [5,8,9,11,15,18–20], the main aim of this article is to study
(1.1) involving concave-convex nonlinearities on the whole space RN . As far as we know,
there are few articles dealing with this type of fourth-order elliptic equation (1.1) involving
concave-convex nonlinearities. Using arguments similar to those used in [16], we will prove
the existence of two nontrivial solutions by using Ekeland variational principle [7].

Let

σ =

(
p− 2
p− q

)(
2− q
p− q

) 2−q
p−2

S
p(2−q)
2(p−2)
p S

q
2
r > 0,

where Sp and Sr are the best Sobolev constant. Now, we state the main result.

Theorem 1.1. Assume that (F) holds. If | f |rq ∈ (0, σ), then (1.1) has at least two nontrivial solutions,
one of which is the ground state solution.

This paper is organized as follows. In Section 2, we give some notations and preliminaries.
In Section 3, we are concerned with the proof of Theorem 1.1.
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2 Notations and preliminaries

We shall throughout use the Sobolev space H2(RN) with standard norm. The dual space
of H2(RN) will be denoted by H−2(RN). 〈·, ·〉 denotes the usual scalar product in H2(RN).
Lr(RN) is the usual Lebesgue space whose norms we denote by |u|r =

(∫
RN |u|rdx

)1/r for
1 ≤ p < ∞. Moreover, we denote by Sr the best Sobolev constant for the embedding of
H2(RN) in Lr(RN).

Now, we consider the Nehari minimization problem:

α f = inf{I f (u)|u ∈ N f },

where N f = {u ∈ H2(RN)\{0}|〈I′f (u), u〉 = 0}. Define

ψ f (u) = 〈I′f (u), u〉 = ‖u‖2 −
∫

RN
f (x)|u|qdx−

∫
RN
|u|pdx.

Then for u ∈ N f ,

〈ψ′f (u), u〉 = 〈ψ′f (u), u〉 − 〈I′f (u), u〉

= ‖u‖2 − (q− 1)
∫

RN
f (x)|u|qdx− (p− 1)

∫
RN
|u|pdx.

Similarly to the skill used in Tarantello [16], we split N f into three parts:

N+
f = {u ∈ N f | 〈ψ′f (u), u〉 > 0},

N 0
f = {u ∈ N f | 〈ψ′f (u), u〉 = 0},

N−f = {u ∈ N f | 〈ψ′f (u), u〉 < 0}

and note that if u ∈ N f , that is, 〈I′f (u), u〉 = 0, then

〈ψ′f (u), u〉 = (2− p)‖u‖2 − (q− p)
∫

RN
f (x)|u|qdx

= (2− q)‖u‖2 − (p− q)
∫

RN
|u|pdx.

(2.1)

Then, we have the following results.

Lemma 2.1. If | f |rq ∈ (0, σ), then the submanifold N 0 = ∅.

Proof. Suppose the contrary. Then N 0
f 6= ∅, i.e., there exist u ∈ N f such that 〈ψ′f (u), u〉 = 0.

Then for u ∈ N 0 by (2.1) and Sobolev inequality, we have

(2− q)‖u‖2 = (p− q)
∫

RN
|u|pdx ≤ (p− q)S−

p
2

p ‖u‖p,

and so

‖u‖ ≥

 (2− q)S
p
2
p

p− q

 1
p−2

. (2.2)

Similarly, using (2.1), Sobolev and Hölder inequalities, we have

(p− 2)‖u‖2 = (p− q)
∫

RN
f (x)|u|qdx ≤ (p− q)| f |rq S−

q
2

r ‖u‖q,
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which implies that

‖u‖ ≤
(
(p− q)| f |rq

(p− 2)S
q
2
r

) 1
2−q

. (2.3)

Combining (2.2) and (2.3) we deduce that

| f |rq ≥
(

p− 2
p− q

)(
2− q
p− q

) 2−q
p−2

S
p(2−q)
2(p−2)
p S

q
2
r = σ,

which is a contradiction. This completes the proof.

Lemma 2.2. If | f |rq ∈ (0, σ), then the set N−f is closed in H2(RN).

Proof. Let {un} ⊂ N−f such that un → u in H2(RN). In the following we show u ∈ N−f . In
fact, by 〈I′f (un), un〉 = 0 and

〈I′f (un), un〉 − 〈I′f (u), u〉 = 〈I′f (un)− I′f (u), u〉+ 〈I′f (un), un − u〉 → 0 as n→ ∞,

we have 〈I′f (u), u〉 = 0. So u ∈ N f . For any u ∈ N−f , that is, 〈ψ′f (u), u〉 < 0, from (2.1) we have

(2− q)‖u‖2 < (p− q)
∫

RN
|u|pdx ≤ (p− q)S−

p
2

p ‖u‖p,

and so

‖u‖ >

 (2− q)S
p
2
p

p− q

 1
p−2

> 0.

Hence N−f is bounded away from 0. Obviously, by (2.1), it follows that 〈ψ′f (un), un〉 →
〈ψ′f (u), u〉 as n → +∞. From 〈ψ′f (un), un〉 < 0, we have 〈ψ′f (u), u〉 ≤ 0. By Lemma 2.1,
for | f |rq ∈ (0, σ), N 0

f = ∅, then 〈ψ′f (u), u〉 < 0. Thus we deduce u ∈ N−f . This completes the
proof.

Lemma 2.3. The energy functional I f is coercive and bounded below on N f .

Proof. For u ∈ N f , then, by Sobolev and Hölder inequalities,

I f (u) = I f (u)−
1
p
〈I′f (u), u〉

=
p− 2

2p
‖u‖2 − p− q

pq

∫
RN

f (x)|u|qdx

≥ p− 2
2p
‖u‖2 − p− q

pq
| f |rq S−

q
2

r ‖u‖q.

This completes the proof.

The following lemma shows that the minimizers on N f are “usually” critical points for I f .
The details of the proof can be referred to Brown and Zhang [4].

Lemma 2.4. Suppose that û is a local minimizer for I f on N f . Then, if û /∈ N 0
f , û is a critical point

of I f .
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For each u ∈ H2(RN)\{0}, we write

tmax :=

(
(2− q)‖u‖2

(p− q)
∫

RN |u|pdx

) 1
p−2

> 0.

Then, we have the following lemma.

Lemma 2.5. For each u ∈ H2(RN)\{0} and | f |rq ∈ (0, σ), we have

(i) there exist unique 0 < t+ := t+(u) < tmax < t− := t−(u) such that t+u ∈ N+
f , t−u ∈ N−f

and
I f (t+u) = inf

tmax≥t≥0
I f (tu), I f (t−u) = sup

t≥tmax

I f (tu).

(ii) t− is a continuous function for nonzero u.

(iii) N−f =
{

u ∈ H2(RN)\{0}| 1
‖u‖ t−

(
u
‖u‖

)
= 1

}
.

Proof. (i) Fix u ∈ H2(RN)\{0}. Let

s(t) = t2−q‖u‖2 − tp−q
∫

RN
|u|pdx for t ≥ 0.

We have s(0) = 0, s(t) → −∞ as t → ∞, s(t) is concave and achieves its maximum at tmax.
Moreover, for | f |rq ∈ (0, σ),

s(tmax) =

(
(2− q)‖u‖2

(p− q)
∫

RN |u|pdx

) 2−q
p−2

‖u‖2 −
(

(2− q)‖u‖2

(p− q)
∫

RN |u|pdx

) p−q
p−2 ∫

RN
|u|pdx

= ‖u‖q

(
‖u‖p∫

RN |u|pdx

) 2−q
p−2 ( 2− q

p− q

) 2−q
p−2 p− 2

p− q

≥ ‖u‖q

 ‖u‖p

S−
p
2

p ‖u‖p


2−q
p−2 (

2− q
p− q

) 2−q
p−2 p− 2

p− q

= ‖u‖q

 (2− q)S
p
2
p

p− q


2−q
p−2

p− 2
p− q

> | f |rq S−
q
2

r ‖u‖q

≥
∫

RN
f (x)|u|qdx > 0.

(2.4)

Hence, there are unique t+ and t− such that 0 < t+ < tmax < t−,

s(t+) =
∫

RN
f (x)|u|qdx = s(t−)

and
s′(t+) > 0 > s′(t−).

Note that

〈I′f (tu), tu〉 = tq−1
(

s(t)−
∫

RN
f (x)|u|qdx

)



6 Z. Wu and H. Chen

and
〈ψ′f (tu), tu〉 = tq+1s′(t) for tu ∈ N f .

We have t+u ∈ N+
f , t−u ∈ N−f , and I f (t−u) ≥ I f (tu) ≥ I f (t+u) for each t ∈ [t+, t−] and

I f (t+u) ≥ I f (tu) for each t ∈ [0, t+]. Thus,

I f (t+u) = inf
tmax≥t≥0

I f (tu), I f (t−u) = sup
t≥tmax

I f (tu).

(ii) By the uniqueness of t− and the external property of t−, we have that t− is a continuous
function of u 6= 0.

(iii) For u ∈ N−f , let v = u
‖u‖ . By part (i), there is a unique t−(v) > 0 such that t−(v)v ∈ N−f ,

that is t−( u
‖u‖ )

u
‖u‖ ∈ N

−
f . Since u ∈ N−f , we have t−( u

‖u‖ )
u
‖u‖ = 1, which implies

N−f ⊂
{

u ∈ H2(RN)\{0}| 1
‖u‖ t−

(
u
‖u‖

)
= 1

}
.

Conversely, let u ∈ H2(RN)\{0} such that 1
‖u‖ t−

(
u
‖u‖

)
= 1. Then t−

(
u
‖u‖

)
u
‖u‖ ∈ N

−
f . Thus,

N−f =

{
u ∈ H2(RN)\{0}

∣∣∣∣ 1
‖u‖ t−

(
u
‖u‖

)
= 1

}
.

This completes the proof.

By Lemma 2.1, for | f |rq ∈ (0, σ) we write N f = N+
f ∪N

−
f and define

α+
f = inf

u∈N+
f

I f (u), α−f = inf
u∈N−f

I f (u).

Lemma 2.6. For | f |rq ∈ (0, σ), we have α f ≤ α+
f < 0.

Proof. Let u ∈ N+
f . By (2.1) we have

∫
RN
|u|pdx <

2− q
p− q

‖u‖2,

and so

I f (u) =
(

1
2
− 1

q

)
‖u‖2 +

(
1
q
− 1

p

) ∫
RN
|u|pdx

<

[(
1
2
− 1

q

)
+

(
1
q
− 1

p

)(
2− q
p− q

)]
‖u‖2

= − (p− 2)(2− q)
2pq

‖u‖2 < 0.

Therefore, α f ≤ α+
f < 0.

3 Proof of Theorem 1.1

First, we will use the idea of Ni and Takagi [12] to get the following lemmas.
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Lemma 3.1. If | f |rq ∈ (0, σ), then for every u ∈ N f , there exist ε > 0 and a differentiable function
g : Bε(0) ⊂ H2(RN)→ R+ := (0,+∞) such that

g(0) = 1, g(ω)(u−ω) ∈ N f , ∀ω ∈ Bε(0)

and

〈g′(0), v〉 =
2(u, v)− q

∫
RN f (x)|u|q−2uvdx− p

∫
RN |u|p−2uvdx

〈ψ′f (u), u〉 (3.1)

for all v ∈ H2(RN). Moreover, if 0 < C1 ≤ ‖u‖ ≤ C2, then there exists C > 0 such that

|〈g′(0), v〉| ≤ C‖v‖. (3.2)

Proof. We define F : R× H2(RN)→ R by

F(t, ω) = t‖u−ω‖2 − tq−1
∫

RN
f (x)|u−ω|qdx− tp−1

∫
RN
|u−ω|pdx,

it is easy to see F is differentiable. Since F(1, 0) = 0 and Ft(1, 0) = 〈ψ′f (u), u〉 6= 0, we apply
the implicit function theorem at point (1, 0) to get the existence of ε > 0 and differentiable
function g : Bε(0)→ R+ such that g(0) = 1 and F(g(ω), ω) = 0 for ∀ω ∈ Bε(0). Thus,

g(ω)(u−ω) ∈ N f , ∀ω ∈ Bε(0).

Also by the differentiability of the implicit function theorem, for all v ∈ H2(RN), we know
that

〈g′(0), v〉 = −〈Fω(1, 0), v〉
Ft(1, 0)

.

Note that

−〈Fω(1, 0), v〉 = 2(u, v)− q
∫

RN
f (x)|u|q−2uvdx− p

∫
RN
|u|p−2uvdx

and Ft(1, 0) = 〈ψ′f (u), u〉. So (3.1) holds.
Moreover, by (3.1), 0 < C1 ≤ ‖u‖ ≤ C2 and Hölder’s inequality, we have

|〈g′(0), v〉| ≤ C̃‖v‖
〈ψ′f (u), u〉

for some C̃ > 0. To prove (3.2), therefore, we only need to show that |〈ψ′f (u), u〉| > d for
some d > 0. We argue by contradiction. Assume that there exists a sequence {un} ∈ N f ,
C1 ≤ ‖un‖ ≤ C2, we have 〈ψ′f (un), un〉 = on(1). Then by (2.1) and Sobolev’s inequality, we
have

(2− q)‖un‖2 = (p− q)
∫

RN
|un|pdx + on(1)

≤ (p− q)S−
p
2

p ‖un‖p + on(1),

and so

‖un‖ ≥

 (2− q)S
p
2
p

p− q

 1
p−2

+ on(1). (3.3)
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Similarly, using (2.1) and Hölder and Sobolev inequalities, we have

(p− 2)‖un‖2 = (p− q)
∫

RN
f (x)|un|qdx + on(1)

≤ (p− q)| f |rq S−
q
2

r ‖un‖q + on(1),

which implies that

‖un‖ ≤
(
(p− q)| f |rq

(p− 2)S
q
2
r

) 1
2−q

+ on(1). (3.4)

Combining (3.3) and (3.4) as n→ +∞, we deduce that

| f |rq ≥
(

p− 2
p− q

)(
2− q
p− q

) 2−q
p−2

S
p(2−q)
2(p−2)
p S

q
2
r = σ,

which is a contradiction. Thus if 0 < C1 ≤ ‖u‖ ≤ C2, there exists C > 0 such that

|〈g′(0), v〉| ≤ C‖v‖.

This completes the proof.

Lemma 3.2. If | f |rq ∈ (0, σ) ∈ (0, σ), then for every u ∈ N−f , there exist ε > 0 and a differentiable
function g− : Bε(0) ⊂ H2(RN)→ R+ such that

g−(0) = 1, g−(ω)(u−ω) ∈ N−f , ∀ω ∈ Bε(0)

and

〈(g−)′(0), v〉 =
2(u, v)− q

∫
RN f (x)|u|q−2uvdx− p

∫
RN |u|p−2uvdx

〈ψ′f (u), u〉 (3.5)

for all v ∈ H2(RN). Moreover, if 0 < C1 ≤ ‖u‖ ≤ C2, then there exists C > 0 such that

|〈(g−)′(0), v〉| ≤ C‖v‖. (3.6)

Proof. Similar to the argument in Lemma 3.2, there exist ε > 0 and a differentiable function
g− : Bε(0)→ R+ such that g−(0) = 1 and g−(ω)(u−ω) ∈ N f for all ω ∈ Bε(0). By u ∈ N−f ,
we have

〈ψ′f (u), u〉 = ‖u‖2 − (q− 1)
∫

RN
f (x)|u|qdx− (p− 1)

∫
RN
|u|pdx < 0.

Since g−(ω)(u− ω) is continuous with respect to ω, when ε is small enough, we know for
ω ∈ Bε(0)

‖g−(ω)(u−ω)‖2 − (q− 1)
∫

RN
f (x)|g−(ω)(u−ω)|qdx− (p− 1)

∫
RN
|g−(ω)(u−ω)|pdx < 0.

Thus, g−(ω)(u − ω) ∈ N−f , ∀ω ∈ Bε(0). Moreover, the proof details of (3.5) and (3.6) are
similar to Lemma 3.1.

Lemma 3.3. If | f |rq ∈ (0, σ), then

(i) there exists a minimizing sequence {un} ∈ N f such that

I f (un) = α f + on(1),

I′f (un) = on(1) in H−2(RN);
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(ii) there exists a minimizing sequence {un} ∈ N−f such that

I f (un) = α−f + on(1),

I′f (un) = on(1) in H−2(RN).

Proof. (i) By Lemma 2.3 and the Ekeland variational principle on N f , there exists a minimizing
sequence {un} ⊂ N f such that

α f ≤ I f (un) < α f +
1
n

(3.7)

and
I f (un) ≤ I f (v) +

1
n
‖v− un‖ for each v ∈ N f . (3.8)

And we can show that there exists C1, C2 > 0 such that 0 < C1 ≤ ‖un‖ ≤ C2. Indeed, if
not, that is, un → 0 in H2(RN), then I f (un) would converge to zero, which contradict with
I f (un) → α f < 0. Moreover, by Lemma 2.3 we know that I f (u) is coercive on N f , {un} is
bounded in N f .

Now, we show that
‖I′f (un)‖H−2(RN) → 0 as n→ ∞.

Applying Lemma 3.1 with un to obtain the functions gn(ω) : Bεn(0) → R+ for some εn > 0,
such that

gn(0) = 1, gn(ω)(un −ω) ∈ N f , ∀ω ∈ Bεn(0).

We choose 0 < ρ < εn. Let u ∈ H2(RN)\{0} and ωρ = ρu
‖u‖ . Since gn(ωρ)(un − ωρ) ∈ N f , we

deduce from (3.8) that

1
n
[|gn(ωρ)− 1|‖un‖+ ρgn(ωρ)]

≥ 1
n
‖gn(ωρ)(un −ωρ)− un‖

≥ I f (un)− I f (gn(ωρ)(un −ωρ))

=
1
2
‖un‖2 − 1

q

∫
RN

f (x)|un|qdx− 1
p

∫
RN
|un|pdx− 1

2
(

gn(ωρ)
)2 ‖un −ωρ‖2

+
1
q
(

gn(ωρ)
)q
∫

RN
f (x)|un −ωρ|qdx +

1
p
(

gn(ωρ)
)p
∫

RN
|un −ωρ|pdx

= −
(

gn(ωρ)
)2 − 1

2
‖un −ωρ‖2 − 1

2
(‖un −ωρ‖2 − ‖un‖2)

+

(
gn(ωρ)

)q − 1
q

∫
RN

f (x)|un −ωρ|qdx

+
1
q

(∫
RN

f (x)|un −ωρ|qdx−
∫

RN
f (x)|un|qdx

)
+

(
gn(ωρ)

)p − 1
p

∫
RN
|un −ωρ|pdx +

1
p

(∫
RN
|un −ωρ|pdx−

∫
RN
|un|pdx

)
.

(3.9)

Note that

lim
ρ→0+

gn(ωρ)− 1
ρ

= lim
ρ→0+

gn(0 + ρ u
‖u‖ )− gn(0)

ρ
=

〈
(gn)

′(0),
u
‖u‖

〉
.
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If we divide the ends of (3.9) by ρ and let ρ→ 0+, we have

1
n

[∣∣∣∣〈(gn)
′(0),

u
‖u‖

〉∣∣∣∣ ‖un‖+ 1
]

≥ −
〈
(gn)

′(0),
u
‖u‖

〉
‖un‖2 −

∫
RN

∆un∆
(
− u
‖u‖

)
+∇un∇

(
− u
‖u‖

)
+ un

(
− u
‖u‖

)
dx

+

〈
(gn)

′(0),
u
‖u‖

〉 ∫
RN

f (x)|un|qdx +
∫

RN
f (x)|un|q−2un

(
− u
‖u‖

)
dx

+

〈
(gn)

′(0),
u
‖u‖

〉 ∫
RN
|un|pdx +

∫
RN
|un|p−2un

(
− u
‖u‖

)
dx

= −
〈
(gn)

′(0),
u
‖u‖

〉(
‖un‖2 −

∫
RN

f (x)|un|qdx−
∫

RN
|un|pdx

)
− 1
‖u‖

∫
RN
|un|p−2unudx

+
1
‖u‖

∫
RN

(∆un∆u +∇un∇u + unu)dx− 1
‖u‖

∫
RN

f (x)|un|q−2unudx

= −
〈
(gn)

′(0),
u
‖u‖

〉
〈I′f (un), un〉+

1
‖u‖〈I

′
f (un), u〉

=
1
‖u‖

〈
I′f (un), u

〉
,

that is,
1
n
[
|〈(gn)

′(0), u〉|‖un‖+ ‖u‖
]
≥ 〈I′f (un), u〉.

By the boundedness of ‖un‖ and Lemma 3.2, there exists Ĉ > 0 such that

Ĉ
n
≥
〈

I′f (un),
u
‖u‖

〉
.

Therefore, we have

‖I′f (un)‖H−2(RN) = sup
u∈H2(RN)\{0}

〈I′f (un), u〉
‖u‖ ≤ Ĉ

n
,

that is, I′f (un) = on(1) as n→ +∞. This completes the proof of (i).
(ii) Similarly, by using Lemma 3.2, we can prove (ii). We will omit the details here.

Now, we establish the existence of minimum for I f on N+
f .

Theorem 3.4. Assume that (F) holds. If | f |rq ∈ (0, σ), then the functional I f has a minimizer u+ in
N+

f and it satisfies

(i) I f (u+) = α f = α+
f ;

(ii) u+ is a solution of equation (1.1).

Proof. From Lemma 3.3, let {un} be a (PS)α f sequence for I f on N f , i.e.,

I f (un) = α f + on(1), I′f (un) = on(1) in H−2(RN). (3.10)
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Then it follows from Lemma 2.3 that {un} is bounded in H2(RN). Hence, up to a subsequence,
there exists u+ ∈ H2(RN) such that

un ⇀ u+ in H2(RN);

un → u+ in Ls
loc(R

N) (2 ≤ s < 2∗);

un(x)→ u+(x) a.e. in RN .

(3.11)

By (F), Hölder inequality and (3.11), we can infer that∫
RN

f (x)|un|qdx =
∫

RN
f (x)|u+|qdx + on(1) as n→ ∞. (3.12)

In fact, for any ε > 0, there exists M sufficiently large such that(∫
|x|>M

| f (x)|rq dx
) 1

rq
< ε.

And from {un} ⊂ N f in H2(RN) is bounded, we obtain that
(∫

RN |un − u+|rdx
) q

r is bounded.
Therefore, we have∫

RN
| f (x)(|un|q − |u+|q)|dx ≤

∫
RN

f (x)|un − u+|qdx

=
∫
|x|≤M

f (x)|un − u+|qdx +
∫
|x|>M

f (x)|un − u+|qdx

≤
(∫
|x|≤M

| f (x)|rq dx
) 1

rq
(∫
|x|≤M

|un − u+|rdx
) q

r

+

(∫
|x|>M

| f (x)|rq dx
) 1

rq
(∫
|x|>M

|un − u+|rdx
) q

r

→ 0 as n→ ∞.

First, we can claim that u+ is a nontrivial solution of (1.1). Indeed, by (3.10) and (3.11), it is
easy to see that u+ is a solution of (1.1). Next we show that u+ is nontrivial. From un ∈ N f ,
we have that

I f (un) =

(
1
2
− 1

p

)
‖un‖2 −

(
1
q
− 1

p

) ∫
RN

f (x)|un|qdx. (3.13)

Let n→ ∞ in (3.13), we can get

α f ≥ −
p− q

pq

∫
RN

f (x)|u+|qdx.

In view of Lemma 2.6, we have 0 > α+
f ≥ α f , which implies

∫
RN f (x)|u+|qdx > 0. Thus,

u+ is a nontrivial solution of (1.1). Now we prove that un → u+ strongly in H2(RN) and
I f (u+) = α. In fact, by un, u ∈ N f , (3.12) and weak lower semicontinuity of norm, we have

α f ≤ I f (u+) =

(
1
2
− 1

p

)
‖u+‖2 −

(
1
q
− 1

p

) ∫
RN

f (x)|u+|qdx

≤ lim
n→∞

((
1
2
− 1

p

)
‖un‖2 −

(
1
q
− 1

p

) ∫
RN

f (x)|un|qdx
)

= lim
n→∞

I f (un) = α f ,
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which implies that I f (u+) = α f and limn→∞ ‖un‖2 = ‖u+‖2. Noting that un ⇀ u+ in H2(RN),
so un → u+ strongly in H2(RN). Furthermore, we have u+ ∈ N+

f . On the contrary, if
u+ ∈ N−f , then by Lemma 2.5 (i), there are unique t+ and t− such that t+u+ ∈ N+

f and
t−u+ ∈ N−f . In particular, we have t+ < t− = 1 and so I f (t+u+) < I f (t−u+) = I f (u+) = α f ,
which is a contradiction. By Lemma 2.4 we may assume that u+ is a solution of (1.1). This
completes the proof.

In order to obtain the existence of the second local minimum, we consider the following
minimization problem:

S0 = inf{I0(u) | u ∈ H2(RN)\{0}, I′0(u) = 0},

where
I0(u) =

1
2
‖u‖2 − 1

p

∫
RN
|u|pdx.

From [17, 21], we know that S0 is achieved at u0 ∈ H2(RN). Moreover,

S0 = I0(u0) = sup
t≥0

I0(tu0).

Then, we have the following lemma.

Lemma 3.5. If | f |rq ∈ (0, σ), then α−f < α f + S0.

Proof. From Lemma 2.5 (iii), N−f disconnects H2(RN)\{0} in exactly two components:

Λ1 =

{
u
∣∣∣∣ 1
‖u‖ t−

(
u
‖u‖

)
> 1

}
,

Λ2 =

{
u
∣∣∣∣ 1
‖u‖ t−

(
u
‖u‖

)
< 1

}
,

and N+
f ⊂ Λ1. Moreover, there exists t1 such that u+ + t1u0 ∈ Λ2. Indeed, denote t0 =

t−((u+ + tu0)/‖u+ + tu0‖). Since

t−
(

u+ + tu0

‖u+ + tu0‖

)(
u+ + tu0

‖u+ + tu0‖

)
∈ N−f ,

we have

0 ≤
tq
0

∫
RN f (x)|u+ + tu0|qdx
‖u+ + tu0‖q = t2

0 −
tp
0

∫
RN |u+ + tu0|pdx
‖u+ + tu0‖p .

Thus

t0 ≤
[

‖u+/t + u0‖(∫
RN |u+/t + u0|p

)1/p

]p/(p−2)

→ ‖u0‖ as t→ ∞.

Therefore, there exists t2 > 0 such that t0 < l‖u0‖, for some l > 1 and t ≥ t2. Set t1 > t2 + l,
then(

t−
(

u+ + t1u0

‖u+ + t1u0‖

))2

< l2‖u0‖2

≤ ‖u+‖2 + t2
1‖u0‖2 + 2t1

∫
RN

(∆u+∆u0 +∇u+∇u0 + u+u0)dx

= ‖u+ + t1u0‖2,
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that is, u+ + t1u0 ∈ Λ2. So there exists k ∈ (0, 1) such that u+ + kt1u0 ∈ N−f . Furthermore, we
have

α−f ≤ I f (u+ + kt1u0)

=
1
2
‖u+ + kt1u0‖2 − 1

q

∫
RN

f (x)|u+ + kt1u0|qdx− 1
p

∫
RN
|u+ + kt1u0|pdx

< I f (u+) +
1
2
‖kt1u0‖2 − 1

p

∫
RN
|kt1u0|pdx

= I f (u+) + I0(kt1u0)

≤ α f + I0(u0)

= α f + S0.

This completes the proof.

Next, we establish the existence of minimum for I f on N−f .

Theorem 3.6. Assume that (F) holds. If | f |rq ∈ (0, σ), then the functional I f has a minimizer u− in
N−f and it satisfies

(i) I f (u−) = α−f ;

(ii) u− is a solution of equation (1.1).

Proof. From Lemma 3.3, let {un} be a (PS)α−f
sequence for I f on N−f , i.e.,

I f (un) = α−f + on(1), I′f (un) = on(1) in H−2(RN). (3.14)

From Lemma 2.3 we have {un} is bounded in H2(RN). Hence, up to a subsequence, there
exists u− ∈ H2(RN) such that

un ⇀ u− in H2(RN);

un → u− in Ls
loc(R

N) (2 ≤ s < 2∗);

un(x)→ u−(x) a.e. in RN .

(3.15)

From (3.14) and (3.15), we have 〈I′f (u−), v〉 = 0, ∀v ∈ H2(RN), that is, u− is a weak solution
of (1.1) and u− ∈ N f . Let vn = un − u−. Then

vn ⇀ 0 in H2(RN);

vn → 0 in Ls
loc(R

N) (2 ≤ s < 2∗);

vn(x)→ 0 a.e. in RN .

(3.16)

Now we prove that un → u− strongly in H2(RN), that is, vn → 0 strongly in H2(RN). Arguing
by contradiction, we assume that there is c > 0 such that ‖vn‖ ≥ c > 0. By the Brézis–Lieb
theorem [3],

I f (un) =
1
2
‖un‖2 − 1

q

∫
RN

f (x)|un|qdx− 1
p

∫
RN
|un|pdx

= I f (u−) +
1
2
‖vn‖2 − 1

q

∫
RN

f (x)|vn|qdx− 1
p

∫
RN
|vn|pdx + on(1)

= I f (u−) +
1
2
‖vn‖2 − 1

p

∫
RN
|vn|pdx + on(1),

(3.17)
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where
∫

RN f (x)|vn|qdx → 0 as n → ∞. In fact, for any ε > 0, there exists M sufficiently large
such that (∫

|x|>M
| f (x)|rq dx

) 1
rq
< ε.

By (F), Hölder’s inequality and (3.16), we have∫
RN

f (x)|vn|qdx =
∫
|x|≤M

f (x)|vn|qdx +
∫
|x|>M

f (x)|vn|qdx

≤
(∫
|x|≤M

| f (x)|rq dx
) 1

rq
(∫
|x|≤M

|vn|rdx
) q

r

+

(∫
|x|>M

| f (x)|rq dx
) 1

rq
(∫
|x|>M

|vn|rdx
) q

r

→ 0 as n→ ∞.

Moreover,

on(1) = 〈I′f (un), un〉 = ‖un‖2 −
∫

RN
f (x)|un|qdx−

∫
RN
|un|pdx

= 〈I′f (u−), u−〉+ ‖vn‖2 −
∫

RN
f (x)|vn|qdx−

∫
RN
|vn|pdx + on(1)

= ‖vn‖2 −
∫

RN
|vn|pdx + on(1).

(3.18)

Combining (3.17) and (3.18), we obtain

‖vn‖2 −
∫

RN
|vn|pdx = on(1), I f (un) ≥ α f +

1
2
‖vn‖2 − 1

p

∫
RN
|vn|pdx + on(1).

Since ‖vn‖ ≥ c > 0, we can get a sequence kn, kn > 0, kn → 1 as n → ∞, such that sn = knvn

satisfying ‖sn‖2 −
∫

RN |sn|pdx = 0. Thus

I f (un) ≥ α f +
1
2
‖sn‖2 − 1

p

∫
RN
|sn|pdx + on(1) ≥ α f + S0 + on(1),

that is, α−f ≥ α f + S0, contradicting Lemma 3.5. Hence un → u− strongly in H2(RN). This
implies

I f (un)→ I f (u−) = α−f as n→ ∞.

Furthermore, from Lemma 2.2, N−f is closed set and bounded away from 0. We have u− ∈ N−f
and u− is nontrivial. By Lemma 2.4 we may assume that u− is a solution of (1.1). This
completes the proof.

Proof of Theorem 1.1. By Theorems 3.4 and 3.6, for (1.1) there exist two solutions u+ and u−

such that u+ ∈ N+
f , u− ∈ N−f . Since N+

f ∩N
−
f = ∅, this implies that u+ and u− are different.

Moreover, u+ is the ground state solution. It completes the proof of Theorem 1.1.
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