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Abstract. In this paper, we investigate a reaction-diffusive-advection two-species com-
petition model with one delay and Dirichlet boundary conditions. The existence and
multiplicity of spatially non-homogeneous steady-state solutions are obtained. The sta-
bility of spatially nonhomogeneous steady-state solutions and the existence of Hopf
bifurcation with the changes of the time delay are obtained by analyzing the distribu-
tion of eigenvalues of the infinitesimal generator associated with the linearized system.
By the normal form theory and the center manifold reduction, the stability and bi-
furcation direction of Hopf bifurcating periodic orbits are derived. Finally, numerical
simulations are given to illustrate the theoretical results.
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1 Introduction

In this paper, we consider a two-species competition model in a reaction-diffusive-advection
with one delay{

∂u(x,t)
∂t =∇· [d1∇u(x, t)− a1u(x, t)∇m]+u(x, t)[m(x)−b1u(x, t− r)− c1v(x, t− r)],

∂v(x,t)
∂t =∇· [d2∇v(x, t)− a2v(x, t)∇m]+v(x, t)[m(x)−b2u(x, t− r)− c2v(x, t− r)],

(1.1)

where u(x, t), v(x, t) represents the population density at location x ∈ Ω and time t, time
delay r > 0 represents the maturation time, and Ω is a bounded domain in Rk (1 ≤ k ≤ 3) in
(1.1) with a smooth boundary ∂Ω. ai, bi, ci, di > 0 (i = 1, 2).

In (1.1), we assume that both species have the same per-capita growth rates at place x ∈ Ω,
denoted by m(x). This scenario can occur if the two species are competing for the same
resources. To reflect the heterogeneity of environment, we assume that m(x) is a nonconstant
function. In some sense, m(x) can reflect the quality and quantity of resources available at the
location x, where the favorable region {x ∈ Ω : m(x) > 0} acts as a source and the unfavorable
part {x ∈ Ω : m(x) < 0} is a sink region, see [26]. When m(x) ≡ 1, see [15, 18].
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Under our assumptions in (1.1), the dispersal of the two competitors can be described in
terms of their fluxes

Ju = −d1∇u + a1u∇m, Jv = −d2∇v + a2v∇m,

respectively, where d1∇u and d2∇v account for random diffusion, and a1u∇m and a2v∇m
represent movement upward along the environmental gradient. The two non-negative con-
stants a1 and a2 measure the tendency of the two populations to move up along the gradient
of m(x), and d1 and d2 represent the random diffusion rates of two species, respectively. See
[1, 2, 4–8, 10, 11, 13, 17, 20, 22–29].

When b1 = b2 = c1 = c2 = 1, r = 0 in (1.1), Chen, Hambrock and Lou [6] investigated the
following model{

∂u(x,t)
∂t = ∇ · [d1∇u(x, t)− a1u(x, t)∇m] + u(x, t)[m(x)− u(x, t)− v(x, t)],

∂v(x,t)
∂t = ∇ · [d2∇v(x, t)− a2v(x, t)∇m] + v(x, t)[m(x)− u(x, t)− v(x, t)].

(1.2)

They showed that at least two scenarios can occur: if only one species has a strong tendency
to move upward the environmental gradients, the two species can coexist since one species
mainly pursues resources at places of locally most favorable environments while the other
relies on resources from other parts of the habitat; if both species have such strong biased
movements, it can lead to overcrowding of the whole population at places of locally most fa-
vorable environments, which causes the extinction of the species with stronger biased move-
ment. These results provided a new mechanism for the coexistence of competing species, and
they also implied that selection is against excessive advection along environmental gradients,
and an intermediate biased movement rate may evolve.

When v = 0 in (1.1), Chen, Lou and Wei [8] investigated the following model,{
∂u(x,t)

∂t = ∇ · [d∇u− a1u∇m] + u(x, t)[m(x)− u(x, t− r)],

u(x, t) = 0.
(1.3)

They investigated a reaction-diffusion-advection model with time delay effect. The stability
and instability of the spatially nonhomogeneous positive steady state were investigated when
the given parameter of the model is near the principle eigenvalue of an elliptic operator.
Their results implied that time delay can make the spatially nonhomogeneous positive steady
state unstable for a reaction-diffusion-advection model, and the model can exhibit oscillatory
pattern through Hopf bifurcation. The effect of advection on Hopf bifurcation values was also
considered, and their results suggested that Hopf bifurcation is more likely to occur when the
advection rate increases. See [3, 9, 12, 14–16, 18, 19, 21, 30–34].

When d1 = d2 = d, a2 = a1 in (1.1), we study the following model with homogeneous
Dirichlet boundary and initial value conditions

∂u(x,t)
∂t = ∇ · [d∇u− a1u∇m] + u(x, t)[m(x)− b1u(x, t− r)− c1v(x, t− r)],

∂v(x,t)
∂t = ∇ · [d∇v− a1v∇m] + v(x, t)[m(x)− b2u(x, t− r)− c2v(x, t− r)],

x ∈ Ω, t > 0,

u(x, t) = v(x, t) = 0, x ∈ ∂Ω, t ≥ 0,

u(x, t) = ϕ1(x, t) ≥ 0, v(x, t) = ϕ2(x, t) ≥ 0, (x, t) ∈ Ω× [−r, 0],

(1.4)

with the initial value functions

ϕi(x, ·) ∈ C([−r, 0], R+
0 ) (x ∈ Ω), ϕi(·, t) ∈ H1

0(Ω) (t ∈ [−r, 0]), i = 1, 2.
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In this paper, we mainly investigate whether time delay r can induce Hopf bifurcation for
reaction-diffusion-advection model (1.4).

As in [2, 8], Let ũ = e(−a1/d)m(x)u, ṽ = e(−a1/d)m(x)v, t̃ = td, dropping the tilde sign, and
denoting λ = 1/d, a = a1/d, τ = dr, system (1.4) can be transformed as follows:

∂u
∂t = e−am(x)∇ · [eam(x)∇u] + λu[m(x)− b1eam(x)u(x, t− τ)− c1eam(x)v(x, t− τ)],
∂v
∂t = e−am(x)∇ · [eam(x)∇v] + λv[m(x)− b2eam(x)u(x, t− τ)− c2eam(x)v(x, t− τ)],

x ∈ Ω, t > 0,

u(x, t) = v(x, t) = 0, x ∈ ∂Ω, t ≥ 0,

u(x, t) = ϕ1(x, t) ≥ 0, v(x, t) = ϕ2(x, t) ≥ 0, (x, t) ∈ Ω× [−τ, 0].

(1.5)

Throughout the paper, unless otherwise specified, m(x) satisfies the following assumption

(H) m ∈ C2(Ω), and maxx∈Ω m(x) > 0.

The following eigenvalue problem{
−e−am(x)∇ · [eam(x)∇u] = −∆u− a∇m · ∇u = λm(x)u, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(1.6)

is crucial to derive our main results. It follows from [2, 8, 26] that, under assumption (H),
(1.6) has a unique positive principal eigenvalue λ∗ admitting a strictly positive eigenfunction
ϕ ∈ C1+δ

0 (Ω) for some δ ∈ (0, 1) and
∫

Ω ϕ2dx = 1.
The rest of the paper is organized as follows. In Section 2, we study the existence of

positive steady state solutions of (1.5). In Section 3, we focus on the eigenvalue problem of the
linearized system of the steady-state solution of (1.5). In Section 4, we study the stability and
Hopf bifurcation of the spatially nonhomogeneous positive steady state of (1.5). In Section 5,
we derive an explicit formula, which can be used to determine the direction of the Hopf
bifurcation and the stability of the bifurcating periodic orbits. In Section 6, we give some
numerical simulations are illustrated to support our analytical results.

Throughout the paper, we also denote the spaces X = H2(Ω) ∩ H1
0(Ω), Y = L2(Ω).

Moreover, we denote the complexification of a linear space Z to be ZC = Z ⊕ iZ = {x1 +

ix2 | x1, x2 ∈ Z}, the domain of a linear operator L by D(L), the kernel of L by N (L), and
the range of L by R(L). For Hilbert space YC, we use the standard inner product 〈u, v〉 =∫

Ω u(x)Tv(x)dx, u, v ∈ Y2
C.

2 Existence of positive steady state solutions

Denote
L := ∇ · [eam(x)∇] + λ∗eam(x)m(x),

where λ∗ is a unique positive principal eigenvalue of problem (1.6) admitting a strictly positive
eigenfunction ϕ ∈ C1+δ

0 (Ω) for some δ ∈ (0, 1) and
∫

Ω ϕ2dx = 1.
Now, we have the following decompositions:

X = N (L)⊕ X1, Y = N (L)⊕Y1, N (L) = span{ϕ},

X1 =

{
y ∈ X :

∫
Ω

ϕ(x)y(x)dx = 0
}

, Y1 = R(L) =
{

y ∈ Y :
∫

Ω
ϕ(x)y(x)dx = 0

}
.
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Clearly, the operator L : X → Y is Fredholm with index zero. L|X1 : X1 → Y1 is invertible and
has a bounded inverse.

In this section, we consider the existence of positive spatially nonhomogeneous steady
states solutions of system (1.5), which satisfy{

∇ · [eam(x)∇u] + λeam(x)u[m(x)− b1eam(x)u(x, t)− c1eam(x)v(x, t)] = 0,

∇ · [eam(x)∇v] + λeam(x)v[m(x)− b2eam(x)u(x, t)− c2eam(x)v(x, t)] = 0,
(2.1)

Suppose that the solution of (2.1) has the following expressions:{
uλ = α(λ− λ∗)[ϕ + (λ− λ∗)ξ(x)],

vλ = β(λ− λ∗)[ϕ + (λ− λ∗)η(x)],
(2.2)

where α, β ∈ R, ξ, η ∈ X1. Substitute (2.2) into (2.1) we have
Lξ + m(x)eam(x)[ϕ + (λ− λ∗)ξ]− λαb1e2am(x)[ϕ + (λ− λ∗)ξ]

2

−λβc1e2am(x)[ϕ + (λ− λ∗)ξ][ϕ + (λ− λ∗)η] = 0,
Lη + m(x)eam(x)[ϕ + (λ− λ∗)η]− λαc2e2am(x)[ϕ + (λ− λ∗)η]

2

−λβb2e2am(x)[ϕ + (λ− λ∗)ξ][ϕ + (λ− λ∗)η] = 0.

(2.3)

When λ = λ∗, (2.3) becomes following equations{
Lξ + m(x)eam(x)ϕ− λ∗αb1e2am(x)ϕ2 − λ∗βc1e2am(x)ϕ2 = 0,

Lη + m(x)eam(x)ϕ− λ∗βb2e2am(x)ϕ2 − λ∗αc2e2am(x)ϕ2 = 0.
(2.4)

Multiplying both sides of each equation in (2.4) by ϕ and integrating on Ω, we have

αλ∗ =
c2 − c1

b1c2 − b2c1
d1, βλ∗ =

b1 − b2

b1c2 − b2c1
d1,

where d1 =
∫

Ω m(x)eam(x)ϕ2dx
λ∗
∫

Ω e2am(x)ϕ3dx
> 0, see [8]. And ξλ∗ , ηλ∗ ∈ X1 is the unique solution of the

following equations{
Lξ + m(x)eam(x)ϕ− λ∗αλ∗b1e2am(x)ϕ2 − λ∗βλ∗c1e2am(x)ϕ2 = 0,

Lη + m(x)eam(x)ϕ− λ∗βλ∗b2e2am(x)ϕ2 − λ∗αλ∗c2e2am(x)ϕ2 = 0.
(2.5)

To guarantee positive steady states solutions of system (2.1), we need following conditions:

(H1) (λ− λ∗)
c2−c1

b1c2−b2c1
> 0, (λ− λ∗)

b1−b2
b1c2−b2c1

> 0.

Theorem 2.1. Assume that (H1) holds. Then there exist a constant δ > 0 and a continuously differ-
entiable mapping which defined by λ → (ξλ, ηλ, αλ, βλ), from (λ∗ − δ, λ∗ + δ) to X2

1 × (R+)2 such
that system (1.5) has a positive spatially nonhomogeneous steady-state solution:{

uλ = αλ(λ− λ∗)[ϕ + (λ− λ∗)ξλ(x)],

vλ = βλ(λ− λ∗)[ϕ + (λ− λ∗)ηλ(x)].
(2.6)
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Proof. Let F = (F1, F2, F3, F4) be defined as the following

F1(ξ, η, α, β, λ) = Lξ + m(x)eam(x)[ϕ + (λ− λ∗)ξ]− λαb1e2am(x)[ϕ + (λ− λ∗)ξ]
2

− λβc1e2am(x)[ϕ + (λ− λ∗)ξ][ϕ + (λ− λ∗)η] = 0,

F2(ξ, η, α, β, λ) = Lη + m(x)eam(x)[ϕ + (λ− λ∗)η]− λαc2e2am(x)[ϕ + (λ− λ∗)η]
2

− λβb2e2am(x)[ϕ + (λ− λ∗)ξ][ϕ + (λ− λ∗)η] = 0,

F3(ξ, η, α, β, λ) = 〈ϕ, ξ〉 = 0,

F4(ξ, η, α, β, λ) = 〈ϕ, η〉 = 0.

It is easy to obtain that from (2.5)

Fi(ξλ∗ , ηλ∗ , αλ∗ , βλ∗ , λ∗) = 0, (i = 1, 2, 3, 4).

The Fréchet derivative of F at (ξλ∗ , ηλ∗ , αλ∗ , βλ∗ , λ∗) is

∂F
∂(ξ, η, α, β)

∣∣∣∣
(ξλ∗ ,ηλ∗ ,αλ∗ ,βλ∗ ,λ∗)


ξ̂

η̂

α̂

β̂

 =


Lξ̂ − λ∗(α̂b1 + β̂c1)eam(x)ϕ2

Lη̂ − λ∗(α̂c2 + β̂b2)eam(x)ϕ2

〈ϕ, ξ̂〉
〈ϕ, η̂〉

 .

It is clear that the derivative operator ∂F
∂(ξ,η,α,β)

∣∣
(ξλ∗ ,ηλ∗ ,αλ∗ ,βλ∗ ,λ∗)

is bijective. By using the
implicit function theorem we know that there exist a constant δ > 0 and a continuously differ-
entiable mapping which defined by λ → (ξλ, ηλ, αλ, βλ) from (λ∗ − δ, λ∗ + δ) to X2

1 × (R+)2

such that system (1.5) has a positive spatially nonhomogeneous steady-state solution (2.6).

3 Eigenvalue problems of the linearized system

For the convenience of discussion, we always suppose that Λ = (λ∗ − δ, λ∗) ∪ (λ∗, λ∗ + δ).
Let (uλ, vλ)

T is a spatially nonhomogeneous steady-state solution of (1.5) which is deter-
mined by (2.6). Let

ũ = u− uλ, ṽ = v− vλ,

dropping the tilde sign, system (1.5) can be transformed as follows:

∂u
∂t = e−am(x)∇ · [eam(x)∇u] + λu(x, t)[m(x)− b1eam(x)uλ − c1eam(x)vλ]

− λeam(x)uλ[b1u(x, t− τ) + c1v(x, t− τ)],
∂v
∂t = e−am(x)∇ · [eam(x)∇v] + λv(x, t)[m(x)− b2eam(x)uλ − c2eam(x)vλ]

− λeam(x)vλ[b2u(x, t− τ) + c2v(x, t− τ)].

(3.1)

Denote Aλ, Bλ :

Aλ =

(
A1 0
0 A2

)
, Bλψ =

(
λeam(x)uλ[b1ψ1(−τ) + c1ψ2(−τ)]

λeam(x)vλ[b2ψ1(−τ) + c2ψ2(−τ)]

)
where

A1 = e−am(x)∇ · [eam(x)∇] + λ[m(x)− b1eam(x)uλ − c1eam(x)vλ],

A2 = e−am(x)∇ · [eam(x)∇] + λ[m(x)− b2eam(x)uλ − c2eam(x)vλ],
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and ψ = (ψ1, ψ2)T ∈ X2
C.

It follows from [14,33] that the semigroup induced by the solutions of the linearized system
(3.1) has the infinitesimal generator Tτ,λ satisfying

Tτ,λψ = ψ̇, (3.2)

where
D(Tτ,λ) = {ψ ∈ CC ∩ C1

C | ψ(0) ∈ XC, ψ̇(0) = Aλψ(0)− Bλψ(−τ)},
where

CC = C([−τ, 0], Y2
C), C1

C = C1([−τ, 0], Y2
C).

Moreover, µ ∈ C an eigenvalue of Tτ,λ if and only if there exists ψ = (ψ1, ψ2)T ∈ X2
C \ {(0, 0)T}

such that
∆(λ, µ, τ)ψ = Aλψ− Bλψe−µτ − µψ = 0. (3.3)

Lemma 3.1. 0 is not an eigenvalue of Tτ,λ.

Proof. If 0 is an eigenvalue of Tτ,λ, that is, there exists some ψ = (ψ1, ψ2)T ∈ X2
C \ {(0, 0)T}

such that
∆(λ, 0, τ)ψ = 0. (3.4)

Note that ∆(λ∗, 0, τ) =
(

L 0
0 L

)
and N (L) = span{ϕ}. We let that ψ takes the form{

ψ1 = p1ϕ + (λ− λ∗)q1(x),

ψ2 = p2ϕ + (λ− λ∗)q2(x),
(3.5)

where p1, p2 ∈ R, q1(x), q2(x) ∈ X1. Then substituting (3.5) into (3.4) and let λ = λ∗, by
calculation, we have{

Lq1+[m(x)eam(x)ϕ−λ∗e2am(x)(b1αλ∗+c1βλ∗)ϕ2]p1−λ∗e2am(x)αλ∗ϕ
2(b1 p1+c1 p2)= 0,

Lq2+[m(x)eam(x)ϕ−λ∗e2am(x)(b2αλ∗+c2βλ∗)ϕ2]p2−λ∗e2am(x)βλ∗ϕ
2(b2 p1+c2 p2)= 0.

(3.6)

By (2.5), (3.6) becomes{
L(q1 − ξλ∗ p1)− λ∗e2am(x)αλ∗ϕ

2(b1 p1 + c1 p2) = 0,

L(q2 − ηλ∗ p2)− λ∗e2am(x)βλ∗ϕ
2(b2 p1 + c2 p2) = 0.

(3.7)

Multiplying both sides of each equation in (3.7) by ϕ and integrating on Ω, we have{
b1 p1 + c1 p2 = 0,

b2 p1 + c2 p2 = 0.
(3.8)

By the condition (H1), we have b1c2 − b2c1 6= 0. So we get p1 = p2 = 0 from (3.8). By (3.6), we
get q1 = q2 = 0. Then ψ1 = 0, ψ2 = 0. The Lemma 3.1 is now proved.

We will show that the eigenvalues of Tτ,λ could pass through the imaginary axis when
time delay τ increases. It is obvious that Tτ,λ has an imaginary eigenvalue µ = iω (ω 6= 0) for
some τ ≥ 0 if and only if

m(λ, ω, θ)ψ = ∆(λ, ω, θ)ψ = Aλψ− Bλψe−iθ − iωψ = 0 (3.9)

is solvable for some ω > 0, θ ∈ [0, 2π), τ = θ+2nπ
ω , n ∈ N0 = {0, 1, 2, . . . } and ψ = (ψ1, ψ2)T ∈

X2
C \ {(0, 0)T}.
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Lemma 3.2. If (ω, θ, ψ) ∈ (0, ∞)× [0, 2π)× (X2
C \ {(0, 0)T}) solves (3.9), then ω

λ−λ∗
is bounded

for λ ∈ Λ.

Proof. Assume that (ω, θ, ψ) ∈ (0, ∞)× [0, 2π)× (X2
C \ {(0, 0)T}) satisfy the following equation

〈Aλψ− Bλψe−iθ − iωψ, ψ〉 = 0. (3.10)

Separating the real and imaginary parts of system (3.10), we obtain

ω〈ψ, ψ〉 = sin θ〈Bλψ, ψ〉.

|ω|
|λ− λ∗|

= λeam(x)| sin θ|

∣∣∣〈( αλ[ϕ+(λ−λ∗)ξλ(x)](b1ψ1+c1ψ2)
βλ[ϕ+(λ−λ∗)ηλ(x)](b2ψ1+c2ψ2)

)
, ψ
〉∣∣∣

〈ψ, ψ〉
≤ (λ∗ + δ)ea maxx∈Ω m(x) max{M, N}max{|b1|, |c1|, |b2|, |c2|}.

where M = maxλ∈Λ{|αλ|[‖ϕ‖∞ + (λ + λ∗)‖ξλ(x)‖∞]},
N = maxλ∈Λ{|βλ|[‖ϕ‖∞ + (λ + λ∗)‖ηλ(x)‖∞]}. The boundedness of ω

λ−λ∗
follows from

the continuity of λ 7→ (αλ, βλ, ‖ξλ(x)‖∞, ‖ηλ(x)‖∞). The Lemma 3.2 is now proved.

Note that X = N (L)⊕ X1. If (ω, θ, ψ) satisfies (3.9), let ψ = (ψ1, ψ2)T ∈ X2
C \ {(0, 0)T} can

be represented as {
ψ1 = p1ϕ + (λ− λ∗)q1(x),

ψ2 = p2ϕ + (λ− λ∗)q2(x),
(3.11)

where p1, p2 ∈ R, q1(x), q2(x) ∈ X1. Let

G(q1, q2, p1, p2, h, θ, λ)ψ =
m(λ, (λ− λ∗)h, θ)

λ− λ∗
ψ = 0, (3.12)

where m(λ, ω, θ) is defined as in (3.9).
Obviously, we have

G(q1, q2, p1, p2, h, θ, λ∗)ψ = 0,

that is {
L(q1 − ξλ∗ p1)− λ∗e2am(x)αλ∗ϕ

2(b1 p1 + c1 p2)e−iθ − ihϕeam(x)p1 = 0,

L(q2 − ηλ∗ p2)− λ∗e2am(x)βλ∗ϕ
2(b2 p1 + c2 p2)e−iθ − ihϕeam(x)p2 = 0.

(3.13)

Multiplying both sides of each equation in (3.13) by ϕ and integrating on Ω, we have

− λ∗d2e−iθ Mp = ihp, (3.14)

where p = (p1, p2)T, d2 =
∫

Ω e2am(x)ϕ3dx∫
Ω eam(x)ϕ2dx

> 0, M =
(

αλ∗ b1 αλ∗ c1
βλ∗ b2 βλ∗ c2

)
.

Separating the real and imaginary parts of (3.14), we get{
λ∗d2 sin θMp = hp,

λ∗d2 cos θMp = 0.
(3.15)

It is easy to obtain the following lemma.
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Lemma 3.3.

(1) When θ = π
2 in (3.15), λ∗d2M has two real eigenvalues h1 = λ∗d1d2, h2 = λ∗d1d2

(c2−c1)(b1−b2)
b1c2−b2c1

,
and (c2 − c1, b1 − b2)T and (−c1, b2)T are two eigenvectors associated with eigenvalues h1 and
h2, respectively.

(2) When θ= 3π
2 in (3.15),−λ∗d2M has two real eigenvalues h1=−λ∗d1d2, h2=−λ∗d1d2

(c2−c1)(b1−b2)
b1c2−b2c1

,
and (c2 − c1, b1 − b2)T and (−c1, b2)T are two eigenvectors associated with eigenvalues h1 and
h2, respectively.

For each j = 1, 2, set

hj
λ∗ =

{
|hj|, if λ > λ∗,

−|hj|, if λ < λ∗,
(3.16)

which satisfies ω
j
λ∗ = (λ− λ∗)h

j
λ∗ > 0, and their corresponding eigenvectors{

(p1
1λ∗, p1

2λ∗)
T = (c2 − c1, b1 − b2)T, if h1

λ∗ = |h1|,
(p2

1λ∗, p2
2λ∗)

T = (−c1, b2)T, if h2
λ∗ = |h2|,

(3.17)

{
(p1

1λ∗, p1
2λ∗)

T = (c2 − c1, b1 − b2)T, if h1
λ∗ = −|h1|,

(p2
1λ∗, p2

2λ∗)
T = (−c1, b2)T, if h2

λ∗ = −|h2|.
(3.18)

And set

θ
j
λ∗ =

{
π
2 , if λ > λ∗,
3π
2 , if λ > λ∗,

(3.19)

which satisfies −e−iθ j
λ∗hj

λ∗ = ihj
λ∗.

Thus, qj
1λ∗, qj

2λ∗ ∈ X1 is the unique solution of the following equationsL(qj
1 − ξλ∗ p

j
1λ∗)− λ∗e2am(x)αλ∗φ

2(b1 pj
1λ∗ + c1 pj

2λ∗)e
−iθ j

λ∗ − ihj
λ∗φeam(x)pj

1λ∗ = 0,

L(qj
2 − ηλ∗ p

j
2λ∗)− λ∗e2am(x)βλ∗φ

2(b2 pj
1λ∗ + c2 pj

2λ∗)e
−iθ j

λ∗ − ihj
λ∗φeam(x)pj

2λ∗ = 0,
(3.20)

Remark 3.4.

(1) When v = 0, b1 = 1 in (1.4), h1 in Lemma 3.3 (1) is the same as hλ∗ in (2.20) in [8].

(2) When a1 = 0 in (1.4), h1, h2 in Lemma 3.3 (1) are the same as that in Lemma 3.4 (i) in
[15].

Then we get the following lemma.

Lemma 3.5. Assume that (H1) holds. For j = 1, 2, the following equation{
G(qj

1, qj
2, pj

1, pj
2, θ j, hj, λ∗) = 0,

qj
1, qj

2 ∈ X1, pj
1, pj

2, hj ∈ R, θ j ∈ [0, 2π]
(3.21)

has a unique solution (qj
1λ∗

, qj
2λ∗

, pj
1λ∗

, pj
2λ∗

, θ
j
λ∗

, hj
λ∗
), see (3.16)–(3.20).

Theorem 3.6. Assume that (H1) holds. Then for j = 1, 2, there exist a constant δ > 0 and
a continuously differentiable mapping which defined by λ → (qj

1λ, qj
2λ, pj

1λ, pj
2λ, θ

j
λ, hj

λ) from Λ to
X2

1 ×R2 ×R+ ×R such that G(qj
1λ, qj

2λ, pj
1λ, pj

2λ, θ
j
λ, hj

λ, λ) = 0.
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Proof. Let G = (g1, g2, g3, g4, g5, g6) be defined as the following:

g1 = m(λ, (λ− λ∗)h
j
λ, θ

j
λ)q

j
1λ + m(x)eam(x)ϕpj

1λ

− λeam(x)ϕ[αλb1(ϕ + (λ− λ∗)ξ) + βλc1(ϕ + (λ− λ∗)ξ)]p
j
1λ

+ λϕαλeam(x)(ϕ + (λ− λ∗)ξ)(b1 pj
1λ + c1 pj

2λ)e
−iθ j

λ − ihj
λ ϕpj

1λ = 0,

g2 = m(λ, (λ− λ∗)h
j
λ, θ

j
λ)q

j
2λ + m(x)eam(x)ϕpj

2λ

− λeam(x)ϕ[αλb2(ϕ + (λ− λ∗)ξ) + βλc2(ϕ + (λ− λ∗)ξ)]p
j
2λ

+ λϕαλeam(x)(ϕ + (λ− λ∗)ξ)(b2 pj
1λ + c2 pj

2λ)e
−iθ j

λ − ihj
λ ϕpj

2λ = 0,

g3 = Re〈ϕ, qj
1λ〉 = 0, g4 = Im〈ϕ, qj

1λ〉 = 0,

g5 = Re〈ϕ, qj
2λ〉 = 0, g6 = Im〈ϕ, qj

2λ〉 = 0.

The Fréchet derivative of G at (qj
1λ∗

, qj
2λ∗

, pj
1λ∗

, pj
2λ∗

, θ
j
λ∗

, hj
λ∗

, λ∗) is

∂G(qj
1λ∗

, qj
2λ∗

, pj
1λ∗

, pj
2λ∗

, θ
j
λ∗

, hj
λ∗

, λ∗)

∂(qj
1λ, qj

2λ, pj
1λ, pj

2λ, θ
j
λ, hj

λ)



q̂j
1λ

q̂j
2λ

p̂j
1λ

p̂j
2λ

θ̂
j
λ

ĥj
λ


=



e−am(x)Lq̂j
1λ + g̃1 p̂j

1λ + g̃2 p̂j
2λ + g̃3θ̂

j
λ + g̃4ĥj

λ

e−am(x)Lq̂j
2λ + g̃5 p̂j

1λ + g̃6 p̂j
2λ + g̃7θ̂

j
λ + g̃8ĥj

λ

Re〈ϕ, q̂j
1λ〉

Im〈ϕ, q̂j
1λ〉

Re〈ϕ, q̂j
2λ〉

Im〈ϕ, q̂j
2λ〉


,

where
g̃1 = m(x)eam(x)ϕ− λ∗eam(x)(αλ∗b1 + βλ∗c1)ϕ2 − λ∗αλ∗e

am(x)b1e−iθ j
λ∗ − ihj

λ∗
ϕ,

g̃2 = −λ∗αλ∗e
am(x)c1e−iθ j

λ∗ , g̃3 = −iθ j
λ∗

λ∗ϕ2αλ∗(b1 pj
1λ∗

+ b2 pj
2λ∗

)e−iθ j
λ∗ , g̃4 = −iϕpj

1λ∗
,

g̃5 = m(x)eam(x)ϕ− λ∗eam(x)(αλ∗b2 + βλ∗c2)ϕ2 − λ∗αλ∗e
am(x)b2e−iθ j

λ∗ − ihj
λ∗

ϕ,

g̃6 = −λ∗αλ∗e
am(x)c2e−iθ j

λ∗ , g̃7 = −iθ j
λ∗

λ∗ϕ2αλ∗(b1 p1λ∗ + b2 p2λ∗)e
−iθ j

λ∗ , g̃8 = −iϕpj
2λ∗

.

It is clear that the derivative operator

∂G(qj
1λ∗

, qj
2λ∗

, pj
1λ∗

, pj
2λ∗

, θ
j
λ∗

, hj
λ∗

, λ∗)

∂(qj
1λ, qj

2λ, pj
1λ, pj

2λ, θ
j
λ, hj

λ)

is bijective. By using the implicit function theorem we know that there exist a constant δ > 0
and a continuously differentiable mapping which defined by λ → (qj

1λ, qj
2λ, pj

1λ, pj
2λ, θ

j
λ, hj

λ),
from from Λ to X2

1 ×R2 ×R+ ×R such that G(qj
1λ, qj

2λ, pj
1λ, pj

2λ, θ
j
λ, hj

λ, λ) = 0. The proof of
Theorem 3.6 is complete.

From Theorem 3.6, we derive the following result.

Theorem 3.7. Assume that (H1) holds. For j = 1, 2, λ ∈ Λ and n ∈N0, let

τ
j
n =

θ
j
1λ + 2nπ

ω
j
λ

, ω
j
λ = (λ− λ∗)h

j
λ,
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and ψ
j
λ = (ψ

j
1λ, ψ

j
2λ)

T, {
ψ

j
1λ = pj

1λ ϕ + (λ− λ∗)q
j
1λ(x),

ψ
j
2λ = pj

2λ ϕ + (λ− λ∗)q
j
2λ(x),

(3.22)

where qj
1λ, qj

2λ, pj
1λ, pj

2λ, θ
j
λ, hj

λ are defined as in Theorem 3.6. Then

(1) T
τ

j
n,λ

has a pair of purely imaginary eigenvalues ±iω j
λ;

(2) T
τ

j
n,λ

eiω j
λ ψj = iω j

λeiω j
λ ψ

j
λ, T

τ
j
n,λ

e−iω j
λ ψ

j
= −iω j

λe−iω j
λ ψ

j
λ.

Now, we give some estimates to prove the simplicity of iω j
λ. The proof of the following

Lemmas 3.8–3.10 is similar to [14]. For the sake of the integrity of the article, we are going to
prove them again.

Lemma 3.8. Assume that (H1) holds. For j = 1, 2, λ ∈ Λ and n ∈N0, we have

Sj
n = 〈ψj

λ, ψ
j
λ − τ

j
ne−iθ j

λ Bλψ
j
λ〉 6= 0, (3.23)

where ψ
j
λ, τ

j
n and θ

j
λ are defined as in Theorem 3.7.

Proof. It is easy to obtain that

Re {Sj
n} = 〈ψλ, (ψλ − τ

j
ne−iθ j

λ Bλψλ)〉 → [(pj
1λ∗

)2 + (pj
2λ∗

)2] 6= 0, as λ→ λ∗,

where using
∫

Ω ϕ2dx = 1 in Section 1.

Lemma 3.9. Assume that (H1) holds. For j = 1, 2, λ ∈ Λ and n ∈ N0, iω j
λ is a simple eigenvalue of

T
τ

j
n,λ

.

Proof. It follows from Theorem 3.7 that N [T
τ

j
n,λ
− iω j

λ] = span[ψj
λeiω j

λ(·)]. If ψ̃∈N [T
τ

j
n,λ
− iω j

λ]
2,

that is
(T

τ
j
n,λ
− iω j

λ)
2ψ̃ = 0,

then
(T

τ
j
n,λ
− iω j

λ)ψ̃ ∈ N [T
τ

j
n,λ
− iω j

λ] = span[ψj
λeiω j

λ(·)].

We assume that a constant ρ satisfies

(T
τ

j
n,λ
− iω j

λ)ψ̃ = ρψ
j
λeiω j

λ(·),

which leads to {
ψ̃′(s) = iω j

λψ̃(s) + ρψ
j
λeiω j

λs, s ∈ [−τ
j
n, 0),

ψ̃′(0) = Aλψ̃(0)− Bλψ̃(−τ
j
n).

(3.24)

From the first equation of (3.24), we have{
ψ̃(s) = ψ̃(0)eiω j

λs + ρsψ
j
λeiω j

λs, s ∈ [−τ
j
n, 0),

ψ̃′(0) = iω j
λψ̃(0) + ρψ

j
λ.

(3.25)
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Eq. (3.24) and Eq. (3.25) imply that{
Aλψ̃(0)− Bλψ̃(−τ

j
n) = iω j

λψ̃(0) + ρψ
j
λ,

ψ̃(−τ
j
n) = ψ̃(0)e−iω j

λτ
j
n − τ

j
nρψ

j
λe−iω j

λτ
j
n .

(3.26)

Then we have

∆(λ, iω j
λ, τ

j
n)ψ̃(0) = (Aλ − iω j

λ)ψ̃(0)− Bλψ̃(0)e−iθ j
λ

= ρ(ψ
j
λ − τ

j
ne−iθ j

λ Bλψ
j
λ).

Since ∆(λ, iω j
λ, τ

j
n)ψ

j
λ = 0, so

∆(λ,−iω j
λ, τ

j
n)ψ

j
λ = 0. (3.27)

Then

0 = 〈∆(λ,−iω j
λ, τ

j
n)ψ

j
λ, ψ̃(0)〉 = 〈ψj

λ, ∆(λ, iω j
λ, τ

j
n)ψ̃(0)〉 = ρ〈ψj

λ, (ψj
λ − τ

j
ne−iθ j

λ Bλψ
j
λ)〉.

As a consequence of Lemma 3.8, we have ρ = 0 and (T
τ

j
n,λ
− iω j

λ)ψ̃ = 0, that is ψ̃ ∈
N [T

τ
j
n,λ
− iω j

λ]. By induction, we obtain

N ([T
τ

j
n,λ
− iω j

λ]
s) = N [T

τ
j
n,λ
− iω j

λ]

for all s ∈ {1, 2, 3, . . . }. Hence, iω j
λ is a simple eigenvalue of T

τ
j
n,λ

.

Note that µ = iω j
λ is a simple eigenvalue of T

τ
j
n,λ

. It follows from the implicit function

theorem that there are a neighborhood On On ×Dn × Hn ⊂ R×C× XC of (τ j
n, iω j

λ, ψ
j
λ) and a

continuously differential function (µ(τ), ψ(τ)) : On → Dn × Hn such that for each τ ∈ On, the
only eigenvalue of Tτ,λ in Dn is µ(τ), and the following equality holds

∆(λ, µ(τ), τ)ψ(τ) = Aλψ(τ)− e−µ(τ)τBλψ(τ)− µ(τ)ψ(τ) = 0. (3.28)

Moreover, µ(τ
j
n) = iω j

λ and ψ(τ
j
n) = ψ

j
λ. Then we have the following transversality condition,

see [21].

Lemma 3.10. Assume that (H1) holds. For j = 1, 2, λ ∈ Λ and n ∈ N0, assume that µ(τ) is the
eigenvalue of Tτ,λ, then

d Re{µ(τ)}
dτ

∣∣∣∣
τ=τ

j
n

> 0.

Proof. Differentiating Eq. (3.28) with respect to τ at τ = τ
j
n, we have

∆(λ, iω j
λ, τ

j
n)

dψ
j
λ(τ

j
n)

dτ
+ [τ

j
ne−iθ j

λ Bλψ
j
λ − ψ

j
λ]

dµ(τ
j
n)

dτ
+ iω j

λe−iθ j
λ Bλψ

j
λ = 0. (3.29)

By (3.27), we get〈
ψ

j
λ, ∆(λ, iω j

λ, τ
j
n)

dψ
j
λ(τ

j
n)

dτ

〉
=

〈
∆(λ,−iω j

λ, τ
j
n)ψ

j
λ,

dψ
j
λ(τ

j
n)

dτ

〉
= 0. (3.30)
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Calculating the inner product with ψ
j
λ in Eq. (3.29) and using Eq. (3.30), we have

Sj
n

dµ(τ
j
n)

dτ
= 〈ψj

λ, iω j
λe−iθ j

λ Bλψ
j
λ〉,

where Sj
n is defined as in Lemma 3.8. Then we have

dµ(τ
j
n)

dτ
=

I1 + I2

(Sj
n)2

,

where
I1 = 〈ψj

λ, ψ
j
λ〉〈ψ

j
λ, iω j

λe−iθ j
λ Bλψ

j
λ〉, I2 = iω j

λτ
j
n|〈ψ

j
λ, Bλψ

j
λ〉|

2.

Hence, it is clear that
dRe{µ(τ)}

dτ

∣∣∣∣
τ=τ

j
n

= Re
I1

|Sj
n|2

.

In fact,
〈ψj

λ, ψ
j
λ〉 → [(pj

1λ∗
)2 + (pj

2λ∗
)2], as λ→ λ∗,

and
1

(λ− λ∗)2 〈ψ
j
λ, iω j

λe−iθ j
λ Bλψ

j
λ〉 → (hj

λ∗
)2, as λ→ λ∗.

Therefore, for δ enough small, we have d Re{µ(τ)}
dτ |

τ=τ
j
n
> 0.

From above analysis, we obtain that a pair of purely imaginary eigenvalues will occur as
τ passes τ = τ

j
n. The proof of Lemma 3.10 is complete.

From Lemmas 3.8–3.10, we have the result on the distribution of eigenvalues of Tτ,λ.

Theorem 3.11. Assume that (H1) holds. For j = 1, 2, λ ∈ Λ and n ∈N0, the infinitesimal generator
Tτ,λ has exactly 2(n + 1) eigenvalues with positive real parts when τ ∈ (τ

j
n, τ

j
n+1).

4 Stability analysis

In this section, we study the stability of the steady state solutions (uλ, vλ) of (1.5) by regarding
the delay τ as a parameter. We first investigate the stability of when τ = 0, and then discuss
the stability and bifurcation when τ 6= 0. We need the following condition (H2).

(H2) b1c2 − b2c1 > 0.

Theorem 4.1. Assume (H1)–(H2) hold. For λ ∈ (λ∗, λ∗+ δ) (respectively, λ ∈ (λ∗− δ, λ∗), then all
eigenvalues of T0,λ have negative (respectively, positive) real parts, and hence the steady state solution
(uλ, vλ)

T of (1.5) with τ = 0 is locally asymptotically stable (respectively, unstable).

Proof. When τ = 0, the eigenvalue problem (3.3) reduces to

∆(λ, µ, 0)ψ = Aλψ− Bλψ = µψ. (4.1)

with ψ = (ψ1, ψ2)T ∈ X2
C \ {(0, 0)T}. We suppose that{

ψ1 = p1ϕ + (λ− λ∗)q1(x),

ψ2 = p2ϕ + (λ− λ∗)q2(x),
(4.2)
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where p1, p2 ∈ R, q1(x), q2(x) ∈ X1. Then substituting (4.2) into (4.1) and let λ → λ∗, by
calculation, we have

Lq1 + [m(x)eam(x)ϕ− λ∗e2am(x)(b1αλ∗ + c1βλ∗)ϕ2]p1

− λ∗e2am(x)αλ∗ϕ
2(b1 p1 + c1 p2) = µ̃eam(x)ϕp1,

Lq2 + [m(x)eam(x)ϕ− λ∗e2am(x)(b2αλ∗ + c2βλ∗)ϕ2]p2

− λ∗e2am(x)βλ∗ϕ
2(b2 p1 + c2 p2) = µ̃eam(x)ϕp2,

(4.3)

where µ̃ = limλ→λ∗
µ

λ−λ∗
. By (2.5), (4.3) becomes{

L(q1 − ξλ∗ p1)− λ∗e2am(x)αλ∗ϕ
2(b1 p1 + c1 p2) = µ̃ϕp1,

L(q2 − ηλ∗ p2)− λ∗e2am(x)βλ∗ϕ
2(b2 p1 + c2 p2) = µ̃ϕp2.

(4.4)

Multiplying both sides of each equation in (4.4) by ϕ and integrating on Ω, we have{
λ∗d2αλ∗(b1 p1 + c1 p2) + µ̃p1 = 0,

λ∗d2βλ∗(b2 p1 + c2 p2) + µ̃p2 = 0.
(4.5)

Thus, we get that the eigenvalue equation of µ̃

µ̃2 + λ∗d2(αλ∗b1 + βλ∗c2)µ̃ + λ2
∗d

2
2αλ∗βλ∗(b1c2 − b2c1) = 0. (4.6)

By (H2), we have that the eigenvalue of (4.6) µ̃1, µ̃2 < 0. Then the conclusion of Theorem 4.1
is obtained.

Theorem 4.2. Assume (H1)–(H2) hold. For j = 1, 2, λ ∈ Λ, n ∈N0, then

(1) the steady state solution (uλ, vλ)
T of (1.5) is locally asymptotically stable when τ ∈ [0, τ0),

where τ0 = min{τ1
0 , τ2

0 };

(2) the system (1.5) undergoes a Hopf bifurcation at the steady state solution (uλ, vλ)
T when τ = τ

j
n,

i.e., system (1.5) has a branch of periodic solutions bifurcating from the steady state solution
(uλ, vλ)

T near τ = τ
j
n.

5 Direction of Hopf bifurcation

From the analysis of section 4, we obtained conditions for Hopf bifurcation to occur when
τ = τ

j
n (j = 1, 2, n ∈ N0). In this section,we shall derive the explicit formulae determining

the direction, stability, and period of these periodic solutions bifurcating from the equilibrium
(uλ, vλ)

T at τ = τ
j
n (j = 1, 2, n ∈ N0), by using techniques from normal form and center

manifold theory [9, 12, 14, 19, 33].
Let (uλ, vλ)

T is a spatially nonhomogeneous steady-state solution of (1.5). Let

ũ(t) = u(·, τt)− uλ, ṽ(t) = v(·, τt)− vλ.

For the simple, let U(t) = (u(t), v(t))T = (ũ(t), ṽ(t))T, then system (1.5) can be written as
follows:

dU(t)
dt

= τL0(Ut)− τL1(Ut) + f (Ut, τ), (5.1)



14 Q. Meng, G. R. Liu and Z. Jin

where Ut ∈ C = C1([−1, 0], Y2), and

L0(U(t)) =
(

e−am(x)∇ · [eam(x)∇u] + λu(t)[m(x)− b1eam(x)uλ − c1eam(x)vλ]

e−am(x)∇ · [eam(x)∇v] + λv(t)[m(x)− b2eam(x)uλ − c2eam(x)vλ]

)
, (5.2)

L1(Ut) =

(
λeam(x)uλ[b1u(t− 1) + c1v(t− 1)]
λeam(x)vλ[b2u(t− 1) + c2v(t− 1)]

)
, (5.3)

f (Ut, τ) =

(
−τλeam(x)[b1u(t)u(t− 1) + c1u(t)v(t− 1)]
−τλeam(x)[b2v(t)u(t− 1) + c2v(t)v(t− 1)]

)
. (5.4)

Let τ = τ
j
n + ε, then (5.1) can be rewritten as

dU(t)
dt

= τ
j
nL0(U(t))− τ

j
nL1(Ut) + F(Ut, ε), (5.5)

where
F(Ut, ε) = εL0(U(t))− εL1(Ut) + f (Ut, τ

j
n + ε). (5.6)

From the previous discussion, it is clear that when ε = 0 (i.e., τ = τ
j
n) system (5.5) under-

goes Hopf bifurcation at the equilibrium (0,0).
It follows from [14, 33] that

T
τ

j
n
ψ = ψ̇, (5.7)

and the domain

D(T
τ

j
n
) = {ψ ∈ CC ∩ C1

C : ψ(0) ∈ XC, ψ̇(0) = τ
j
nL0ψ(0)− τ

j
nL1ψ(−1)},

where
CC = C([−1, 0], Y2

C), C1
C = C1([−1, 0], Y2

C).

We can compute the formal adjoint operator T∗
τ

j
n

of T
τ

j
n

with respect to the formal duality,

T∗
τ

j
n
φ = −φ̇, (5.8)

and the domain

D(T∗
τ

j
n
) = {φ ∈ C∗C ∩ (C∗C)1 : φ(0) ∈ XC, −φ̇(0) = τ

j
nL0φ(0)− τ

j
nL1φ(1)},

where
C∗C = C([0, 1], Y2

C), (C∗C)1 = C1([0, 1], Y2
C).

Following [30], we introduce the formal duality 〈〈·, ·〉〉 in CC × C∗C by

〈〈φ, ψ〉〉 = 〈φ(0), ψ(0)〉1 − τ
j
n

∫ 0

−1
〈φ(s + 1), L1ψ(s)〉1ds, (5.9)

for ψ ∈ CC and φ ∈ C∗C, where 〈ψ, φ〉1 =
∫

Ω eam(x)ψ̄Tφdx, see [8].

Lemma 5.1. T
τ

j
n

and T∗
τ

j
n

are adjoint operators, that is

〈〈φ, T
τ

j
n
ψ〉〉 = 〈〈T∗

τ
j
n
φ, ψ〉〉,

for ψ ∈ CC, φ ∈ C∗C.
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Proof. It follows from (5.9) and the definition of T
τ

j
n
, T∗

τ
j
n

that,

〈〈φ, T
τ

j
n
ψ〉〉 = 〈φ(0), T

τ
j
n
ψ(0)〉1 − τ

j
n

∫ 0

−1
〈φ(s + 1), L1ψ̇(s)〉1ds

= 〈φ(0), τ
j
nL0ψ(0)− τ

j
nL1ψ(−1)〉1 − τ

j
n[〈φ(s + 1), L1ψ(s)〉1]0−1

+ τ
j
n

∫ 0

−1
〈φ̇(s + 1), L1ψ(s)〉1ds

= 〈T∗
τ

j
n
φ(0), ψ(0)〉1 + τ

j
n

∫ 0

−1
〈−φ̇(s + 1), L1ψ(s)〉1ds

= 〈〈T∗
τ

j
n
φ, ψ〉〉.

The proof of Lemma 5.1 is complete.

From Theorem 3.7 and Lemma 5.1, we have that ±iω j
λτ

j
n are the eigenvalues of T

τ
j
n
, and

they are the eigenvalues of T∗
τ

j
n
. The vectors p(θ) = eiω j

λτ
j
nθψ

j
λ (θ ∈ [−1, 0]) and q(s) =

eiω j
λτ

j
nsψ

j
λ (s ∈ [0, 1]) satisfy

T
τ

j
n
p = iω j

λτ
j
n p, and T∗

τ
j
n
q = iω j

λτ
j
nq,

respectively. Let

Φ = (p(θ), p̄(θ))T, Ψ = (
q(s)

R̄j
n

,
q̄(s)

Rj
n
)T,

Rj
n = 〈ψj

λ, ψ
j
λ − τ

j
ne−iθ j

λ Bλψ
j
λ〉1.

and Re{Rj
n} = 〈ψλ, (ψλ − τ

j
ne−iθ j

λ Bλψλ)〉1 → [(pj
1λ∗

)2 + (pj
2λ∗

)2]
∫

Ω eam(x)ϕ2dx 6= 0, as λ → λ∗.
One can easily check that 〈〈Ψ, Φ〉〉 = I, where I is the identity matrix in R2×2. Moreover, can
be decomposed as CC = P⊕Q, where

P = span{p(θ), p̄(θ)}, P∗ = span{q(s), q̄(s)},

Q = {ψ̃ ∈ CC : 〈〈ψ̃, ψ〉〉 = 0, for all ψ̃ ∈ P∗}.

By (5.7), system (5.5) can be transformed into the following

dUt

dt
= T

τ
j
n
Ut + X0F(Ut, ε), (5.10)

where

X0(θ) =

{
0, θ ∈ [−1, 0),

1, θ = 0.
(5.11)

Let Ut be the solution of system (5.10) with ε = 0 and set

z(t) =
1

Rj
n
〈〈q(s), Ut〉〉, (5.12)

then
z̄(t) =

1

R̄j
n
〈〈q̄(s), Ut〉〉. (5.13)
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Let

W(z, z̄, θ) = W j
20(θ)

z2

2
+ W j

11(θ)zz̄ + W j
02(θ)

z̄2

2
+ · · · (5.14)

be the center manifold with the range in Q, and the flow of Eq. (5.10) on center manifold can
be written as

Ut = W(z, z̄, θ) + p(θ)z(t) + p̄(θ)z̄(t). (5.15)

From (5.12) and (5.10), we have that

ż(t) =
1

Rj
n

d
dt
〈〈q(s), Ut〉〉

=
1

Rj
n
〈〈q, T

τ
j
n
Ut〉+

1

Rj
n
〈〈q(s), X0F(Ut, 0)〉〉

=
1

Rj
n
〈〈T∗

τ
j
n
q, Ut〉+

1

Rj
n
〈q(0), F(Ut, 0)〉1

= iwj
λτ

j
nz(t) +

1

Rj
n
〈q(0), F(W(z, z̄, θ) + p(θ)z(t) + p̄(θ)z̄(t), 0)〉1

= iwj
λτ

j
nz(t) + g(z, z̄),

(5.16)

where
g(z, z̄) =

1

Rj
n
〈q(0), F(W(z, z̄, θ) + p(θ)z(t) + p̄(θ)z̄(t), 0)〉1.

From (5.15), we get

Ut(0) = ψ
j
λz + ψ

j
λ z̄ + W j

20(0)
z2

2
+ W j

11(0)zz̄ + W j
02(0)

z̄2

2
+ · · ·,

Ut(−1) = ψ
j
λze−iwj

λτ
j
n + ψ

j
λ z̄eeiwj

λ
τ

j
n
+ W j

20(−1)
z2

2
+ W j

11(−1)zz̄ + W j
02(−1)

z̄2

2
+ · · ·.

From the above three equalities, we get

g(z, z̄) = −λτ
j
n

Rj
n

∫
Ω

e2am(x)(ψ
j
λ)

T(U(0)× CU(−1))dx = gj
20

z2

2
+ gj

11zz̄ + gj
02

z̄2

2
+ gj

21
z2z̄
2

+ · · ·,

where

C =

(
b1 c1

b2 c2

)
and

(
a
b

)
×
(

c
d

)
=

(
ac
bd

)
.

Thus we get

gj
20 = − 2λτ

j
n

Rj
n

e−iwj
λτ

j
n

∫
Ω

e2am(x)(ψ
j
λ)

T(ψ
j
λ × Cψ

j
λ)dx,

gj
11 = − λτ

j
n

Rj
n

[
eiwj

λτ
j
n

∫
Ω

e2am(x)(ψ
j
λ)

T(ψ
j
λ × Cψ

j
λ)dx + e−iwj

λτ
j
n

∫
Ω

e2am(x)(ψ
j
λ)

T(ψ
j
λ × Cψ

j
λ)dx

]
gj

02 = − 2λτ
j
n

Rj
n

eiwj
λτ

j
n

∫
Ω

e2am(x)(ψ
j
λ)

T(ψ
j
λ × Cψ

j
λ)dx,

gj
21 = − 2λτ

j
n

Rj
n

∫
Ω

e2am(x)[eiwj
λτ

j
n(ψ

j
λ)

T(W j
20(0)× Cψ

j
λ) + (ψ

j
λ)

T(ψ
j
λ × CW j

20(−1))]dx

− 2λτ
j
n

Rj
n

∫
Ω

e2am(x)[e−iwj
λτ

j
n(ψ

j
λ)

T(W j
11(0)× Cψ

j
λ) + (ψ

j
λ)

T(ψ
j
λ × CW j

11(−1))]dx.
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Similarly, by (5.16), we have

˙̄z(t) = −iwj
λτ

j
n z̄(t) + ḡ(z, z̄) = −iwj

λτ
j
n z̄(t) + ḡj

20
z2

2
+ ḡj

11zz̄ + ḡj
02

z̄2

2
+ ḡj

21
z2z̄
2

+ · · · (5.17)

From (5.15), we have

Ẇt(z, z̄, θ) =
dUt

dt
− p(θ)ż(t)− p̄(θ) ˙̄z(t)

= T
τ

j
n
Ut + X0F(Ut, 0)− p(θ)ż(t)− p̄(θ) ˙̄z(t)

= T
τ

j
n
W + T

τ
j
n
(p(θ)z(t) + p̄(θ)z̄(t)) + X0F(Ut, 0)− p(θ)ż(t)− p̄(θ) ˙̄z(t)

= T
τ

j
n
W + X0F(Ut, 0)− p(θ)g(z, z̄)− p̄(θ)ḡ(z, z̄)

= T
τ

j
n
W + H(z, z̄, θ),

(5.18)

where

H(z, z̄, θ) = X0F(Ut, 0)− p(θ)g(z, z̄)− p̄(θ)ḡ(z, z̄)

= H j
20(θ)

z2

2
+ H j

11(θ)zz̄ + H j
02(θ)

z̄2

2
+ · · ·

(5.19)

By using chain rule,

Ẇt =
∂W(z, z̄, θ)

∂z
ż +

∂W(z, z̄, θ)

∂z̄
˙̄z. (5.20)

It is from (5.18)–(5.20) and (5.15) that(2iwj
λτ

j
n − T

τ
j
n
)W j

20(θ) = H j
20(θ),

−T
τ

j
n
W j

11(θ) = H j
11(θ).

(5.21)

From (5.19), we get for θ ∈ [−1, 0),{
H j

20(θ) = −gj
20 p(θ)− ḡj

20 p̄(θ),

H j
11(θ) = −gj

11 p(θ)− ḡj
11 p̄(θ),

(5.22)

and for θ = 0,

H j
20(0) = −gj

20 p(0)− ḡj
20 p̄(0)− 2λτ

j
ne−iwj

λτ
j
n eam(x)(ψ

j
λ × Cψ

j
λ),

H j
11(0) = −gj

11 p(0)− ḡj
11 p̄(0)− λτ

j
ne2am(x)[eiwj

λτ
j
n(ψ

j
λ × Cψ

j
λ) + e−iwj

λτ
j
n(ψ

j
λ × Cψ

j
λ)].

It follows (5.21)-(5.22) and the definition of T
τ

j
n

that

(W j
20)
′(θ) = 2iwj

λτ
j
nW j

20(θ) + gj
20 p(θ) + ḡj

20 p̄(θ).

Hence,

W j
20(θ) =

igj
20

wj
λτ

j
n

pj(0)eiwj
λτ

j
nθ +

iḡj
20

3wj
λτ

j
n

p̄(0)e−iwj
λτ

j
nθ + Cj

1λe2iwj
λτ

j
nθ , (5.23)

where Cj
1λ ∈ R2 is a constant vector. From (5.22), we have that

T
τ

j
n
W j

20(0) = 2iwj
λτ

j
nW j

20(0)− H j
20(0). (5.24)
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From (5.23)–(5.25) and the definition of T
τ

j
n

in (5.7), we get that

(2iwj
λτ

j
n − T

τ
j
n
)C1e2iwj

λτ
j
nθ |θ=0 = −2λτ

j
ne−iwj

λτ
j
n eam(x)(ψ

j
λ × Cψ

j
λ),

or equivalently,

4(λ, 2iwj
λ, τ

j
n)C

j
1λ = 2λe−iwj

λτ
j
n eam(x)(ψ

j
λ × Cψ

j
λ). (5.25)

Note that 2iwj
λ is not the eigenvalue of T

τ
j
n

for λ ∈ Λ and hence

Cj
1λ = 2λe−iwj

λτ
j
n4(λ, 2iwj

λ, τ
j
n)
−1(eam(x)(ψ

j
λ × Cψ

j
λ)). (5.26)

Similarly, from (5.21)-(5.22) and the definition of T
τ

j
n
, we get that

(W j
11)
′(θ) = g11 p(θ) + ḡ11 p̄(θ).

Hence,

W j
11(θ) =

ig11

wj
λτ

j
n

p(0)eiwj
λτ

j
nθ +

iḡ11

3wj
λτ

j
n

p̄(0)e−iwj
λτ

j
nθ + Cj

2λ, (5.27)

where
Cj

2λ = λ(e−iwj
λτ

j
n + eiwj

λτ
j
n)4(λ, wj

λ, τ
j
n)
−1(eam(x)(ψ

j
λ × Cψ

j
λ)). (5.28)

Lemma 5.2. For j = 1, 2, λ ∈ Λ and n ∈ N0, Cj
1λ and Cj

2λ are defined in (5.26) and (5.27), then

Cj
1λ =

1
λ− λ∗

(cj
λUλ + η

j
λ), Cj

2λ =
1

λ− λ∗
ζ

j
λ, (5.29)

where Uλ = (uλ, vλ)
T,

〈Uλ, η
j
λ〉 = 0, lim

λ→λ∗
‖η j

λ‖Y2
C
= 0, lim

λ→λ∗
‖ζ j

λ‖Y2
C
= 0. (5.30)

Moreover,

lim
λ→λ∗

(λ− λ∗)c
j
λ =


2i

(2i−1)
(b1c2−b2c1)

2

d2
1

, j = 1,
2iαλ∗ βλ∗ (c

2
1+b2

2)(b1c2−b2c1)

d2
1(α

2
λ∗+β2

λ∗ )[2iαλ∗ βλ∗ (b1c2−b2c1)−1] , j = 2.
(5.31)

Proof. Since eam(x)AλUλ = 0. Substituting (5.29) into the equation eam(x)×(5.25), we obtain

eam(x)Aλη
j
λ − eam(x)Bλη

j
λe−2iwj

λτ
j
n − 2iω j

λeam(x)η
j
λ − cj

λBλUλeam(x)e−2iwj
λτ

j
n − 2iwj

λcj
λeam(x)Uλ

= 2λ(λ− λ∗)e−iwj
λτ

j
n e2am(x)(ψ

j
λ × Cψ

j
λ). (5.32)

Calculating the inner product of (5.32) with Uλ, we get

〈Uλ, eam(x)Bλη
j
λ〉e
−2iwj

λτ
j
n + cj

λ〈Uλ, eam(x)BλUλ〉e−2iwj
λτ

j
n + 2iwj

λcj
λ〈Uλ, eam(x)Uλ〉

= −2λ(λ− λ∗)e−iwj
λτ

j
n〈Uλ, e2am(x)(ψ

j
λ × Cψ

j
λ)〉. (5.33)

Then

(λ− λ∗)c
j
λ = −

2λ(λ− λ∗)2e−iwj
λτ

j
n〈Uλ, e2am(x)(ψ

j
λ × Cψ

j
λ)〉+ (λ− λ∗)〈Uλ, eam(x)Bληλ〉e−2iwj

λτ
j
n

〈Uλ, eam(x)BλUλ〉e−2iwj
λτ

j
n + 2iwj

λ〈Uλ, eam(x)Uλ〉
.
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Since

lim
λ→λ∗

(λ− λ∗)
−3〈Uλ, eam(x)BλUλ〉 = λ∗d1(α

2
λ∗ + β2

λ∗)
∫

Ω
e2am(x)ϕ3dx,

lim
λ→λ∗

(λ− λ∗)
−3wj

λ〈Uλ, eam(x)Uλ〉 =
{

λ∗d1(α
2
λ∗

+ β2
λ∗
)
∫

Ω e2am(x)ϕ3dx, j = 1,

λ∗d1(α
2
λ∗

+ β2
λ∗
) (c2−c1)(b1−b2)

b1c2−b2c1

∫
Ω e2am(x)ϕ3dx, j = 2,

lim
λ→λ∗

(λ− λ∗)
−1λ〈Uλ, e2am(x)(ψ

j
λ × Cψ

j
λ)〉

=

{
1
d1

λ∗(α2
λ∗

+ β2
λ∗
)(b1c2 − b2c1)

2
∫

Ω e2am(x)ϕ3dx, j = 1,
1
d1

λ∗αλ∗βλ∗(c
2
1 + b2

2)(b1c2 − b2c1)
∫

Ω e2am(x)ϕ3dx, j = 2.

Hence, there exist δ1 < δ, M0, M1 > 0 such that for any λ ∈ (λ− δ1, λ + δ1),

(λ− λ∗)c
j
λ ≤ M0‖η j

λ‖Y2
C
+ M1. (5.34)

Calculating the inner product of (5.32) with ηλ, we obtain

〈η j
λ, eam(x)Aλη

j
λ〉 − 〈η

j
λ, eam(x)Bλη

j
λ〉e
−2iwj

λτ
j
n

− 2iwj
λ〈η

j
λ, eam(x)η

j
λ〉 − cj

λ〈η
j
λ, eam(x)BλUλ〉e−2iwj

λτ
j
n

= 2λ(λ− λ∗)e−iwj
λτ

j
n〈η j

λ, e2am(x)(ψ
j
λ × Cψ

j
λ)〉.

(5.35)

From (5.35), it follows that there exist constants δ2 < δ1, M2, M3 > 0 such that for any λ ∈
(λ− δ2, λ + δ2),

λ2(λ)‖η j
λ‖

2
Y2

C

≤ (λ− λ∗)M2‖η j
λ‖

2
YC

+ (λ− λ∗)M3‖η j
λ‖YC

. (5.36)

Similar to the proof of Lemma 2.3 of [3], we have |〈eam(x)AλUλ, Uλ〉| ≥ |λ2(λ)|‖Uλ‖2
Y2

C

and

λ2(λ) is the second eigenvalue of eam(x)Aλ. Then we have limλ→λ∗ ‖ζ
j
λ‖Y2

C
= 0. From all, we

can obtain (5.31). This completes the proof of Lemma 5.2.

Remark 5.3.

(1) When v = 0, b1 = 1 in (1.4), (5.31) in Lemma 5.2 is as same as that in Lemma 3.2 in [8].

(2) When a1 = 0 in (1.4), (5.31) in Lemma 5.2 is as same as that [18, p. 106].

Therefore, one can easily check

lim
λ→λ∗

(λ− λ∗)gj
11 = 0, lim

λ→λ∗
Re[(λ− λ∗)

2gj
21] < 0.

It is well-known that the real part of the following quantity determines the direction and
stability of bifurcating periodic orbits (see [14, 19, 33]):

cj
1(0) =

i

2wj
λτ

j
n

(
gj

20gj
11 − 2|gj

11|
2 − 1

3
|gj

02|
2
)
+

1
2

gj
21.

It follows from (5.31) that limλ→λ∗ Re[(λ− λ∗)2cj
1(0)] < 0. Hence we have the following result.

Theorem 5.4. Assume (H1)–(H2) hold. Then for j = 1, 2, λ ∈ Λ and n ∈ N0, system (1.5) has a
branch of bifurcating periodic solutions emerging from the steady state solution (uλ, vλ)

T for τ near
τ

j
n. More precisely, the direction of the Hopf bifurcation at τ

j
n is forward and the bifurcating periodic

solution from τ
j
n have the same stability as the steady state solution (uλ, vλ)

T.
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6 Simulations

In this section, some numerical simulations for model (1.4) are given to illustrate the results
of Theorem 5.4.

In (1.4), choose
Ω = (0, π), m(x) = sin x,

d = 0.20, b1 = 0.04, b2 = 0.02, c1 = 0.03, c2 = 0.04.

and the initial value conditions:

u(x, t) = v(x, t) = sin x, for t ∈ [−r, 0].

Example 6.1. Model (1.4) without advection, that is a1 = 0.

(1) When r = 1, solutions of model (1.4) without advection tend to a positive steady state.
See Fig. 6.1.

(2) When r = 5, solutions of model (1.4) without advection tend to periodically oscillatory
orbit, that is, model (1.4) undergoes a Hopf bifurcation. See Fig. 6.2.

Figure 6.1: Solutions of model (1.4) without advection (a1 = 0) tend to a positive
steady state when r = 1.

Figure 6.2: Model (1.4) without advection (a1 = 0) undergoes a Hopf bifurcation
when r = 4.
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Example 6.2. Model (1.4) with advection, that is a1 = 0.5.
When r = 1, solutions of model (1.4) with advection tend to a positive steady state. See

Fig. 6.3.
When r = 5, solutions of model (1.4) with advection tend to periodically oscillatory orbit,

that is, model (1.4) undergoes a Hopf bifurcation. See Fig. 6.4.

Figure 6.3: Solutions of model (1.4) with advection (a1 = 0.5) tend to a positive
steady state when r = 1.

Figure 6.4: Model (1.4) with advection (a1 = 0.5) undergoes a Hopf bifurcation
when r = 4.
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