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Abstract. In this paper, we study porous media equation ut = ∆um − up with nonlinear
boundary condition ∂u

∂ν = kuq. We determine some sufficient conditions for the occur-
rence of finite time blow-up or global existence. Moreover, lower and upper bounds for
blow-up time are also derived by using various inequality techniques.
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1 Introduction

In this paper, we are interested in investigating the blow-up phenomena of the following
porous media equation with nonlinear sink and nonlinear boundary condition:

ut = ∆um − up, (x, t) ∈ Ω× (0, t∗),
∂u
∂ν = kuq, (x, t) ∈ ∂Ω× (0, t∗),

u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where m > 1 and p > 1, q ≥ 1, k is a positive constant, Ω ⊂ R3 is a star-shaped domain with
smooth boundary. ν is the unit outward normal vector on ∂Ω, u0(x) > 0 is the initial value. t∗

is the blow-up time if the solutions blow up. It is well known that the data m, p, q may greatly
affect the behavior of u(x, t) as time evolves.

The mathematical investigation of the phenomenon of blow-up of solutions to parabolic
equations and systems has received much attention in the recent literature. We refer to the
readers the books of Straughan [14] and Quittner and Souplet [13], as well as papers of
Weissler [15, 16], and so on. The determination of sufficient conditions for blow-up and the
existence or nonexistence of global solution to problem, as well as bounds for the blow-up
time have been the focus of some of these studies [1, 5–7, 18].
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For the initial-boundary value problem of porous media equation

ut = ∆um + f (u) (1.2)

where f (u) ≥ 0, Wu and Gao [17] established the blow-up criterion of equation (1.2) by using
the method of energy. Besides, there are many references for the blow-up behavior of its
solutions [4, 8]. The methods used in the study of blow-up often lead to upper bound for the
blow-up time when blow-up occur. However, in applied problems, because of the explosive
nature of the solution, a lower bound on blow-up time is more important. Then, there are
many papers giving the estimate of the lower bound of blow-up time [2, 3, 9, 10, 12]. In [9],
the authors gave the estimations of the lower bound for blow-up time for problem (1.2) under
Robin boundary conditions, by using various inequalities. When m = 1, Payne and Philippin
etc. [10] studied blow-up phenomena of the classical solution of the following initial-boundary
problem

ut = ∆u− f (u) (1.3)

under the help of energy method and Sobolev type inequality, they gave the lower bound of
blow-up time when condition for blow-up holds.

However, to our best knowledge, there is no paper where the blow-up phenomenon is
studied with m > 1 and nonlinear sink as a reaction term. So, it is natural to consider problem
(1.1). Methods used in this paper are motivated by the aforementioned papers. Because of
the difference between the diffusion term and the reaction term, we will study the blow-up
phenomena of (1.1) by modifying their techniques.

In Sections 2 and 3, by using energy method and various inequality techniques, we deter-
mine a criterion which implies blow-up, and drive upper and lower bounds for t∗; in Section 4,
a criterion for boundedness of the solution in all time t > 0 is determined; In the last section,
a relevant example will be listed to illustrate applications of our results.

2 Blow-up and upper bound estimation of t∗

In this section we establish a blow-up criterion for problem (1.1) and derive an upper bound
for blow-up time, by using the auxiliary function method.

Theorem 2.1. Let u(x, t) be a nonnegative classical solution of problem (1.1) and assume m+ q− 1 ≥
p. Then u(x, t) will blow-up in finite time t∗, and

t∗ ≤
2mϕ−a

0
(m + 1)2a(1 + a)M

,

where a, M and ϕ−a
0 are some constants which will be given in the later proof.

Proof. Denote

ϕ(t) =
∫

Ω
um+1dx. (2.1)
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Taking the derivative of (2.1), we have

ϕ′(t) = (m + 1)
∫

Ω
umutdx

= (m + 1)
∫

Ω
um(∆um − up)dx

= (m + 1)
∫

Ω
um∆umdx− (m + 1)

∫
Ω

um+pdx

= (m + 1)mk
∫

∂Ω
u2m+q−1ds− (m + 1)

∫
Ω
|∇um|2dx− (m + 1)

∫
Ω

um+pdx.

(2.2)

Moreover, by using the notation

ψ(t) =
2m2k

2m + q− 1

∫
∂Ω

u2m+q−1ds−
∫

Ω
|∇um|2dx− 2m

m + p

∫
Ω

um+pdx, (2.3)

since m + q− 1 ≥ p, we have

ϕ′(t) ≥ (m + 1)(2m + q− 1)
2m

ψ(t). (2.4)

From (2.3) one obtains

ψ′(t) = 2m2k
∫

∂Ω
u2m+q−2utds−

∫
Ω
|∇um|2t dx− 2m

∫
Ω

um+p−1utdx, (2.5)

because

∇(um
t ∇um) = um

t ∆um +
1
2
|∇um|2t . (2.6)

Integrate both sides of (2.6), then we obtain∫
Ω
|∇um|2t dx = 2

∫
∂Ω

um
t

∂um

∂ν
ds− 2

∫
Ω

um
t ∆umdx

= 2m2k
∫

∂Ω
u2m+q−2utds− 2m

∫
Ω

um−1∆umutdx.
(2.7)

Substituting (2.7) into (2.5), we have

ψ′(t) = 2m
∫

Ω
um−1∆umutdx− 2m

∫
Ω

um+p−1utdx

= 2m
∫

Ω
um−1u2

t dx > 0.
(2.8)

Using Hölder’s inequality, we obtain

(ϕ′(t))2 =

[
(m + 1)

∫
Ω

umutdx
]2

≤ (m + 1)2
∫

Ω
um+1dx

∫
Ω

um−1u2
t dx

=
(m + 1)2

2m
ϕ(t)ψ′(t).

(2.9)

Thus (2.4) implies

(ϕ′(t))2 ≥ (m + 1)(2m + q− 1)
2m

ϕ′(t)ψ(t). (2.10)
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We get from (2.9) and (2.10)

ϕ(t)ψ′(t) ≥ (2m + q− 1)
m + 1

ϕ′(t)ψ(t),

by using the notation 2m+q−1
m+1 = 1 + a, we find

ϕ(t)ψ′(t) ≥ (1 + a)ϕ′(t)ψ(t).

From the above inequality, we obtain

(ϕ−(1+a)ψ)′ ≥ 0,

hence
ϕ−(1+a)ψ ≥ ϕ

−(1+a)
0 ψ0 = M,

where ϕ0 = ϕ(0) and ψ0 = ψ(0). Combining the above formula with (2.10), we find

ϕ′(t) ≥ (m + 1)(2m + q− 1)
2m

ψ(t) ≥ (m + 1)2

2m
(1 + a)Mϕ1+a, (2.11)

then we have

ϕ−a(t) ≤ ϕ−a
0 −

(m + 1)2

2m
a(1 + a)Mt. (2.12)

Therefore

t∗ ≤
2mϕ−a

0
(m + 1)2a(1 + a)M

. (2.13)

3 Lower bound for the blow-up time

In this section, we estimate the lower bound of the blow-up time by constructing some auxil-
iary functions and using different inequality techniques, such as Sobolev type inequality and
Hölder inequality etc. Our theorem is given as follows.

Theorem 3.1. Assume that u(x, t) is a nonnegative classical solution of problem (1.1), further it blows
up at finite time t∗. Then

t∗ ≥
∫ ∞

φ(0)

dη

k1η
3
2 + k2η

3(n−m+1)
n + k3η − k4η

n+p−1
n

,

where n = 2(m + 2q− 3) and φ(0), k1, k2, k3, k4 are constants, defined in the proof later.

Proof. We define

φ(t) =
∫

Ω
u2(m+2q−3)dx =

∫
Ω

undx. (3.1)

The derivative of (3.1) w.r.t. t can be written as follows

φ′(t) = n
∫

Ω
un−1utdx

= n
∫

Ω
un−1(∆um − up)dx

= n
∫

Ω
un−1∆umdx− n

∫
Ω

un+p−1dx

= nmk
∫

∂Ω
un+m+q−2ds− n(n− 1)m

∫
Ω

un+m−3|∇u|2dx− n
∫

Ω
un+p−1dx.

(3.2)
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To estimate
∫

∂Ω un+m+q−2ds, we can refer to the Lemma A.1 in [11], and obtain

∫
∂Ω

un+m+q−2ds ≤ N
ρ0

∫
Ω

un+m+q−2dx +
(n + m + q− 2)d

ρ0

∫
Ω

un+m+q−3|∇u|dx, (3.3)

where
ρ0 = min

∂Ω
(x · ν), d = max

∂Ω
|x|.

Note that ρ0 is positive since Ω is star-shaped by assumption.
Applying the Hölder inequality, we have

∫
Ω

un+m+q−2dx ≤
(∫

Ω
undx

) q−1
m+2q−3

(∫
Ω

un+m+2q−3dx
) m+q−2

m+2q−3

=

(∫
Ω

undx
) 2(q−1)

n
(∫

Ω
u

3n
2 dx

) 2(m+q−2)
n

≤ 2(q− 1)
n

∫
Ω

undx +
2(m + q− 2)

n

∫
Ω

u
3n
2 dx.

(3.4)

Using Cauchy’s inequality with ε and inverse Hölder inequality, we get

∫
Ω

un+m+q−3|∇u|dx ≤ 1
4ε

∫
Ω

un+m+2q−3dx + ε
∫

Ω
un+m−3|∇u|2dx, (3.5)

and

∫
Ω

un+p−1dx ≥ |Ω|
1−p

n

(∫
Ω

undx
) n+p−1

n

. (3.6)

First taking (3.4) and (3.5) into (3.3), then taking (3.3) and (3.6) into (3.2), (3.2) becomes

φ′(t) ≤
[

kmdε(n + m + q− 2)
ρ0

−m(n− 1)
]

n
∫

Ω
un+m−3|∇u|2dx

+

[
kmnd(n + m + q− 2)

4ερ0
+

2kmN(m + q− 2)
ρ0

] ∫
Ω

u
3n
2 dx

+
2mkN(q− 1)

ρ0

∫
Ω

undx− n|Ω|
1−p

n

(∫
Ω

undx
) n+p−1

n

.

(3.7)

Now we estimate
∫

Ω u
3n
2 dx, using Sobolev type inequality (see (A.5) in [11]) which holds if

N = 3 and obtain for arbitrary µ > 0

∫
Ω

u
3n
2 dx ≤ 1

3
3
4

[
3

2ρ0

∫
Ω

undx +
n
2

(
1 +

d
ρ0

) ∫
Ω

un−1|∇u|dx
] 3

2

≤ 2
1
2

3
3
4

{(
3

2ρ0

) 3
2
(∫

Ω
undx

) 3
2

+

[
n
2
(1 +

d
ρ0

)

] 3
2 1

4µ3 |Ω|
3(m−1)

n

(∫
Ω

undx
) 3(n−m+1)

n

+

[
n
2

(
1 +

d
ρ0

)] 3
2 3µ

4

∫
Ω

un+m−3|∇u|2dx

}
.

(3.8)
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By substituting (3.8) into (3.7), we obtain

φ′(t) ≤
{[

kmndε(n + m + q− 2)
ρ0

−mn(n− 1)
]

+

[
kmnd(n + m + q− 2)

4ερ0
+

2kmN(m + q− 2)
ρ0

]
×
[

n
2
(1 +

d
ρ0

)

] 3
2 3µ

4
2

1
2

3
3
4

} ∫
Ω

un+m−3|∇u|2dx

+ k1φ
3
2 + k2φ

3(n−m+1)
n + k3φ− k4φ

n+p−1
n .

(3.9)

For ε > 0 small enough, choosing an appropriate µ > 0 such that k0 ≤ 0, this leads to

φ′(t) ≤ k1φ
3
2 + k2φ

3(n−m+1)
n + k3φ− k4φ

n+p−1
n , (3.10)

where

k0 =

{[
kmndε(n + m + q− 2)

ρ0
−mn(n− 1)

]
+

[
kmnd(n + m + q− 2)

4ερ0
+

2kmN(m + q− 2)
ρ0

]
×
[

n
2

(
1 +

d
ρ0

)] 3
2 3µ

4
2

1
2

3
3
4

}
,

k1 =

[
kmnd(n + m + q− 2)

4ερ0
+

2kmN(m + q− 2)
ρ0

]
2

1
2

3
3
4

(
3

2ρ0

) 3
2

,

k2 =

[
kmnd(n + m + q− 2)

4ερ0
+

2kmN(m + q− 2)
ρ0

]
2

1
2

3
3
4

[
n
2

(
1 +

d
ρ0

)] 3
2 1

4µ3 |Ω|
3(m−1)

n ,

k3 =
2kmN(q− 1)

ρ0
,

k4 = n|Ω|
1−p

n .

Integrating (3.10) from 0 to t∗, we obtain

t∗ ≥
∫ ∞

φ(0)

dη

k1η
3
2 + k2η

3(n−m+1)
n + k3η − k4η

n+p−1
n

. (3.11)

4 Non-existence of blow-up

In this section we show that if the classical solution exists then it may not blow-up when the
exponents satisfy p > m + 2(q− 1). We define

ϕ(t) =
∫

Ω
um+1dx. (4.1)

We establish the following theorem.

Theorem 4.1. Let p > m + 2(q− 1), if u(x, t) is a classical solution of (1.1) for t < t∗ ≤ ∞ then
ϕ(t) is bounded for all t < t∗.
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Proof. Assume that u(x, t) is a classical solution of (1.1) for t < t∗ ≤ ∞. Taking the derivative
of (4.1), by (2.2) we have

ϕ′(t) = (m + 1)mk
∫

∂Ω
u2m+q−1ds− (m + 1)

∫
Ω
|∇um|2dx− (m + 1)

∫
Ω

um+pdx. (4.2)

To estimate
∫

∂Ω u2m+q−1ds, we obtain∫
∂Ω

u2m+q−1ds ≤ N
ρ0

∫
Ω

u2m+q−1dx +
(2m + q− 1)d

ρ0

∫
Ω

u2m+q−2|∇u|dx

=
N
ρ0

∫
Ω

u2m+q−1dx +
(2m + q− 1)d

ρ0m

∫
Ω

um+q−1|∇um|dx.

(4.3)

Applying Cauchy’s inequality with β, we have∫
Ω

um+q−1|∇um|dx ≤ β
∫

Ω
u2(m+q−1)dx +

1
4β

∫
Ω
|∇um|2dx. (4.4)

Choosing β = (2m+q−1)kd
4ρ0

, and inserting (4.4) into (4.3), then inserting (4.3) into (4.2), we get

ϕ′(t) ≤ (m + 1)
[

kmN
ρ0

∫
Ω

u2m+q−1dx +
kdβ(2m + q− 1)

ρ0

∫
Ω

u2(m+q−1)dx−
∫

Ω
um+pdx

]
. (4.5)

Using Hölder’s inequality and Young’s inequality with ε, we obtain

∫
Ω

u2(m+q−1)dx ≤
(∫

Ω
um+pdx

)α (∫
Ω

u2m+q−1dx
)1−α

≤ αε
1
α

∫
Ω

um+pdx + (1− α)ε
1

α−1

∫
Ω

u2m+q−1dx,

(4.6)

where α = q−1
p−(m+q−1) and 0 < α < 1 by the assumption of the theorem.

Combining (4.6) with (4.5), we find

ϕ′(t) ≤ (m + 1)
[

H
∫

Ω
u2m+q−1dx−W

∫
Ω

um+pdx
]

, (4.7)

where

H =

[
(1− α)ε

1
α−1

kdβ(2m + q− 1)
ρ0

+
kmN

ρ0

]
,

W =

[
1− αε

1
α

kdβ(2m + q− 1)
ρ0

]
,

we may choose ε so small that W > 0 holds.
Using Hölder’s inequality again

∫
Ω

u2m+q−1dx ≤ |Ω|
p−(m+q−1)

m+p

(∫
Ω

um+pdx
) 2m+q−1

m+p

, (4.8)
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thus

∫
Ω

um+pdx ≥ |Ω|
−p+(m+q−1)

2m+q−1

(∫
Ω

u2m+q−1dx
) m+p

2m+q−1

, (4.9)

where |Ω| denotes the measure of Ω. Inserting (4.9) into (4.7), we have

ϕ′(t) ≤ (m + 1)
∫

Ω
u2m+q−1dx

H −W|Ω|
−p+(m+q−1)

2m+q−1

(∫
Ω

u2m+q−1dx
) p−(m+q−1)

2m+q−1

 . (4.10)

Application of Hölder’s inequality leads to

ϕ(t) =
∫

Ω
um+1dx ≤

(∫
Ω

u2m+q−1dx
) m+1

2m+q−1

|Ω|
m+q−2

2m+q−1 . (4.11)

From the above equation, we obtain

(
|Ω|

−(m+q−2)
2m+q−1

∫
Ω

um+1dx
) 2m+q−1

m+1

≤
∫

Ω
u2m+q−1dx.

Thus from (4.10) we derive

ϕ′(t) ≤ (m + 1)
∫

Ω
u2m+q−1dx

[
H −W|Ω|

m+q−1−p
m+1 ϕ(t)

p−(m+q−1)
m+1

]
. (4.12)

Since p > m + 2(q− 1) ≥ m + q− 1, from (4.12) one can conclude that ϕ(t) is bounded for

t < t∗ ≤ +∞. In fact, if for some t0 < t∗, ϕ(t0) is so large that
[
H−W|Ω|

m+q−1−p
m+1 ϕ(t0)

p−(m+q−1)
m+1

]
is negative, then ϕ′(t) < 0 for all t0 < t < t∗ with the property ϕ(t) > ϕ(t0) since the
exponent of ϕ(t) is positive. Consequently, the continuously differentiable function ϕ(t) is
(strictly) monotone decreasing in [t0, t∗), thus ϕ(t) ≤ ϕ(t0) if t0 < t < t∗.

Remark 4.2. For q = 1, we can see, p = m is the blow-up exponent. But for q > 1 and
m + q− 1 < p < m + 2(q− 1), we do not assert whether the solutions blow-up in finite time
with nonlinear boundary condition. Due to technical reasons up to now, we can not give a
positive or negative answer.

5 Example and applications

In this part, we give an example to illustrate applications of Theorem 2.1 and Theorem 3.1.

Example 5.1. Let u(x, t) is a solution of the following problem
ut = ∆u3 − u3, (x, t) ∈ Ω× (0, t∗),
∂u
∂ν = u2, (x, t) ∈ ∂Ω× (0, t∗),

u(x, 0) = u0(x) = 0.5− |x|2 > 0, x ∈ Ω,

where Ω = {x ∈ R3 | |x|2 = ∑3
i=1 x2

i < 0.0001} is a ball in R3. Now m = 3, q = 2, p = 3, k = 1,
u0 = 0.5− |x|2, N = 3, ρ0 = 0.01, d = 0.01, |Ω| = 4.1888× 10−6.
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First, we get the upper bound of blow-up time through the following calculations

ϕ(0) =
∫

Ω
um+1

0 dx

=
∫ 2π

0
dθ
∫ π

0
sin ϕdϕ

∫ 0.01

0
(0.5− |r|2)4r2dr

= 4π
∫ 0.01

0
(0.5− |r|2)4r2dr = 2.6167× 10−7,

ψ(0) =
2m2k

2m + q− 1

∫
∂Ω

u2m+q−1
0 ds−

∫
Ω
|∇um

0 |2dx− 2m
m + p

∫
Ω

um+p
0 dx

=
18
7

∫ 2π

0
dθ
∫ π

0
sin ϕdϕ

∫ 0.01

0
(0.5− |r|2)7r2dr

− 9
∫ 2π

0
dθ
∫ π

0
sin ϕdϕ

∫ 0.01

0
(0.5− |r|2)4|∇(0.5− |r|2)|2r2dr

−
∫ 2π

0
dθ
∫ π

0
sin ϕdϕ

∫ 0.01

0
(0.5− |r|2)6r2dr

=
72
7

π
∫ 0.01

0
(0.5− |r|2)7r2dr− 144π

∫ 0.01

0
(0.5− |r|2)4r4dr

− 4π
∫ 0.01

0
(0.5− |r|2)6r2dr = 1.8111× 10−8.

Taking M and a into (2.13), then

t∗ ≤ 2mϕ0

(m + 1)2a(1 + a)ψ(0)
= 4.1280. (5.1)

Next, we obtain the lower bound of blow-up time by the following calculations

φ(0) =
∫

Ω
u2(m+2q−3)

0 dx

=
∫ 2π

0
dθ
∫ π

0
sinϕdϕ

∫ 0.01

0
(0.5− |r|2)8r2dr

= 4π
∫ 0.01

0
(0.5− |r|2)8r2dr = 1.6347× 10−8.

We choose ε = 0.1, µ = 0.0022, and calculate that

k1 = 6.9069× 106, k2 = 1.8015× 108, k3 = 1800, k4 = 176.8348.

Then

t∗ ≥
∫ ∞

φ(0)

dη

k1η
3
2 + k2η

3(n−m+1)
n + k3η − k4η

n+p−1
n

= 0.0012. (5.2)

Therefore, combining (5.1) with (5.2), we get

0.0012 ≤ t∗ ≤ 4.1280.
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