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Abstract. This paper deals with a singular, nonlinear Sturm–Liouville problem of the
form {A(x)u′(x)}′+ λu(x) = f (x, u(x), u′(x)) on (0, 1) where A is positive on (0, 1] but
decays quadratically to zero as x approaches zero. This is the lowest level of degeneracy
for which the problem exhibits behaviour radically different from the regular case. In
this paper earlier results on the existence of bifurcation points are extended to yield
global information about connected components of solutions.
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1 Introduction

The aim of this paper is to investigate the set of solutions of the boundary value problem,

−{A(x)u′(x)}′ + V(x)u(x) + n(x, u′(x)) + g(x, u(x)) = λu(x) for 0 < x < 1, (1.1)

u(1) = 0 and
∫ 1

0
A(x)u′(x)2dx < ∞, (1.2)

for an unknown function u such that u ∈ C1((0, 1]) and Au′ is absolutely continuous on
the compact subintervals of (0, 1]. The differential equation is singular at x = 0 because we
suppose that the coefficient A satisfies the following condition.

(A) A ∈ C([0, 1]) with A(x) > 0 for x > 0 and limx→0
A(x)

x2 = a > 0.

Hence there exist constants C2 ≥ C1 > 0 such that C1x2 ≤ A(x) ≤ C2x2 for all x ∈ [0, 1].
As we have shown in previous work on the problem in [31], this level of degeneracy leads

to behaviour that does not occur for regular problems nor problems with weaker degeneracy.
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For example, solutions can become unbounded as x tends to zero and there may be no bi-
furcation at a simple eigenvalue of the linearisation lying below the essential spectrum. For
a more detailed presentation of the critical character of quadratic degeneracy we refer to [33]
concerning the analogous elliptic problem in higher dimensions. Other aspects of criticality
have been emphasised in some work on the asymptotic behaviour of solutions for a porous
medium equation with degeneracy [17, 18]. In the stability analysis for the parabolic problem
associated with the higher dimensional analogue of (1.1)(1.2) it is shown in [32] that the prin-
ciple of linearised stability can fail at the stationary solution u ≡ 0 when the degeneracy is
critical. For subcritical degeneracy, i.e. when lim infx→0 x−d A(x) > 0 for some d < 2, global
bifurcation of positive stationary solutions and their stability are proved in [20] for a parabolic
problem corresponding to the higher dimensional analogue of (1.1)(1.2).

Before proceeding to describe other aspects of the problem some information about the
lower order terms in (1.1) is necessary. The potential V in (1.1) is bounded and has a well-
defined limit as x → 0.

(V) V ∈ L∞(0, 1) and there exists V0 ∈ R such that limz→0 ‖V −V0‖L∞(0,z) = 0.

The nonlinear terms n and g are of higher order in the sense that

lim
s→0

n(x, s)
s

= lim
s→0

g(x, s)
s

= 0 for all x ∈ (0, 1) (1.3)

and they satisfy some additional conditions introduced in Subection 2.2. Under these hy-
potheses u ≡ 0 is a solution of (1.1)(1.2) and the parameter λ ∈ R is treated as an eigenvalue.
The sense in which the equation (1.1) is satisfied is made precise in Section 2.3. In this form
the problem has been studied in some detail in [31,33] and Section 2 contains the conclusions
from those papers that are needed here.

In view of (1.3) the linearisation of (1.1) is the singular Sturm–Liouville problem

− {A(x)u′(x)}′ + V(x)u(x) = λu(x), where u ∈ L2(0, 1) and u(1) = 0, (1.4)

and its spectrum is discussed in Section 2.4. It is in the limit point case at x = 0 when (A) and
(V) are satisfied but

lim
x→0

A(x)u′(x) = 0, (1.5)

appears as a natural boundary condition. In fact, it is noted in Section 2 that the expression
−(Au′)′ + Vu defines a self-adjoint operator, SA + V, acting in L2(0, 1) with domain

DA = {u ∈ L2(0, 1) : (Au′)′ ∈ L2(0, 1) and u(1) = 0}

and all elements of DA satisfy (1.2) and (1.5). The eigenvalues of SA + V are all simple and its
essential spectrum is the interval [ a

4 + V0, ∞). In Section 2.4 some special cases treated in [33]
are recalled showing that SA + V may or may not have eigenvalues.

The main results of this paper give information about the global behaviour of components
of solutions (λ, u) ∈ R× DA of the singular problem (1.1)(1.2) in the spirit of the regular case
treated in [7, 24]. This involves confronting two principal difficulties arising from the degen-
eracy. First of all, the presence of a non-trivial essential spectrum of the linearisation indicates
that the problem cannot be reduced to an equation for a compact perturbation of the iden-
tity. Secondly, previous work on the existence of bifurcation points for problem (1.1)(1.2) has
shown that, under reasonable assumptions about the nonlinear terms, Fréchet differentiability
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at the trivial solution u ≡ 0 cannot be obtained. Indeed, there are cases in [31,33] where there
is no bifurcation at an eigenvalue of SA + V lying below its essential spectrum, a situation
which could not occur if the nonlinearity were Fréchet differentiable at u ≡ 0.

The conclusions obtained here concerning problem (1.1)(1.2) are established by following
what has become a standard path since the classic paper by Rabinowitz [23]. First of all an
abstract result is formulated under hypotheses that accommodate the two main difficulties
just mentioned. This result is then applied to the boundary value problem and the nodal
properties of solutions are used to sharpen the information about components of solutions
given by the abstract theory.

Let X and Y be real Banach spaces and consider a mapping F : R× X → Y having the
properties that F(λ, 0) = 0 for all λ ∈ R and F(λ, ·) : X → Y is at least Hadamard differ-
entiable at 0. For the equation F(λ, u) = 0, local results concerning bifurcation at isolated
singular points of the derivative DuF(λ, 0) were established in [29] using the Brouwer degree
after reduction to a finite dimensional space. In a similar setting global conclusions about
connected components of solutions have been obtained recently in [34] using a topological
degree for continuous perturbations of C1-Fredholm maps constructed by Benevieri, Calamai
and Furi [3, 4], combined with techniques from in [29]. In these contributions a considerable
amount of rather specialised terminology is required in order the formulate the hypotheses.
The class of admissible perturbations for the existence of the degree defined in [3, 4] is speci-
fied using notions related to the Kuratowski measure of non-compactness and the conditions
for bifurcation involve the parity of the path λ 7→ DuF(λ, 0) as defined by Fitzpatrick and
Pejsachowicz, [15]. Instead of recalling these results in their fully generality with all the req-
uisite terminology, we formulate two special cases concerning equations of a simpler form
in Hilbert space. With the exception of Hadamard and w-Hadamard differentiability which
are defined in Section 4.1, these results can be stated using only well-known concepts and
problem (1.1)(1.2) can be dealt with in this context.

The Hilbert space theory, as set out in Section 4, is applied to problem (1.1)(1.2) in Section 5.
As for regular Sturm–Liouville problems, the nodal properties of solutions and comparison
principles for self-adjoint operators can be used to refine the conclusions coming directly
from the abstract theory. However the strong degeneracy of equation (1.1) at x = 0 means
that the behaviour of solutions as x → 0 requires some care and various aspects of this are
investigated in Section 3, generalizing results of a similar nature in [31]. As special cases of
the main results in Section 5, hypotheses are provided under which the following somewhat
unusual phenomena occur. Consider problem (1.1)(1.2) with n ≡ 0. Given any n ∈ N, there
are coefficients A and V such that the linearisation (1.4) has exactly n simple eigenvalues
λ1 < λ2, . . . . < λn below its essential spectrum which is [me, ∞) where me =

a
4 + V0.

(1) For any k ∈ {1, . . . , n} there is a class of nonlinearities with g(x, s)s ≤ 0 for all (x, s) ∈
(0, 1)×R for which an unbounded component of non-trivial solutions bifurcates from (λi, 0)
for each i ≤ k, but there is no bifurcation from (λi, 0) for i > k. (See Remark 5.4.)

(2) There is another class of nonlinearities with g(x, s)s ≥ 0 for all (x, s) ∈ (0, 1)×R for
which a component Ci of non-trivial solutions bifurcates from (λi, 0) for every i ∈ {1, ..., n}
and {λ : (λ, u) ∈ Ci} = [λi, me). If (λ, u) ∈ Ci with λ near λi, u ∈ C1((0, 1])∩ L∞(0, 1), whereas
for λ near me, u ∈ C1((0, 1]) but u(x)→ ∞ as n→ ∞. (See Remark 5.6.)

Many references to problems of the type studied here can be found in the papers [17, 18,
20,31,33] and, as shown in an appendix in [31], several other types of equation can be reduced
to the form (1.1) by a change of variable. The radially symmetric version of the analogous
problem in higher dimensions can also be transformed to (1.1)(1.2). Following what was done



4 C. A. Stuart

in [13] for a closely related case, this is mentioned in [31] and more details are given in Section
6.6 of [33] where local results on bifurcation are formulated.

The line of research pursued here on bifurcation for problems like (1.1)(1.2) was stimu-
lated by the unusual behaviour revealed in [28] concerning the buckling of a critically tapered
rod which is modelled by an equation having the same kind of degeneracy. Using variational
methods it is shown in [28] that an unbounded curve of positive solutions bifurcates from the
lowest point Λ of the spectrum of the linearisation, even if it is not an eigenvalue. In fact, bi-
furcation occurs at every point in the interval [Λ, ∞). For the same problem, global bifurcation
at all eigenvalues lying below the essential spectrum was established in collaboration with G.
Vuillaume [35, 36] using a topological approach. In this buckling problem the full nonlinear
equation involves a compact perturbation of the identity but it is not Fréchet differentiable at
the trivial solution and its linearisation is not a compact perturbation of the identity. In work
with G. Evéquoz [13,14] on a more general class of degenerate problems a variational method
was used show that bifurcation can occur at points which are not necessarily eigenvalues of
the linearisation and singular behaviour of the bifurcating solutions was demonstrated in the
radially symmetric case. Some of the abstract results on bifurcation for non-Fréchet differen-
tiable problems are summarised in [30] together with references to applications to uniformly
elliptic equations on RN .

2 A class of singular boundary value problems

Throughout this section it is assumed that the function A satisfies condition (A). The first
step is to define the domain of a positive self-adjoint operator, SA, in L2(0, 1) associated with
the singular differential operator −(Au′)′ and the boundary condition u(1) = 0. In addition
to noting some crucial properties of functions in this domain, DA, it is also necessary to

investigate the domain, HA, of the positive, self-adjoint square-root, S
1
2
A. Although the set DA

depends upon A, it turns out that HA is the same set for all coefficients satisfying condition
(A). Most of the results mentioned in this section are proved in [31].

2.1 The spaces DA and HA

From the results in Section 2 of [31] the set DA can be defined as

DA = {u ∈ C1((0, 1]) ∩ L2(0, 1) : (Au′)′ ∈ L2(0, 1) and u(1) = 0},

where (Au′)′ is the generalized derivative on (0, 1) of the continuous function Au′. It is also
shown in [31] that

SA : DA ⊂ L2(0, 1)→ L2(0, 1) with SAu = −(Au′)′ for u ∈ DA

is a self-adjoint operator having the following properties. See Lemmas 2.1 and 2.2 and Corol-
lary 2.3 in [31].

(D1) (SAu, v)L2 =
∫ 1

0 Au′v′ dx for all u, v ∈ DA.

(D2) (SAu, u)L2 ≥ C1
4 ‖u‖2

L2 and ‖u‖L2 ≤ 2√
C1
‖A

1
2 u′‖L2 ≤ 4

C1
‖SAu‖L2 for all u ∈ DA.

(D3) SA : DA → L2 is an isomorphism and S−1
A w =

∫ 1
x

1
A(y) [

∫ y
0 w(z) dz] dy for all w ∈ L2(0, 1).
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Henceforth, L2 = L2(0, 1) and a ≥ C1 ≡ inf
{ A(x)

x2 : 0 < x ≤ 1
}
> 0 by (A). By (D2), ‖SAu‖L2

defines a norm on DA that is equivalent to the graph norm of SA. Elements of DA enjoy the
following properties which are proved in Lemmas 2.4 and 2.5 in [31].

(P1) x
3
2 u′(x)→ 0 as x → 0 and ‖x 3

2 u′‖L∞ ≤ 1
C1
‖SAu‖L2 for all u ∈ DA.

(P2) x
1
2 u(x)→ 0 as x → 0 and ‖x 1

2 u‖L∞ ≤ 1√
C1
‖A

1
2 u′‖L2 ≤ 2

C1
‖SAu‖L2 for all u ∈ DA.

By condition (A) and (P1), A(x)u′(x) → 0 as x → 0 for all u ∈ DA showing that (1.5) is a
natural boundary condition for the operator SA. If u ∈ DA and u(z) = 0 for some z ∈ (0, 1], it
follows from (P1) and (P2) that∫ z

0
[SAu(x)]u(x) dx =

∫ z

0
A(x)u′(x)2dx. (2.1)

Let

H =

{
u ∈ L2(0, 1) :

∫ 1

0
x2u′(x)2dx < ∞

}
where u′ is the generalized derivative of u on (0, 1). If u ∈ H, its restriction to (η, 1) be-
longs to the usual Sobolev space H1((η, 1)) for all η ∈ (0, 1) and so, with the usual abuse to
terminology, we can consider that u ∈ C((0, 1]). The space HA is defined by

HA = {u ∈ H : u(1) = 0} =
{

u ∈ L2(0, 1) :
∫ 1

0
A(x)u′(x)2dx < ∞ and u(1) = 0

}
.

It is a Hilbert space for the norm defined by ‖u‖A = ‖A
1
2 u′‖L2 and the corresponding scalar

product is denoted by

〈u, v〉A =
∫ 1

0
A(x)u′(x)v′(x) dx for u, v ∈ HA.

Denoting the unique positive, self-adjoint square root of SA by S
1
2
A : D(S

1
2
A) ⊂ L2(0, 1) →

L2(0, 1), it is also shown in [31] that HA = D(S
1
2
A). In particular, DA is a dense subspace of

(HA, ‖ · ‖A) and so (D1), (D2) and (P2) imply the following properties.

(H1) ‖u‖L2 ≤ 2√
C1
‖u‖A and ‖u‖A = ‖S

1
2
Au‖L2 for all u ∈ HA.

(H2) x
1
2 u(x)→ 0 as x → 0 and ‖x 1

2 u‖L∞ ≤ 1√
C1
‖u‖A for all u ∈ HA.

Using (H1) with A(x) = x2 and a simple rescaling, we have that∫ z

0
u(x)2dx ≤ 4

∫ z

0
x2u′(x)2dx if u ∈ HA and u(z) = 0 for some z ∈ (0, 1]. (2.2)

By (P1) and (H2),∫ 1

0
[SAu(x)]v(x) dx =

∫ 1

0
A(x)u′(x)v′(x) dx for all u ∈ DA and v ∈ HA. (2.3)

The following compactness property is justified in Remark 2.2 in [31].

(H3) If {un} ⊂ HA is a sequence converging weakly to u in HA, {un} ⊂ C([η, 1]) and it
converges uniformly to u on [η, 1] for all η ∈ (0, 1).



6 C. A. Stuart

2.2 Properties of the nonlinearities

The Nemytskii operator associated with a Caratheodory function f : (0, 1) × R → R will
be denoted by f̃ . Thus f̃ (u)(x) = f (x, u(x)) for a measurable function u : (0, 1) → R and
x ∈ (0, 1).

We now formulate the assumptions which will be used to deal with the nonlinear terms
in equation (1.1). They ensure that the corresponding operators are well-defined and map the
spaces DA and HA into L2(0, 1). For the continuity and differentiability properties of these
operators it is understood that DA and HA are considered with the norms ‖SA‖L2 and ‖u‖A,
respectively.

(F) f : (0, 1)×R→ R is a Carathéodory function such that

(i) lims→0
f (x,s)

s = 0 for all x ∈ (0, 1),

(ii) for some ` ∈ [0, ∞), | f (x, s)− f (x, t)| ≤ `|s− t| for all x ∈ (0, 1) and s, t ∈ R.

For a function satisfying condition (F), let

` f = sup
{
| f (x, s)− f (x, t)|

|s− t| : 0 < x < 1 and s 6= t
}

. (2.4)

The next result refers to Hadamard and w-Hadamard differentiability of a mapping. The
definitions of these notions are recalled in Section 4.1.

Proposition 2.1. Let condition (F) be satisfied by a function f .

(i) Then the associated Nemytskii operator maps L2 = L2(0, 1) into itself and f̃ : L2 → L2 is
uniformly Lipschitz continuous with

‖ f̃ (u)− f̃ (v)‖L2 ≤ ` f ‖u− v‖L2 for all u, v ∈ L2 (2.5)

Furthermore, f̃ : L2 → L2 is Gâteaux differentiable at 0 with derivative 0.

(ii) f̃ : L2 → L2 is Hadamard differentiable at 0 and f̃ : HA → L2 is w-Hadamard differentiable at 0
with derivative 0.

(iii) In addition to condition (F) suppose that there is a constant α with the property that, for all
δ > 0, there exist x(δ) ∈ (0, 1) and M(δ) such that | f (x, s) − αs| ≤ M(δ) + δ|s| for all
(x, s) ∈ (0, x(δ))×R. Then the mapping f̃ − αI : HA → L2 is compact.

Proof. For parts (i) and (ii) see Lemma 3.1 in [31]. Part (iii) appears as Lemma 4.3 (b) in
[34].

Remark 2.2. Since DA is continuously embedded in L2, f̃ : DA → L2 is also Hadamard
differentiable at 0. However, it is important to emphasise that an assumption like (F) does
not imply Fréchet differentiability of f̃ at 0, even when f ∈ C∞([0, 1]×R). For example, it is
shown in Example 3.1 in [31] that when f (x, s) = h(s), where h ∈ C∞(R) with h(0) = h′(0) =
0 and sups∈R |h′(s)| < ∞, condition (F) is satisfied but f̃ : DA → L2 is Fréchet differentiable at
0 if and only if h ≡ 0.

Fréchet differentiability of f̃ does hold provided that the function f (x, s) decays in an
appropriate way as x → 0, as stipulated in the following condition.
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(E) f = ∑k
i=1 fi where for each i, fi : (0, 1)×R→ R is a Carathéodory function such that

(i) fi(x, ·) ∈ C1(R) and fi(x, 0) = 0 for all x ∈ (0, 1),

(ii) there exist Ki and αi > σi
2 such that |∂s fi(x, s)| ≤ Kixαi |s|σi for all x ∈ (0, 1) and

s ∈ R where 0 < σ1 < · · · < σk.

For a function f satisfying condition (E), let C f (s) = ∑k
i=1 sσi for s ≥ 0 and note that for s, t ≥ 0,

min{1, tσk}C f (s)≤min{tσ1 , tσk}C f (s)≤C f (ts)≤max{tσ1 , tσk}C f (s)≤max{1, tσk}C f (s). (2.6)

It follows from (E) and property (H2) that for all u ∈ HA and x ∈ (0, 1),∣∣∣∣ fi(x, u(x))
u(x)

∣∣∣∣ ≤ Kixαi−
σi
2 [x

1
2 |u(x)|]σi ≤ KiC

−σi/2
1 ‖u‖σi

Axαi−
σi
2 if u(x) 6= 0. (2.7)

and
| fi(x, u(x))u(x)| ≤ KiC

−σi/2
1 ‖u‖σi

Axαi−
σi
2 u(x)2. (2.8)

Hence, setting ν = min{αi − σi
2 : 1 ≤ i ≤ k}, there exists a constant C such that

| f (x, u(x))| ≤ CxνC f (‖u‖A)|u(x)| for all u ∈ HA and x ∈ (0, 1). (2.9)

Thus f̃ (u) ∈ L2 for all u ∈ HA and the next result shows that condition (E) ensures that
f̃ : HA → L2 is both continuously Fréchet differentiable on HA and compact.

Proposition 2.3. Let f satisfy the condition (E). Then f̃ ∈ C1(HA, L2) and there is a constant C > 0
such that ‖ f̃ ′(u)‖B(HA,L2) ≤ CC f (‖u‖A). Furthermore, the mapping f̃ : HA → L2 is compact.

Proof. Continuous differentiability is established in Lemma 3.2 in [31]. Compactness is easily
proved using the estimate (2.9) on the interval (0, η) and property (H3) on [η, 1] for η ∈
(0, 1) in the same way as in Lemma 4.5 of [32] which deals with a similar situation in higher
dimensions.

Remark 2.4. For u, v ∈ HA, ‖ f̃ (u) − f̃ (v)‖L2 ≤ CC f (‖u‖A + ‖v‖A)‖u − v‖A and, in partic-
ular, ‖ f̃ (u)‖L2 ≤ CC f (‖u‖A)‖u‖A for all u ∈ HA. It also follows from this lemma that
f̃ ∈ C1(DA, L2) and there is a constant C such that ‖ f̃ ′(u)‖B(DA,L2) ≤ CC f (‖SAu‖L2) for all
u ∈ DA.

We now turn to the nonlinear term in equation (1.1) containing u′. Recalling that DA ⊂
C1((0, 1]) a mapping N is defined on DA by setting N(u)(x) = n(x, u′(x)) = ñ(u′)(x) where
n : (0, 1)×R→ R. The following condition ensures that N maps DA into L2.

(M) n = ∑
j
i=1 ni where for each i, ni : (0, 1)×R→ R is a Carathéodory function such that

(i) ni(x, ·) ∈ C1(R) and ni(x, 0) = 0 for all x ∈ (0, 1),

(ii) there exist Ki > 0 and βi >
3γi
2 + 1 such that |∂sni(x, s)| ≤ Kixβi |s|γi for all x ∈ (0, 1)

and s ∈ R where 0 < γ1 < · · · < γj.

For a function n satisfying condition (M), let Dn(s) = ∑
j
i=1 sγi for s ≥ 0.

It follows from (M) and property (P1) that for all u ∈ DA and x ∈ (0, 1),
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|ni(x, u′(x))| ≤ Kixβi−
3γi

2 −1|xu′(x)||x 3
2 u′(x)|γi ≤ KiC

−γi/2
1 ‖SAu‖γi

L2 xβ− γi
2 −1|xu′(x)| (2.10)

and hence there is a constant K such that

|ni(x, u′(x))u(x)| ≤ K‖SAu‖γi
L2 xβi−

3γi
2 −1{u(x)2 + x2u′(x)2}. (2.11)

Setting ν = min{βi − 3γi
2 − 1 : 1 ≤ i ≤ j} it follows from (2.10) that there exists a constanct C

such that

|n(x, u′(x))| ≤ CxνDn(‖SAu‖L2)|xu′(x)| for all u ∈ DA and x ∈ (0, 1).

Hence N(u) ∈ L2 for all u ∈ DA and the main properties of the mapping N : DA → L2 are
given in the next result.

Proposition 2.5. When n satisfies the condition (M), N ∈ C1(DA, L2) with N′(u)v = ∂sn(·, u′)v′

for all u, v ∈ DA and there is a constant C > 0 such that ‖N′(u)‖B(DA,L2) ≤ CDn(‖SAu‖L2).
Furthermore, the mapping N : DA → L2 is compact.

Proof. See Lemma 3.4 in [31] and Lemma 4.3 (a) in [34].

2.3 Solutions of problem (1.1)(1.2) and bifurcation points

In dealing with problem (1.1)(1.2) from now on it will be assumed that the following condition
is satisfied.

(S) The coefficients A and V satisfy conditions (A) and (V). The function n satisfies condition
(M) and g can be written as g1 + g2 where g1 satisfies condition (F) and g2 satisfies
condition (E).

Under the assumption (S) it follows from Propositions 2.1 to 2.5 that a continuous mapping
F : R× DA → L2 is defined by

F(λ, u) = SAu + Vu + N(u) + g̃(u)− λu, (2.12)

provided that DA is considered with a norm equivalent to the graph norm of SA. By property
(D2), all elements of DA satisfy (1.2).

Definition 2.6. Henceforth, a solution of problem (1.1)(1.2) is defined to be an element (λ, u) ∈
R× DA such that F(λ, u) = 0, where F is given by (2.12).

Clearly (λ, 0) is a solution for all λ ∈ R and

E = {(λ, u) ∈ R× DA : F(λ, u) = 0 and u 6≡ 0} (2.13)

denotes the set of all non-trivial solutions of problem (1.1)(1.2). We recall that for u ∈ DA,
u ∈ C1((0, 1]) and, setting v = Au′, we also have that v is absolutely continuous on [0, 1],
as noted at the beginning of Section 2 in [31]. If (λ, u) is a solution of (1.1)(1.2), v′(x) =

f (λ, x, u(x), v(x)) for almost all x ∈ (0, 1) where f (λ, x, p, q) = [V(x)− λ]p + n(x, q/A(x)) +
g(x, p) for x ∈ (0, 1] and p, q ∈ R. Thus, when A is not differentiable on (0, 1), equation (1.1)
is satisfied in the sense of a quasi-differential equation, that is

(u(x), v(x))′ = (v(x)/A(x), f (λ, x, u(x), v(x))) for almost all x ∈ (0, 1). (2.14)
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(See III.10.1 in [10] and Chapter 2 of [25], for example.) For any given η ∈ (0, 1] and (p0, q0) ∈
R, assumption (S) ensures that there exist L > 0 and δ ∈ (0, η) such that

|q1 − q2|
A(x)

≤ L|q1 − q2| and | f (λ, x, p1, q1)− f (λ, x, p2, q2)| ≤ L‖(p1, q1)− (p2, q2)‖

for x ∈ [η − δ, 1] and ‖(pi, qi) − (p0, q0)‖ < δ for i = 1 and 2. Hence for any x0 > 0, local
existence and uniqueness of the solution of the initial value problem u(x0) = p0, v(x0) = q0 for
(2.14) hold by standard arguments applied to the equivalent integral equation. (See Chapter 2
of [6], for example.) In particular, if (λ, u) is a solution of (1.1)(1.2) and u(x0) = u′(x0) = 0 for
some x0 ∈ (0, 1], then u(x) = 0 for all x ∈ (0, 1] and it follows that, if (λ, u) ∈ E , then u has a
finite number of zeros in any compact subinterval of (0, 1] and that they are all simple zeros.

Having clarified what is meant by a solution of problem (1.1)(1.2), we now turn to the
notion of bifurcation point.

Definition 2.7. A real number µ is called a bifurcation point for problem (1.1)(1.2) if and only
if (µ, 0) ∈ E where E denotes the closure of E in the space R×DA and DA is considered with
the norm u 7→ ‖SAu‖L2 .

To explore the content of this definition, consider a sequence {(λn, un)} in E such that
λn → µ and ‖SAun‖L2 → 0 as n → ∞. By properties (P1) and (P2) in Section 2.1 this implies
that ‖x1/2un‖L∞ → 0 and ‖x3/2u′n‖L∞ → 0 as n → ∞. Hence, {un} and {u′n} converge uni-
formly to zero on all compact subintervals of (0, 1], but not necessarily on (0, 1]. However, by
(D2) we do have that ‖un‖L2 + ‖un‖A → 0 as n→ ∞. The results in Section 5 provide sufficient
conditions for a number µ to be a bifurcation point and under their hypotheses the functions
un have only a finite number of zeros in (0, 1]. It follows from this and Proposition 3.5(ii) that
there exists n0 ∈ N such that limx→0 un(x) = ±∞ for all n ≥ n0 if µ ∈ (V0 + Js(g1), a

4 + V0).
Further details of situations where this phenomenon occurs are given in Section 5.

The assumption (S) and Propositions 2.1 to 2.5 also imply that for all λ ∈ R the mapping
F(λ, ·) : DA → L2 defined by (2.12) is Hadamard differentiable at 0 with DuF(λ, 0) = SA +V ∈
B(DA, L2). Hence we expect that bifurcation theory for problem (1.1)(1.2) will require some
information about the spectrum of the operator SA + V.

2.4 Spectral theory of the linearization

Conditions (A) and (V) are supposed to be satisfied throughout this subsection. Here we
summarize the main features of the self-adjoint operator S = SA + V : D(S) = D(SA) ⊂
L2(0, 1) → L2(0, 1) that are established in [31] and [33]. More precisely, properties (S1) and
(S3) are part of Theorem 4.1 in [33] and (S5) is justified by the discussion preceding Theorem
6.11 in [33]. Property (S2) follows from the comments after Definition 2.6 about solutions of
(2.14) with n and g equal to zero. In the same way, properties (S4) and (S6) are special cases
of Lemma 3.1 and Proposition 3.5, although similar conclusions also appear in [31, 33]. Recall
that

σ(S) = {λ ∈ R : S− λI : D(S)→ L2(0, 1) is not an isomorphism}
and

σe(S) = {λ ∈ R : S− λI : D(S)→ L2(0, 1) is not a Fredholm operator}.

Let
m = inf σ(S) and me = inf σe(s).
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(S1) σe(S) = [ a
4 + V0, ∞) and C1

4 + ess inf V ≤ m ≤ me =
a
4 + V0.

(S2) All eigenvalues of S are simple and eigenfunctions have only simple zeros in (0, 1].

(S3) If m < me, it is an eigenvalue having an eigenfunction φ with φ(x) > 0 for 0 < x < 1.

(S4) If u is an eigenfunction for an eigenvalue in the interval (−∞, me), then u has only a finite
number of zeros in (0, 1].

(S5) If the eigenvalues are numbered in increasing order with m = µ1 < µ2 etc. and if µk < me,
then an eigenfunction for µk has exactly k zeros in (0, 1].

(S6) If µ is an eigenvalue in (−∞, V0) its eigenfunction is bounded on (0, 1) whereas, if V0 <

µ < me it has an eigenfunction φ with φ(x)→ ∞ as x → 0.

There are cases where S has no eigenvalues, for example, when A(x) = x2 and V(x) ≡ 0.
More generally, if A and V have the additional properties that A and V ∈ C1((0, 1]) with

lim
x→0

A′(x)/x = 2a, lim
x→0

xV ′(x) = 0 and A(x)/x2 and V non-decreasing on (0, 1),

then S has no eigenvalues. See Corollary 3.9.
The following special cases, which are treated in Section 4.2 of [33], together with the usual

comparison principle for self-adjoint operators, provide examples of situations where S does
have eigenvalues in (−∞, me).

Example 2.8. Let A(x) = x2 and for some τ ∈ (0, 1) and L > 0, let

V(x) = 0 for 0 < x < τ and V(x) = −L for τ < x < 1.

Then σe(S) = [ 1
4 , ∞) and S has no eigenvalues in this interval.

If
√

L ln 1
τ ≤

π
2 , S has no eigenvalues.

If (n − 1
2 )π <

√
L ln 1

τ ≤ (n + 1
2 )π for some positive integer n, then S has exactly n

eigenvalues in (−∞, 1
4 ).

The explicit form of the eigenfunctions and estimates for the eigenvalues are also given
in [33].

Example 2.9. For 0 < x < 1, let A(x) = x2 and V(x) = −( nπs
2 )2xs where s ∈ (0, ∞) and n is a

positive integer.
Then σe(S) = [ 1

4 , ∞) and S has at least n eigenvalues in (−∞, 1
4 ). In fact, µn = 1

4 (1−
s2

4 ) is
the n-th eigenvalue and φ(x) = x−

1
2 (1+

s
2 ) sin(nπx

s
2 ) is an eigenfunction for µn.

Example 2.10. For τ ∈ (0, 1), let

A(x) = x2 for 0 ≤ x ≤ τ and A(x) = τ2 for τ < x ≤ 1.

Then σe(SA) = [ 1
4 , ∞). If τ ≥ 2

2+π , SA has no eigenvalues whereas if 2
2+(4n+1)π ≤ τ < 2

2+(4n−3)π

for a positive integer n, then SA has exactly n eigenvalues in (−∞, 1
4 ).

The explicit form of the eigenfunctions and estimates for the eigenvalues are also given in
[33].
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The operator S = SA +V is always bounded below and for some proofs it is useful to make
a shift so that it becomes positive. For any c > −m, the operator Sc ≡ S + cI with domain
D(Sc) = D(S) = D(SA) has many properties similar to those of SA. It is positive definite and
self-adjoint. The graph norms of S and Sc are equivalent to the norm defined by ‖SAu‖L2 on

D(SA). Furthermore, the domain of its positive, self-adjoint square root, S
1
2
c , is HA and ‖ · ‖A

is equivalent to the graph norm of S
1
2
c on HA. See Section 4.3 of [33] for more details.

The proof of Theorem 5.5 uses some facts about the spectrum of the self-adjoint operator
W ∈ B(L2, L2) defined by W = I − (λ + c− α)S−1

c where α ≥ 0, c > max{0, α− ess inf V} and
α− c < λ < me. Note that c > α−m by property (S1) so α− c < m ≤ me and c > −m. Hence
Sc : DA → L2 is an isomorphism and S−1

c ∈ B(L2, L2) is injective but not surjective. Hence
1 ∈ σe(W) and it is easy to check that

σ(W)={1}∪
{

1− λ + c− α

µ + c
: µ ∈ σ(S)

}
and σe(W)={1}∪

{
1− λ + c− α

µ + c
: µ ∈ σe(S)

}
.

Since λ + c− α > 0, it follows that 1− λ+c−α
µ+c is an increasing function of µ and hence

inf σ(W) =
m + α− λ

m + c
and 0 < inf σe(W) =

me + α− λ

me + c
< 1. (2.15)

3 Qualitative properties of solutions

As noted in Section 2.3, solutions of (1.1)(1.2) have only a finite number of zeros in any
compact subinterval in (0, 1] and all zeros are simple. Most of the results in this section
concern the behaviour of solutions as x approaches the singular point x = 0. Some integral
identities also lead to conclusions about the non-existence of non-trivial solutions of (1.1)(1.2)
and the absence of eigenvalues of the operator SA + V. Earlier work on the properties of
solutions for a related problem can be found in the paper [5] by Caldiroli and Musina which
deals with equations of the form −{ω(x)u′(x)}′ = f (u(x)) under a variety of assumptions
about the decay of ω(x) as x → 0.

3.1 Nodal properties of solutions

The first results in this part provide conditions under which solutions of (1.1)(1.2) have a
finite number of zeros in (0, 1]. For a function u ∈ C((0, 1]) having only a finite number of
zeros in (0, 1] the number of zeros in (0, 1] will be denoted by ](u). Under the hypotheses of
Corollary 3.3 this number is locally constant on E .

Lemma 3.1. Let condition (S) be satisfied.

(i) Given δ > 0 and C > 0 there exists η ∈ (0, 1) such that u(x) 6= 0 for x ∈ (0, η] whenever
(λ, u) ∈ E with λ ≤ me − `g1 − δ and ‖SAu‖L2 ≤ C.

(ii) If there exists z ∈ (0, 1) such that either g(x, s)s ≥ 0 for all (x, s) ∈ (0, z)×R, or g1(x, s)s ≥ 0
for all (x, s) ∈ (0, z)×R, then the conclusion holds for λ ≤ me − δ and ‖SAu‖L2 ≤ C.

Proof. (i) Fix δ and C as in the statement of the lemma. By (F), (2.9 ) and (2.11), there exist
a constant D > 0 and an exponent ν > 0 for which the following inequalities hold for all
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x ∈ (0, 1) and all u ∈ DA with ‖SAu‖L2 ≤ C.

g̃1(u)(x)u(x) ≥ −`g1 u(x)2, (3.1)

g̃2(u)(x)u(x) ≥ −Dxνu(x)2, (3.2)

N(u)(x)u(x) ≥ −Dxν{u(x)2 + x2u′(x)2}. (3.3)

Set ε = min
{ a

2 , δ
4

}
and then choose η ∈ (0, 1) such that, for 0 < x ≤ η,

A(x) ≥ (a− ε)x2, V(x) ≥ V0 − ε and Dxν ≤ ε.

Consider (λ, u) ∈ E with λ ≤ me − `g1 − δ and ‖SAu‖L2 ≤ C. If u(z) = 0 for some z ∈ (0, η],
then using (2.1) and (2.2) we have

0 =
∫ z

0
A(x)u′(x)2 + V(x)u(x)2 + N(u)(x)u(x) + g̃(u)(x)u(x)− λu(x)2dx (3.4)

≥
∫ z

0
(a− ε)x2u′(x)2 + [V0 − ε]u(x)2

− ε{u(x)2 + x2u′(x)2} − `g1 u(x)2 − εu(x)2 − λu(x)2dx
(3.5)

≥
∫ z

0

a− 2ε

4
u(x)2 + u(x)2 {V0 − 3ε− `g1 − λ

}
dx =

∫ z

0
u(x)2

{
me − `g1 − λ− 7

2
ε

}
dx (3.6)

≥
∫ z

0
u(x)2

{
δ− 7

2
ε

}
dx ≥ ε

2

∫ z

0
u(x)2dx > 0. (3.7)

From this contradiction we may conclude that u has no zeros in the interval (0, z].
(ii) In this case the term `g1 u(x)2 in (3.5) and (3.6) and be dropped and (3.7) holds for

λ ≤ me − δ.

Lemma 3.2. For η ∈ (0, 1), C1
η ≡ {u ∈ C1([η, 1]) : u(1) = 0} with norm ‖u‖η = max{|u′(x)| :

η ≤ x ≤ 1} is a Banach space.

(i) Setting Pηu(x) = u(x) for u ∈ DA and x ∈ [η, 1], Pη ∈ B(DA, C1
η) is compact.

(ii) If u ∈ C1
η has exactly n zeros in (η, 1] all of which are simple and u(η) 6= 0, there exists δ > 0

such that for all v ∈ C1
η with ‖u− v‖η < δ, v has exactly n zeros in (η, 1] all of which are simple

and v(η) 6= 0.

Proof. (i) By the definition of DA, Pη(DA) ⊂ C1
η . Let {un} be a bounded sequence in DA and

let vn = (Pηun)′. By the Ascoli–Arzelà Theorem, it suffices to show that the sequence {vn} is
uniformly bounded and equi-continuous on [η, 1]. By property (D3) of SA,

vn(x) = − 1
A(x)

∫ x

0
wn(y) dy for η ≤ x ≤ 1

where wn = SAun and {wn} is a bounded sequence in L2(0, 1). Let M = sup ‖wn‖L2 . Then,
since A(x) ≥ C1x2 on [0, 1],

|vn(x)| ≤ 1
C1x2 x

1
2

{∫ x

0
wn(y)2dy

} 1
2

≤ M

C1η
3
2

for η ≤ x ≤ 1
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and for η ≤ x ≤ z ≤ 1,

|vn(x)− vn(z)| ≤
1

A(x)

∫ z

x
|wn(y)| dy +

∣∣∣∣ 1
A(x)

− 1
A(z)

∣∣∣∣ ∫ x

0
|wn(y)| dy

≤ M(z− x)
1
2

C1η2 +
M|A(z)− A(x)|

C2
1η

7
2

.

It follows that {vn} has a subsequence converging in C([η, 1]) and consequently that Pη :
DA → C1

η is a compact operator.
(ii) This is an easy exercise. The details are given in Lemma 3.1 of [36], for example.

Corollary 3.3. Suppose that condition (S) is satisfied and that (λ, u) ∈ E has the property that there
exist δ > 0 and η ∈ (0, 1) such that, for all (ξ, v) ∈ E with |ξ − λ|+ ‖SA(u− v)‖L2 < δ, v has
no zeros in the interval (0, η]. Then there exists ε > 0 such that ](v) = ](u) for all (ξ, v) ∈ E with
|ξ − λ|+ ‖SA(v− u)‖L2 < ε.

Proof. By Lemma 3.2 (i), Pη ∈ B(DA, C1
η) and so the conclusion follows from Lemma 3.2 (ii).

For z ∈ (0, 1) let

E(z) =
{
(x, s) ∈ (0, 1)×R : 0 < x < z and |s| < x−

1
2 ln

1
x

}
and

D(z) =
{
(x, s) ∈ (0, 1)×R : 0 < x < z and z−

1
2 ln

1
z
< |s| < x−

1
2 ln

1
x

}
.

Then, for a Carathéodory function g : (0, 1)×R→ R, let

Ji(g) = lim
z→0

ess inf
0<x<z

inf
{

g(x, s)
s

: 0 < |s| < x−
1
2 ln

1
x

}
(3.8)

Js(g) = lim
z→0

ess sup
0<x<z

sup
{

g(x, s)
s

: 0 < |s| < x−
1
2 ln

1
x

}
(3.9)

Ii(g) = lim
z→0

ess inf
0<x<z

inf
{

g(x, s)
s

: z−
1
2 ln

1
z
< |s| < x−

1
2 ln

1
x

}
(3.10)

Is(g) = lim
z→0

ess sup
0<x<z

sup
{

g(x, s)
s

: z−
1
2 ln

1
z
< |s| < x−

1
2 ln

1
x

}
. (3.11)

When dealing with solutions of (1.1)(1.2) these quantities lead to the following properties
which will be exploited in Proposition 3.5.

Lemma 3.4. Let condition (S) be satisfied.

(i) Then −`g1 ≤ Ji(g1) = Ji(g) ≤ 0 ≤ Js(g) = Js(g1) ≤ `g1 and
Ji(g) ≤ Ii(g1) = Ii(g) ≤ Is(g1) = Is(g) ≤ Js(g). If g1 also satisfies the compactness condition
in Proposition 2.1 then Ii(g) = Is(g) = α.

(ii) If (λ, u) ∈ E , there exists z ∈ (0, 1) such that (x, u(x)) ∈ E(z) for all x ∈ (0, z). Setting

Bu(x) =
g(x, u(x))

u(x)
if u(x) 6= 0 and Bu(x) = 0 if u(x) = 0, (3.12)

Ji(g1) ≤ lim infx→0 Bu(x) ≤ lim supx→0 Bu(x) ≤ Js(g1). If either u(x) → ∞ or u(x) → −∞
as x→ 0, then Ii(g1) ≤ lim infx→0 Bu(x) ≤ lim supx→0 Bu(x) ≤ Is(g1).
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Here lim supx→0 Bu(x) = limx→0 ess sup0<y<x Bu(y) and similarly for the lim inf.

Proof. (i) Since g(x, s)/s → 0 as s → 0 for all x ∈ (0, 1), Js(g) ≥ 0 ≥ Ji(g). Furthermore,
−`g1 ≤ g1(x, s)/s ≤ `g1 for x ∈ (0, 1) and s 6= 0 so −`g1 ≤ Ii(g1) ≤ Is(g1) ≤ `g1 .

Let f be a function satisfying condition (E)(ii) for α > σ/2 > 0. Then, for 0 < x < 1 and
0 < |s| < x−

1
2 ln 1

x , ∣∣∣∣ f (x, s)
s

∣∣∣∣ ≤ Kxα|s|σ ≤ Kxα− σ
2

(
ln

1
x

)σ

and hence

lim
z→0

ess sup
0<x<z

sup
{∣∣∣∣ f (x, s)

s

∣∣∣∣ : 0 < |s| < x−
1
2 ln

1
x

}
= 0.

Since g− g1 is a finite sum of functions of this type and D(z) ⊂ E(z) the conclusions follow.
(ii) By property (P2) there exists a constant K such that x

1
2 |u(x)| ≤ K for 0 < x < 1.

Hence there exists z0 ∈ (0, 1) such that (x, u(x)) ∈ E(z) for 0 < x < z < z0. Furthermore,
if |u(x)| → ∞ as x → 0, for all z ∈ (0, z0), there exists δz < z such that (x, u(x)) ∈ D(z) for
0 < x < δz. The conclusions in part (ii) are easily deduced from these observations.

We can now establish a number of results concerning the behaviour of a solution of
(1.1)(1.2) as x → 0. They generalise and improve similar conclusions in Theorem 5.1 of [31].

Proposition 3.5. Let condition (S) be satisfied and n ≡ 0.

(i) If λ < me + Ji(g1) and (λ, u) ∈ E , there exists η ∈ (0, 1) such that u has no zeros in the interval
(0, η].

(ii) If λ > V0 + Js(g1) and (λ, u) ∈ E , then either u has a sequence of zeros converging to 0 or
limx→0 u(x) = ±∞.

(iii) If λ > max{V0 + Js(g1), me + Is(g1)} and (λ, u) ∈ E , then u has a sequence of zeros converging
to 0.

(iv) If λ < V0 + Ii(g1) and (λ, u) ∈ E , then u ∈ L∞(0, 1).

Remark 3.6. Since me + Js(g1) ≥ max{V0 + Js(g1), me + Is(g1)} it follows from part (iii) that u
has a sequence of zeros converging to 0 if λ > me + Js(g1) and (λ, u) ∈ E .

Taking g ≡ 0, Proposition 3.5 gives the following information about an eigenfunction, φ,
of SA +V associated with an eigenvalue λ. For λ < me it has a finite number of zeros whereas
for λ > me it has infinitely many zeros. If λ < V0, φ is bounded on (0, 1) and if V0 < λ < me,
φ(x)→ ±∞ as x → 0.

Proof. Recall that me =
a
4 + V0 and, for (λ, u) ∈ E , set B(λ, u)(x) = λ−V(x)− Bu(x).

Part (i) This can be proved in the same way as Lemma 3.1 since, given any ε > 0, there exists
η ∈ (0, 1) such that, for 0 < x < η, A(x) ≥ (a− ε)x2, V(x) ≥ V0 − ε and g(x, u(x))u(x) =

Bu(x)u(x)2 ≥ {Ji(g1) − ε}u(x)2. It suffices to repeat the estimates (3.4) to (3.7) with minor
adjustments.

Part (ii) Consider (λ, u) ∈ E and suppose that u has only a finite number of zeros in (0, 1).
Since u ∈ C((0, 1]) there exists η > 0 such that either u > 0 on (0, η] or u < 0 on (0, η].

Suppose that u > 0 on (0, η]. By property (D3) of DA,

A(x)u′(x) = −
∫ x

0
B(λ, u)(y)u(y) dy for 0 < x ≤ η.
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Define ε > 0 by 3ε = λ− V0 − Js(g1). By condition (V) and Lemma 3.4, η can be chosen so
that V(x) ≤ V0 + ε and Bu(x) ≤ Js(g1) + ε for 0 < x < η. Then for 0 < y < η, B(λ, u)(y) ≥
λ−V0 − J(g1)− 2ε = ε and so

A(x)u′(x) ≤ −
∫ x

0
εu(y) dy < 0 for 0 < x < η,

from which it follows that u is decreasing on (0, η) and consequently, A(x)u′(x) ≤ −εu(η)x
for 0 < x ≤ η. By condition (A),

u(η)− lim
x→0

u(x) ≤ −εu(η)
∫ η

0

y
A(y)

dy = −∞,

proving that u(x)→ ∞ as x → 0.
The case where u < 0 on (0, η] can be dealt with in the same way.

Part (iii) Choose γ > 1
4 such that λ > γa + V0 + Is(g1) and then define ε > 0 by (3 + γ)ε =

λ− γa−V0 − Is(g1).
There exists η ∈ (0, 1) such that, for 0 < x < η, A(x) ≤ (a + ε)x2 and V(x) ≤ V0 + ε.
Suppose that u has only a finite number of zeros. By part (ii), u(x) → ±∞ as x → 0

and so, referring to Lemma 3.4 and reducing η, we may suppose that Bu(x) ≤ Is(g1) + ε for
0 < x < η. Then, for 0 < x < η,

B(λ, u)(x) ≥ λ−V0 − Is(g1)− 2ε = γa + (3 + γ)ε− 2ε = γ(a + ε) + ε.

The function w defined by w(x) = x−1/2 sin
(√

γ− 1
4 ln x

)
for x > 0 satisfies the equation

−(x2w′(x))′ = γw(x), which can be written as

−(C(x)w′(x))′ = Dw(x) where C(x) = (a + ε)x2 and D = γ(a + ε).

On the interval (0, η), −(Au′)′ = B(λ, u)u, A ≤ C, B(λ, u) > D and w has an infinite sequence
of zeros converging to 0. Hence, by the Sturm comparison theorem, u also has a sequence of
zeros in (0, η) converging to 0. (For the type of coefficients appearing here, the comparison
can be established using Picone’s identity by the arguments in 10.31 of [19].) This proves
part (iii).

Part (iv) Let ε > 0 be defined by 3ε = V0 + Ii(g1)− λ. There exist η ∈ (0, 1) and S > 0 such
that, for 0 < x < η, V(x) ≥ V0 − ε and, if |u(x)| > S, Bu(x) ≥ Ii(g1)− ε by Lemma 3.4. Then

B(λ, u)(x) ≤ λ−V0 − Ii(g1) + 2ε = −ε on ω ≡ {x ∈ (0, η) : |u(x)| ≥ S}.

Let T = max{S, maxη≤x≤1 |u(x)|} and ω+ = {x ∈ (0, 1) : u(x) > T}. Then ω+ ⊂ ω and
(u− T)+ ∈ HA. Hence supp(u− T)+ ⊂ ω+ and by (2.3),

0 ≤
∫

ω+
A(u′)2dx =

∫ 1

0
Au′[(u− T)+]′dx =

∫ 1

0
SAu(u− T)+dx =

∫ 1

0
B(λ, u)u(u− T)+dx

=
∫

ω+
B(λ, u)u(u− T) dx.

But B(λ, u) ≤ −ε and u(u− T)+ > 0 on the open set ω+ which must be empty, since otherwise
the final integral would be negative. This proves that u(x) ≤ T on (0, 1].

A similar argument using ω− = {x ∈ (0, 1) : u(x) < −T} and (u + T)− shows that
u(x) ≥ −T on (0, 1], completing the proof of part (iv).
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3.2 Integral identities and their consequences

The following identities involving solutions of (1.1)(1.2) lead to new information about their
behaviour as x → 0 and also to some conditions under which non-trivial solutions do not
exist.

Proposition 3.7. In addition to the assumption (S) with n ≡ 0, suppose that the following condition
is satisfied.

(T1) There exists δ ∈ (0, 1] such that A and V ∈ C1((0, δ]) with limx→0
A′(x)

2x = a and
limx→0 xV ′(x) = 0. Also g1 and fi ∈ C1((0, δ)×R) where g2 = ∑k

i=1 fi with

|x∂xg1(x, s)| ≤ K|s| and |x∂x fi(x, s)| ≤ Kixσi/2|s|1+σi for (x, s) ∈ (0, δ)×R,

where σi is given by assumption (E).

Set
Φ(x, s) =

∫ s

0
g(x, t) dt for (x, s) ∈ (0, 1)×R.

Suppose that u(z) = 0 for some z ∈ (0, δ]. Then∫ z

0
[A− xA′](u′)2 + (λ−V − xV ′)u2 − 2{Φ(x, u) + x∂xΦ(x, u)} dx = zA(z)u′(z)2, (3.13)

∫ z

0
A(u′)2 + (V − λ)u2 + g(x, u)u dx = 0, (3.14)∫ z

0
[2A− xA′](u′)2 − xV ′u2 + g(x, u)u− 2{Φ(x, u) + x∂xΦ(x, u)} dx = zA(z)u′(z)2. (3.15)

Proof. This result is a slight generalization of Lemma 5.2 in [31] and Theorem 7.7 in [33]. The
proof requires only minor modifications to the arguments used in these references.

From the identity (3.13) we can derive an variant of part (i) of Proposition 3.5.

Corollary 3.8. Under the assumptions (S) with n ≡ 0 and (T1), if (λ, u) ∈ E and λ < me +

2 lim infx→0 infs 6=0
Φ(x,s)+x∂xΦ(x,s)

s2 , there exists η ∈ (0, 1) such that u(x) 6= 0 for x ∈ (0, η].

Proof. By the assumptions about the coefficients A and V, [A(x) − xA′(x)]/x2 → −a and
V(x) + xV ′(x)→ V0 as x → 0. For (λ, u) as in the statement, first choose ε > 0 such that

ε < a and λ + 4ε < me + 2 lim inf
x→0

inf
s 6=0

Φ(x, s) + x∂xΦ(x, s)
s2 ,

and then, for δ as in (T1), choose η ∈ (0, δ) such that for 0 < x ≤ η,

A(x)− xA′(x)
x2 < −a + ε, V(x) + xV ′(x) > V0 − ε

and

inf
s 6=0

Φ(x, s) + x∂xΦ(x, s)
s2 > lim inf

x→0
inf
s 6=0

Φ(x, s) + x∂xΦ(x, s)
s2 − ε.

Suppose now that u(z) = 0 for some z ∈ (0, η]. By (2.2),∫ z

0
[A(x)− xA′(x)]u′(x)2dx < −(a− ε)

∫ z

0
x2u′(x)2dx ≤ − a− ε

4

∫ z

0
u(x)2dx
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and hence (3.13) yields

zA(z)u′(z)2 <
∫ z

0

{
λ− a− ε

4
−V0 + ε− 2 lim inf

x→0
inf
s 6=0

Φ(x, s) + x∂xΦ(x, s)
s2 + 2ε

}
u(x)2dx

≤ −3
4

ε
∫ z

0
u(x)2dx < 0.

Since A(z) > 0 and u′(z) 6= 0, this is false and so u(z) 6= 0 for all z ∈ (0, η].

Unlike the other results concerning the behaviour of solutions as x → 0 the identity (3.15)
yields information without placing any restriction on λ.

Corollary 3.9. In addition to the assumptions (S) with n ≡ 0 and (T1), suppose that

(T2) there exists η ∈ (0, δ] such that A(x)
x2 and V(x) are non-decreasing functions of x on (0, η) and

g(x, s)s ≤ 2{Φ(x, s) + x∂xΦ(x, s)} for (x, s) ∈ (0, η)×R. (3.16)

Then for any (λ, u) ∈ E , u(x) 6= 0 for 0 < x ≤ η and consequently, λ ≤ max{V0 + Js(g1), me +

Is(g1)} by part (iii) of Proposition 3.5.
Since u(1) = 0 for all u ∈ DA, if (T1) and (T2) are satisfied with δ = η = 1, E = ∅ and, taking

g ≡ 0, the operator S = SA + V has no eigenvalues.

Proof. If (λ, u) ∈ E and u(z) = 0 for some z ∈ (0, η], then u′(z) 6= 0 and zA(z)u′(z)2 > 0. But
the hypotheses imply that 2A(x)− xA′(x) ≤ 0 and V ′(x) ≥ 0 on (0, η) so (3.15) implies that
zA(z)u′(z)2 ≤ 0, a contradiction. Hence u(x) 6= 0 for x ∈ (0, η].

Remark 3.10. Consider a function g having the properties required in conditions (S) and (T1).
For (x, s) ∈ (0, δ)×R,

Φ(x, s) =
∫ s

0

g(x, t)
t

t dt =
1
2

{
g(x, s)s−

∫ s

0
t2∂t

[
g(x, t)

t

]
dt
}

and so

g(x, s)s− 2{Φ(x, s) + x∂xΦ(x, s)} =
∫ s

0
t
{

t∂t

[
g(x, t)

t

]
− 2x∂x

[
g(x, t)

t

]}
dt.

Hence, condition (3.16) is satisfied provided that there exists η ∈ (0, δ] such that

s∂s

[
g(x, s)

s

]
≤ 2x∂x

[
g(x, s)

s

]
for all x ∈ (0, η) and s 6= 0.

A stronger, but more transparent, sufficient condition for (3.16) to hold is

s∂s

[
g(x, s)

s

]
≤ 0 ≤ ∂x

[
g(x, s)

s

]
for all x ∈ (0, η) and s 6= 0. (3.17)

Note that since condition (S) implies that g(x, s)/s → 0 as s → 0 for all x ∈ (0, 1), (3.17) can
only be satisfied in cases where g(x, s)/s ≤ 0 for all x ∈ (0, η] and s 6= 0.
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4 Global bifurcation in Hilbert space

In this section two results about global bifurcation of solutions for equations in Hilbert space
are formulated as Theorems 4.7 and 4.10. They are deduced from recent work in [34] on
equations of a more general type in Banach space. It seems worthwhile deriving the special
cases given here because their statement avoids a series of not so standard notions which are
required for the form treated in [34], but which are not needed here. Of course, the notions in
question inevitably appear in the proofs of Theorems 4.7 and 4.10 which amount to verifying
that the hypotheses of Theorems 3.4 and 3.5 in [34] are satisfied.

4.1 Preliminaries

In preparation for the subsequent discussion some notation is fixed and a few definitions are
recalled.

Let X and Y be two real Banach spaces. As usual, the space of all bounded linear operators
from X into Y will be denoted by B(X, Y) and, for T ∈ B(X, Y), ‖T‖ = sup{‖Tu‖ : u ∈
X and ‖u‖ = 1}.

Iso(X, Y) = {T ∈ B(X, Y) : T : X → Y is an isomorphism }
Φ0(X, Y) = {T ∈ B(X, Y) : T : X → Y is a Fredholm operator of index 0}

For (λ, u) ∈ R× X, ‖(λ, u)‖ = |λ|+ ‖u‖ and, for Ω ⊂ R× X, Ωλ = {u ∈ X : (λ, u) ∈ Ω} and
p(Ω) = {λ ∈ R : Ωλ 6= ∅}.

When U and V are subsets of the same Banach space d(U, V) = inf{‖u − v‖ : u ∈
U and v ∈ V} and if U = {u} is a singleton, d(u, V) = d({u}, V). The boundary of U is
denoted by ∂U.

Consider now a Hilbert space (H, (·, ·), ‖ · ‖) and a self-adjoint operator L : D(L) ⊂ H → H
acting in H. The space D(L) equipped with its graph norm, (‖u‖2 + ‖Lu‖2)1/2, is a Hilbert
space and L ∈ B(D(L), H). The spectrum and essential spectrum of L are defined by

σ(L) = {λ ∈ R : L− λI 6∈ Iso(D(L), H)} and σe(L) = {λ ∈ R : L− λI 6∈ Φ0(D(L), H)}.
When L ∈ B(H, H) is self-adjoint, σ(L) is bounded and re(L) = max{|λ| : λ ∈ σe(L)} denotes
the radius of its essential spectrum.

Proposition 4.1. For two bounded self-adjoint operators A and B on a real Hilbert space H,
inf σe(A + B) ≥ inf σe(A) + inf σe(B).

Proof. Without further mention it is understood that all the operators introduced in this proof
are bounded and self-adjoint. Let a = inf σe(A) and b = inf σe(B). Choose any ξ < a + b and
set ε = (a + b− ξ)/2. Let T = A− (a− ε)I and S = B− (b− ε)I.

Then inf σe(T) = ε > 0 and, from the spectral theory of A, there exists η > 0 such that
T can be written as D + C where (Du, u) ≥ η‖u‖2 for all u ∈ H and C has finite rank. (In
the notation of Proposition 3.1 in [11], it suffices to take η = min{inf σ(T+),− sup σ(T−)},
C = 2TP− − ηP0 and D = T − C.) Similarly, S = E + C1 where (Eu, u) ≥ η‖u‖2 for all u ∈ H
and C1 has finite rank. For u ∈ H this yields

([A + B− ξ I − C− C1]u, u) = ([D + E + (a + b− 2ε− ξ)I]u, u) ≥ 2η‖u‖2.

Hence ‖[A + B− ξ I − C− C1]u‖ ≥ 2η‖u‖ from which it follows that the self-adjoint operator
A + B− ξ I − C− C1 ∈ Iso(H, H) and consequently that A + B− ξ I ∈ Φ0(H, H) since C + C1

is compact. This proves that inf σe(A + B) ≥ a + b.
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As pointed out in Remark 2.2, for the simplest types of functions satisfying condition (F),
the associated Nemytskii operator is not Fréchet differentiable. The results in Sections 4.2 and
4.3 deal with bifurcation in Hilbert space where differentiability at the trivial solution holds
in some weaker sense. To avoid confusion with variants appearing elsewhere the relevant
definitions are now recalled in the form used in this paper.

Consider a mapping G : U ⊂ X → Y where X and Y are real Banach spaces and U is an
open subset of X.

Definition 4.2. The mapping G is said to be Gâteaux differentiable at u ∈ U if there exists an
operator T ∈ B(X, Y) such that, for all v ∈ X,∥∥∥∥G(u + tv)− G(u)

t
− Tv

∥∥∥∥→ 0 as t→ 0 in R.

This notion is quite standard as are variants in which T is not required to be linear. (See
[16].) The next definition is less well-known.

Definition 4.3. The mapping G is said to be w-Hadamard differentiable at u ∈ U if there
exists an operator T ∈ B(X, Y) having the following property. For every v ∈ X,

G(u + tnvn)− G(u)
tn

⇀ Tv weakly in Y as n→ ∞ for all sequences {tn} ⊂ R\{0} and

{vn} ⊂ X such that tn → 0 and vn ⇀ v weakly in X as n→ ∞.

It was named in this way in [11, 12] where it seems to have been used for the first time in
discussing bifurcation, but variants can be found in [2, 21]. The terminology was chosen to
reflect the analogy with the better known notion of Hadamard differentiability. (See [16].)

Definition 4.4. The mapping G is said to be Hadamard differentiable at u ∈ U if there exists
an operator T ∈ B(X, Y) such that, for all v ∈ X,∥∥∥∥G(u + tnvn)− G(u)

tn
− Tv

∥∥∥∥→ 0 as n→ ∞ for all sequences {tn} ⊂ R\{0} and

{vn} ⊂ X such that tn → 0 and ‖vn − v‖ → 0 as n→ ∞.

In all these definitions, the linear operator T is unique, if it exists. Furthermore, if G is
differentiable at u in more than one sense, the operator T is the same in all cases and it will be
denoted by G′(u). If F : R× X → Y and G = F(λ, ·), G′(u) will be denoted by DuF(λ, u). It
is easy to see that Hadamard differentiability at u implies Gâteaux differentiability at u. Also
Fréchet differentiability at u implies differentiability in the sense of all three definitions but
none of these notions implies Fréchet differentiability.

Example 4.5. Consider a function f ∈ C1(R, R) such that f (0) = 0 and K ≡ sup{| f ′(s)| : s ∈
R} < ∞. Since | f (s)| ≤ K|s| for all s ∈ R, f (u(·)) ∈ L2(0, 1) whenever u ∈ L2(0, 1) and the
associated Nemytskii operator f̃ : L2 → L2 is uniformly Lipschitz continuous. In Example 2.3
of [11] and the subsequent remark it is shown that, for all u ∈ L2, f̃ : L2 → L2 is Gâteaux
differentiable, w-Hadamard differentiable and Hadamard differentiable at u. On the other
hand, if there exists even one element u ∈ L2 at which f̃ : L2 → L2 is Fréchet differentiable,
then f : R→ R must be linear.
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Section 4.3 deals with bifurcation for a problem that is w-Hadamard at the trivial solu-
tion, whereas Gâteaux differentiability is assumed in Section 4.2. However in Section 4.2 the
problem is also required to be Lipschitz continuous in an open neighbourhood of the trivial
solution and this together with Gâteaux differentiability implies Hadamard differentiability
at the trivial solution. In fact, the situation treated in Section 4.2 is based on previous work
[29] relying heavily on Hadamard differentiability.

Both cases treated here concern bifurcation for an equation F(λ, u) = 0 at a point µ where
F : R× X → Y and L(µ) ≡ DuF(µ, 0) ∈ Φ0(X, Y). In fact, X and Y are Hilbert spaces with
X ⊂ Y and L(µ) : X ⊂ Y → Y is a self-adjoint operator acting in Y. In case 2, σe(L(µ)) ⊂ (0, ∞)

but F(µ, ·) : X → Y need not be Lipschitz continuous, whereas case 1 covers situations where
µ may be in a gap in σe(L(µ)), provided that d(0, σe(L(µ))) is sufficiently large relative to the
Lipschitz modulus of F(µ, ·)− L(µ).

4.2 Global bifurcation, case 1

Let (Y, (·, ·), ‖ · ‖) be a real Hilbert space and X a subspace of Y that is the domain of some
self-adjoint operator acting in Y . Recall from Proposition 5.4 of [29] that the graph norms
of all such operators on X are equivalent and let ‖ · ‖X denote one of these norms. Then
(X, ‖ · ‖X) is a Hilbert space, ‖u‖Y ≤ ‖u‖X for all u ∈ X and X is dense in Y. In this part we
consider equations of the form

M(u) = λu for (λ, u) ∈ R× X, (4.1)

where M = M1 + M2 : X → Y has the following properties.

(m1) M1 ∈ C1(X, Y), M1(0) = 0, M′1(0) : X ⊂ Y → Y is a self-adjoint operator acting in Y and
the remainder R1 ≡ M1 −M′1(0) : X → Y is compact.

(m2) M2 : X → Y is Gâteaux differentiable at 0 with M′2(0) = 0 and M2(0) = 0. Furthermore,

` ≡ sup
{
‖M2(u)−M2(v)‖Y

‖u− v‖Y
: u, v ∈ X and u 6= v

}
< ∞.

Remark 4.6. By (m2), M2 could be extended to a uniformly Lipschitz continuous mapping of
Y into itself. Since X is continuously embedded in Y, M2 : X → Y is also uniformly Lipschitz
continuous. It follows from these assumptions that M = M1 + M2 : X → Y is locally Lipschitz
continuous on X and Gâteaux differentiable at 0 with M′(0) = M′1(0). In connection with the
hypotheses for case 2, it should be noted that (m2) implies that M2 : X → Y is Hadamard
differentiable at 0 and that (m1) and (m2) imply that M : X → Y also has this property.
However, condition (m2) does not imply that M2 : X → Y is w-Hadamard differentiable at 0.

Let d` = {λ ∈ R : d(λ, σe(M′(0))) > `} and, for µ ∈ d`, let Jµ(`) denote the maximal
interval in d` containing µ.

Let E = {(λ, u) ∈ R×X : M(u) = λu and u 6= 0} denote the set of non-trivial solutions of
(4.1) and let E denote its closure in R× X. The assumptions (m1) and (m2) imply that (λ, 0)
is a solution of (4.1) for all λ ∈ R and E\E ⊂ R× {0}. A real number µ is a bifurcation point
for equation (4.1) if and only if (µ, 0) ∈ E .

Theorem 4.7. Consider equation (4.1) under the assumptions (m1) and (m2). Suppose that µ ∈ d`
and let U = Jµ(`)× X.
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(1) If ker{M′(0)− µI} = {0}, µ is not a bifurcation point for equation (4.1).

(2) If µ is an eigenvalue of odd multiplicity of M′(0) it is a bifurcation point for equation (4.1). The
connected component Dµ of E ∩U containing (µ, 0) has at least one of the following properties.

(a) {|λ|+ ‖u‖X : (λ, u) ∈ Dµ} = [0, ∞).
(b) d(p(Dµ), σe(M′(0)) = `.
(c) Dµ ∩ [Jµ(`)\{µ}]× {0} 6= ∅.

(3) If ker{M′(0)− µI} = span{φ} where ‖φ‖Y = 1 and {(λn, un)} ⊂ E is such that λn → µ and
‖un‖X → 0, then there exists n0 ∈ N such that for all n ≥ n0, un = (un, φ){φ + wn} where
(wn, φ) = 0 and ‖wn‖X → 0 as n→ ∞.

Remark 4.8. The hypotheses of Theorem 4.7 are similar to those of Corollary 6.11 in [29].
Apart from the fact that they hold on all of X instead of a ball centred at the origin, the
compactness of R1 is added. Parts (1) and (3) are already established in Corollary 6.11 of
[29] but part (2) provides new global information. If conditions (m1) and (m2) are satisfied
and M2 : X → Y is Fréchet differentiable at 0, part (2) of Theorem 4.7 could be deduced
from Theorem 1.1 in [27] which was itself based on Theorem 1.6 in [26]. Those results used
Nussbaum’s degree [22] for k-set contractions and they were applied to a a class of Sturm–
Liouville problems on the interval (0, ∞) in [26,27]. If, in addition, M2 : X → Y is continuously
differentiable on an open neighbourhood of 0, the conclusion in part (3) can be strengthened
using the standard result about bifurcation at a simple eigenvalue [8].

Proof. (1) This follows from part (i) of Corollary 6.11 in [29].

(2) It follows from part (ii) of Corollary 6.11 in [29] that µ is a bifurcation point. We sup-
pose now that Dµ does not have properties (a) and (b) and use Theorem 3.4 in [34] to
show that it must satisfy (c). From the assumption that Dµ is bounded it follows that
Iµ ≡ [inf p(Dµ), sup p(Dµ)] is a compact interval and then d(p(Dµ), σe(M′(0)) 6= ` means
that there exists k > ` such that Iµ ⊂ Jµ(k). Hence d(Dµ, ∂(Jµ(k)× X)) > 0.

The hypotheses of Theorem 3.4 in [34] involve the essential conditioning number,
γ(M′(0)− λI). By Corollary 5.6 in [29], for all λ 6∈ σe(M′(0)) and all ε > 0,

γ(M′(0)− λI) ≤ 1
d(λ, σe(M′(0)))

+ εKλ,

provided that the graph norm of εM′(0) is used on X and

Kλ = max
{

1,
|p|

λ− p
,
|q|

q− λ

}
,

where (p, q) is the maximal interval in R\σe(M′(0)) containing λ. If either p = −∞ or q = ∞,
the corresponding ratio is replaced by 1. We require this estimate for λ ∈ Jµ(k) and for λ

in this interval it is easy to check that Kλ ≤ K ≡ max
{

1, |p|k , |q|k
}

, with the same convention
concerning the cases p = −∞ and q = ∞. Thus, for λ ∈ Jµ(k),

γ(M′(0)− λI) ≤ 1
k
+ εK.

For the rest of this proof, choose and fix ε > 0 such that εK < 1
` −

1
k and let ‖ · ‖X denote the

graph norm of εM′(0). (If ` = 0, M2 ≡ 0 and any ε > 0 is acceptable.) We now have

d(λ, σe(M′(0))) > k and γ(M′1(0)− λI) = γ(M′(0)− λI) <
1
`

for all λ ∈ Jµ(k). (4.2)
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Setting F(λ, u) = M(u)− λu, we aim to show that the hypotheses of Theorem 3.4 in [34]
are satisfied with

U = Jµ(`)× X, Ω = Jµ(k)× X, G(λ, u) = M1(u)− λu and K(λ, u) = M2(u).

Using the notation of [34], let S = {(λ, u) ∈ U : F(λ, u) = 0 and u 6= 0}. Then S = E ∩U and
it is easy to check that E ∩U coincides with the closure of S in U. Hence Dµ = Cµ(U, F) in
the notation of the Introduction in [34].

Clearly condition (D0) in [34] is satisfied with J(Ω) = Jµ(k). Furthermore, G ∈ C1(Ω, Y)
and DuG(λ, u) = M′1(u)− λI = R′1(u) + M′1(0)− λI. Since R1 ∈ C1(X, Y) and R1 : X → Y is
compact, it follows from Proposition 8.2 in [9] that R′1(u) : X → Y is compact for all u ∈ X.
Hence DuG(λ, u) ∈ Φ0(X, Y) if and only if M′1(0)− λI ∈ Φ0(X, Y). But Jµ(k)∩ σe(M′1(0)) = ∅
so M′1(0)− λI ∈ Φ0(X, Y) for all λ ∈ Jµ(k) and hence condition (D1) in [34] is satisfied. It
is an immediate consequence of (m2) that K satisfies condition (D2) with DuK(λ, 0) = 0 and
furthermore

‖K(λ, u)− K(λ, v)‖ ≤ `‖u− v‖X for all u, v ∈ X.

In the notation of [34] for the measure of non-compactness, α(K(λ, ·), V) ≤ ` for every
bounded subset V of X for which α(V) is positive. On the other hand, by the compactness of
R1 : X → Y, (4.2) and Proposition 2.1(iv) in [34], for all λ ∈ Jµ(k),

ω(M1 − λI, V) = ω(R1 + M′1(0)− λI, V) ≥ ω(M′1(0)− λI, V)− α(R1, V) (4.3)

= ω(M′1(0)− λI, V) ≥ 1/γ(M′1(0)− λI) > ` ≥ α(K(λ, ·), V), (4.4)

which shows that condition (D3) in [34] is also satisfied.
Setting L(λ) = DuF(λ, 0) and ρ(λ, u) = K(λ, u)− DuK(λ, 0) as in [34], we have L(λ) =

M′(0)− λI ∈ Φ0(X, Y), LX(ρ, λ) ≤ ` and ∆r(ρ, λ) = 0 for all λ ∈ Jµ(k) and r > 0. It follows
from (4.2) and (4.4) that the conditions (3.15) and (3.16) in [34] are satisfied. Finally, using
Criterion I in Section 5.2 of [29], the local parity, σ(L, µ) of the path L at the isolated singular
point µ is −1 since M′(0) is self-adjoint and µ has odd multiplicity. At this point, it follows
from Theorem 3.4 in [34] that Dµ has at least one of the following properties.

(i) {|λ|+ ‖u‖X : (λ, u) ∈ Dµ} = [0, ∞).

(ii) d(Dµ, ∂Ω) = 0.

(iii) Dµ ∩ [R\{µ}]× {0} 6= ∅.

Recall that we are assuming that Dµ does not have the properties (a) and (b) and that Ω
has been chosen so that d(Dµ, ∂Ω) > 0. Hence Dµ must have property (iii) and this implies
property (c) since Dµ ⊂ Jµ(`)× X by definition.

(3) This follows from part (iii) of Corollary 6.11 in [29].

4.3 Global bifurcation, case 2

In this part we deal with an equation of the form

M(u) = λT(u) for (λ, u) ∈ R× H, (4.5)

where (H, (·, ·), ‖ · ‖) is a real Hilbert space. The mappings M = M1 + M2 and T have the
following properties.
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(W0) T ∈ B(H, H) is a self-adjoint operator and (Tu, u) > 0 for u ∈ H\{0}.

(W1) M1 ∈ C1(H, H) with M1(0) = 0 and M′1(0) is self-adjoint. Furthermore, the remainder
R1 = M1 −M′1(0) : H → H is a compact operator.

(W2) M2 ∈ C(H, H) with M2(0) = 0. The mapping M2 : H → H is compact and w-Hadamard
differentiable at 0 with M′2(0) self-adjoint. Furthermore,

lim inf
‖u‖→0

(R2(u), u)
‖u‖2 ≥ 0, where R2 = M2 −M′2(0).

Remark 4.9. The properties in (W2) do not imply that M′2(0) : H → H is a compact linear
operator. Since M2(0) = 0 it follows from the w-Hadamard differentiability of M2 at 0 that

lim
t→0

(R2(tu), tu)
‖tu‖2 = 0 for all u ∈ H\{0}

and so (W2) implies that

lim inf
‖u‖→0

(R2(u), u)
‖u‖2 = 0.

By (W1),

lim
‖u‖→0

(R1(u), u)
‖u‖2 = 0

since ‖R1(u)‖/‖u‖ → 0 as ‖u‖ → 0 and so, when (W1) is satisfied, the assumption about the
lim inf in (W2) is equivalent to

lim inf
‖u‖→0

(M(u)−M′(0)u, u)
‖u‖2 ≥ 0. (4.6)

Let E = {(λ, u) ∈ R × H : M(u) = λT(u) and u 6= 0} denote the set of non-trivial
solutions of (4.5) and let E denote its closure in R× H. As in case 1, µ is a bifurcation point
for (4.5) if and only if (µ, 0) ∈ E .

Theorem 4.10. Under the hypotheses (W0) to (W2), let J be an open interval such that inf σe(M′1(0)−
λT) > re(M′2(0)) for all λ ∈ J. Then inf σe(M′(0)− λT) > 0 for λ ∈ J.

Consider a point µ ∈ J and let U = J × H.

(1) If ker{M′(0)− µT} = {0}, µ is not a bifurcation point for equation (4.5).

(2) If dim ker{M′(0) − µT} is odd, µ is a bifurcation point for the equation (4.5). In fact, the
connected component Dµ of E ∩U containing (µ, 0) has at least one of the following properties.

(a) {|λ|+ ‖u‖X : (λ, u) ∈ Dµ} = [0, ∞).

(b) d(p(Dµ), ∂J) = 0.

(c) Dµ ∩ [J\{µ}]× {0} 6= ∅.

(3) Suppose that ker{M′(0)− µT} = span{φ} where ‖φ‖ = 1 and that {(λn, un)} ⊂ E is such
that λn → µ and ‖un‖ → 0 as n→ ∞. Let vn = un/‖un‖. Then there exist a subsequence and
c ∈ R\{0} for which vnk ⇀ cφ weakly in H as nk → ∞.
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Remark 4.11. By Proposition 4.1, for all λ ∈ J

inf σe(M′(0)− λT) ≥ inf σe(M′1(0)− λT) + inf σe(M′2(0))

≥ inf σe(M′1(0− λT))− re(M′2(0)) > 0.

In particular, M′(0)− λT and M′1(0)− λT ∈ Φ0(H, H) for all λ ∈ J.

Proof. Parts (1) and (2) will be deduced from Lemma 3.3 and Theorem 3.5 in [34]. With this in
mind, let F(λ, u) = M(u)− λTu for (λ, u) ∈ U. Then S ≡ {(λ, u) ∈ U : F(λ, u) = 0 and u 6=
0} = E ∩U and it is easy to check that E ∩U coincides with the closure of S in U. Hence in
the notation of the Introduction in [34], Dµ = Cµ(U, F). Setting

Ω = U = J × H, G(λ, u) = M1(u)− λTu and K(λ, u) = M2(u),

we consider first the hypotheses of Lemma 3.3 in [34].
By (W0) to (W2), F ∈ C(U, H) and F(λ, ·) : H → H is w-Hadamard differentiable at 0

with L(λ) ≡ DuF(λ, 0) = M′(0) − λT for all λ ∈ J. The remainder R(λ, u) = F(λ, u) −
DuF(λ, 0)u = R1(u) + R2(u) is independent of λ so the quantity ∆r(F, λ)→ 0 as r → 0 for all
λ ∈ J. By (W1), (W2) and (4.6),

lim inf
‖u‖→0

(R(λ, u), u)
‖u‖2 = lim inf

‖u‖→0

(R2(u), u)
‖u‖2 ≥ 0.

As noted in Remark 4.11 , inf σe(L(λ)) > 0 and since by Remark 3.2 in [34], wl(L(λ)) =

inf σe(L(λ)), it follows that condition (3.14)(a) in [34] is satisfied at λ ∈ J whenever
ker{M′(0) − λT} = {0}. The conclusion in part (1) is now justified by Lemma 3.3(ii) in
[34].

For part (2) we use Theorem 3.5 in [34], noting first of all that (D0) is satisfied and that by
(W1), G ∈ C1(Ω, H) with DuG(λ, u) = M′1(u)− λT = R′1(u) + M′1(0)− λT. By Proposition 8.2
in [9], (W1) also implies that, for all u ∈ H, R′1(u) ∈ B(H, H) is compact and so DuG(λ, u) ∈
Φ0(H, H) for all λ ∈ J by Remark 4.11. This proves that condition (d1) in [34] is satisfied and
condition (d2) is an immediate consequence of hypothesis (W2). For (d3), consider a bounded
subset V of H for which the set-measure of non-compactness, α(V), is positive. Then in the
notation of [34], for all λ ∈ J,

ω(G(λ, ·), V) = ω(R1 + M′1(0)− λT, V) ≥ ω(M′1(0)− λT, V)− α(R1, V)

= ω(M′1(0)− λT) ≥ inf σe(M′1(0)− λT) > 0,

by the compactness of R1 and Remark 2.1 in [34]. Since α(M2, V) = 0 by the compactness
of M2, this shows that condition (d3) in [34] is satisfied. Furthermore, referring again to
Remark 2.1 in [34], for λ ∈ J,

α(DuK(λ, 0)) = α(M′2(0)) ≤ re(M′2(0)) < inf σe(M′1(0− λT)) ≤ ω(DuG(λ, 0)).

Also α0(K(λ, ·)) = 0 by the compactness of M2. Hence condition (3.16) in [34] is satisfied
because ρ(λ, u) ≡ K(λ, u)− DuK(λ, 0)u does not depend upon λ.

We have already noted in Remark 4.11 that L(λ) = M′(0)− λT ∈ Φ0(H, H) for all λ ∈ J.
If u ∈ ker L(λ) and L′(λ)u = −Tu ∈ range L(λ) = [ker L(λ)]⊥, it follows that (Tu, u) = 0 and
hence u = 0 by (W0). Using Criterion I in [29] for the calculation of the local parity, σ(L, λ), of
the path L across λ we find that σ(L, λ) = (−1)n where n = dim ker L(λ). By Remark 3.2 in
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[34] and Remark 4.11, wl(L(λ)) = inf σe(M′(0)− λT) > 0 for all λ ∈ J and so, as in the proof
of part (1), (W1), (W2) and (4.6) imply that condition (3.18)(a) in [34] is satisfied.

The conclusion in part (2) now follows from Theorem 3.5 in [34].

(3) For the sequence {(λn, un)} in the statement let tn = ‖un‖. Then tn → 0 and un = tnvn.
Passing to a subsequence, we suppose henceforth that vn ⇀ v weakly in H. Since M(0) = 0
and M is w-Hadamard differentiable at zero it follows that M(un)/‖un‖ = M(tnvn)/tn ⇀

M′(0)v weakly in H as n→ ∞. Hence

L(µ)vn = {M′(0)− µT}vn = M′(0)vn −
M(un)

‖un‖
+ (λn − µ)Tvn ⇀ 0 weakly in H (4.7)

since M(un) = λnTun, λn → µ and M′(0)vn ⇀ M′(0)v weakly in H as n → ∞. This implies
that L(µ)v = 0 and so v = cφ for some c ∈ R.

If c = 0, vn ⇀ 0 weakly in H and so, in the notation of Section 3 of [34], {vn} ⊂ Σ from
which it follows that

lim inf
n→∞

(L(µ)vn, vn) ≥ wl(L(µ)) = inf σe(L(µ))

by Remark 3.2 in [34], where inf σe(L(µ)) > 0 by Remark 4.11. On the other hand from (4.7)
and (4.6) we obtain

lim inf
n→∞

(L(µ)vn, vn) = lim inf
n→∞

{ (M′(0)un −M(un), un)

‖un‖2 + (λn − µ)(Tvn, vn)}

= lim inf
n→∞

(M′(0)un −M(un), un)

‖un‖2 ≤ 0,

contradicting the earlier conclusion. Hence c 6= 0.

5 Global bifurcation for the boundary value problem

Under the assumption (S) formulated in Section 2.3, Theorems 4.7 and 4.10 will be used to
obtain conclusions about the bifurcation of solutions for problem (1.1)(1.2) in the sense of
Definition 2.7. The first result is based upon Theorem 4.7 and it deals with that happens for λ

in the interval (−∞, me− `g1) where me = inf σe(SA +V) = a
4 +V0 and `g1 is the best Lipschitz

for the part g1 of g which satisfies condition (F). It follows from Theorem 4.7 that there is
global bifurcation at every eigenvalue of SA + V in the interval (−∞, me − `g1). Corollary 5.3
deals with a special case, where n ≡ 0 and g(x, s)s ≤ 0 for (x, s) ∈ (0, 1) ×R, in which it
can be shown that there may be no bifurcation at eigenvalues of SA + V lying in the interval
(me − `g1 , ∞). The situation where g(x, s)s ≥ 0 for (x, s) ∈ (0, 1) ×R is quite different and
bifurcation at all eigenvalues of SA +V in the interval (−∞, me) can be proved using Theorem
4.10. This case is treated in Section 5.1.

Throughout this section E denotes the set of all non-trivial solutions of (1.1)(1.2) in R×DA
as defined in Section 2.3 and DA is considered with a norm that is equivalent to the graph
norm, ‖ · ‖S, of S = SA + V. Of course, the conclusions do not depend upon the choice of
norm. It is often convenient to use the norm defined by ‖SAu‖L2 but the proof of Theorem 5.5
is based on a different choice. The nodal properties of solutions established in Section 3 are
used to show that possibility (c) in Theorems 4.7 and 4.10 does not occur.

Theorem 5.1. Let the assumption (S) be satisfied and consider µ ∈ (−∞, me − `g1).
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(A) If µ is a bifurcation point for problem (1.1)(1.2), then µ is an eigenvalue of the self-adjoint operator
S = SA + V.

(B) If µ is an eigenvalue of S then µ is a bifurcation point for (1.1)(1.2) and the component Cµ of
E ∩ (−∞, me − `g1)× DA containing (µ, 0) has at least one of the following properties.

(i) {|λ|+ ‖u‖S : (λ, u) ∈ Cµ} = [0, ∞).

(ii) sup{λ : (λ, u) ∈ Cµ} = me − `g1 .

(C) If µ is the k− th eigenvalue of S, then ](u) = k for all (λ, u) ∈ Cµ ∩ E , where ](u) denotes the
number of zeros of u in (0, 1] and Cµ ∩R× {0} = {(µ, 0)}.

Remark 5.2. If assumption (S) is satisfied and n ≡ 0, then for (λ, u) ∈ E ,

‖SAu‖L2 ≤ (|λ|+ ‖V‖L∞ + `g1)‖u‖L2 + CCg2(‖u‖A)‖u‖A

by Remark 2.4. In this case property (i) in the conclusion can be replaced by {|λ| + ‖u‖A :
(λ, u) ∈ Cµ} = [0, ∞) and if in addition, g2 ≡ 0, it can be replaced by {|λ|+ ‖u‖L2 : (λ, u) ∈
Cµ} = [0, ∞).

Proof. The first step in this proof is to observe that the hypotheses of Theorem 4.7 are satisfied
for the equation F(λ, u) = 0 where F is defined by (2.12). For this we take Y = L2 and X = DA
equipped with the norms ‖ · ‖L2 and ‖ · ‖S, respectively, and set

M1(u) = Su + N(u) + g̃2(u) and M2(u) = g̃1(u) for u ∈ X.

From assumption (S) and Propositions 2.1, 2.3 and 2.5 it follows that the conditions (m1)and
(m2) are satisfied with M′(0) = M′1(0) = S and R1 = N + g̃2. In the notation of Theorem 4.7,
Jµ(`) = (−∞, me− `g1). From Theorem 4.7, we obtain immediately part (A) and that, if Cµ has
neither property (i) nor (ii), then there exists an eigenvalue ξ of S in (−∞, me − `g1)\{µ} such
that (ξ, 0) ∈ Cµ and hence Cξ = Cµ. To show that this third situation does not occur it suffices
to prove part (C).

(C) Since Cµ ⊂ (−∞, me − `g1) × DA, it follows from Lemma 3.1(i) that u has only a finite
number of zeros in (0, 1] if (λ, u) ∈ Cµ ∩ E . Setting Z(λ, u) = ](u) for (λ, u) ∈ Cµ ∩ E ,
Corollary 3.3 shows that Z : Cµ ∩ E → N is continuous. Consider now a point (ξ, 0) ∈ Cµ.
It follows from Lemma 3.1(i) that there exist an open ball B in R × DA, centred at (ξ, 0),
and η ∈ (0, 1) such that u(x) 6= 0 for 0 < x ≤ η if (λ, u) ∈ B ∩ E . By part (A), ξ is an
eigenvalue of S and an associated eigenfunction φξ with ‖φξ‖L2 = 1 has a finite number of
zeros ](φξ) in (0, 1] by property (S4) in Section 2.4. Hence η can be chosen so that φξ(x) 6= 0
for 0 < x ≤ η. Suppose that there is a sequence {(λn, un)} ⊂ B ∩ E such that λn → ξ and
‖un‖S → 0 as n → ∞ and, for all n ∈ N, ](un) 6= ](φξ). By part (3) of Theorem 4.7 we can
suppose that un = (un, φξ){φξ + wn} where ‖wn‖S → 0 as n → ∞ and, for all n, (un, φξ) 6= 0
since (λn, un) ∈ E . In the notation of Lemma 3.2, ‖Pηwn‖η → 0 as n → ∞ and it follows from
Lemma 3.2 that there exists n0 such that ](φξ + wn) = ](φξ) for all n ≥ n0, since φξ + wn like
un has no zeros in the interval (0, η] because (λn, un) ∈ B∩E and (un, φξ) 6= 0. But this implies
that ](un) = ](φξ) for all n ≥ n0, contradicting the choice of the sequence {(λn, un)}. Hence
there exists an open neighbourhood Uξ of (ξ, 0) in R× DA such that Z(λ, u) = ](φξ) for all
(λ, u) ∈ Uξ ∩E . Setting Z(ξ, 0) = ](φξ) for all (ξ, 0) ∈ Cµ we have now proved that Z : Cµ →N

is continuous and hence constant by the connectedness of Cµ. Since µ is a bifurcation point, it
follows that Z(λ, u) = ](φµ) for all (λ, u) ∈ Cµ. This establishes part (C).
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The following special case sheds some light on the restriction to the interval (−∞, me− `g1)

in Theorem 5.1. It uses the conditions (T1) and (T2) introduced in Section 3.2 and the quantities
defined in (3.8) to (3.11).

Corollary 5.3. Suppose that conditions (S), (T1) and (T2) are satisfied with n ≡ 0 and g(x, s)s ≤ 0
for all (x, s) ∈ (0, 1)×R. Let Θ ≡ max{V0, me + Is(g1)}. Then −`g1 ≤ Is(g1) ≤ Js(g1) = 0 and
me − `g1 ≤ Θ ≤ me.

(A) A point µ ∈ (−∞, me − `g1) is a bifurcation point for problem (1.1)(1.2) if and only if it is
an eigenvalues of S. When it is an eigenvalue, the component Cµ of (−∞, me − `g1) × DA
containing (µ, 0) is a subset of (−∞, µ]× DA and {|λ|+ ‖u‖A : (λ, u) ∈ Cµ} = [0, ∞). If µ

is the k-th eigenvalue of S, ](u) = k for all (λ, u) ∈ Cµ ∩ E .

(B) There are no bifurcation points for (1.1)(1.2) in the interval (Θ, ∞) since E ∩ (Θ, ∞)×DA = ∅.

Remark 5.4. If Is(g1) = Ii(g1) = −`g1 and `g1 ≤ a
4 , then Θ = me − `g1 .

As an example, suppose that g1(x, s) = −r(x)k(s) for (x, s) ∈ (0, 1)×R where the func-
tions r and k satisfy the following conditions.

(R) r ∈ C1([0, 1]) with r′(x) ≤ 0 for 0 ≤ x ≤ 1, r(0) > 0 and r(1) ≥ 0.

(K) k ∈ C1(R) is odd, convex on [0, ∞) and k′(0) = 0 < k′(∞) ≡ lims→∞ k′(s) < ∞.

Then Is(g1) = Ii(g1) = −`g1 = −r(0)k′(∞) and Θ = me − r(0)k′(∞) if r(0)k′(∞) ≤ a
4 .

The assumptions (R) and (K) also imply that the function g1(x, s) = −r(x)k(s) satisfies
condition (3.17). Hence, taking g = g1 and S to be as in Example 2.8 or 2.10 we obtain
situations where all the hypotheses of Corollary 5.3 are satisfied and σ(S) = {λi : 1 ≤ i ≤
n} ∪ [ 1

4 , ∞) where λ1 > 0 and λi < λi+1 < 1
4 = me for 1 ≤ i ≤ n − 1. The quantity Θ is

now 1
4 − r(0)k′(∞) and it can be placed anywhere in the interval (0, 1

4 ) by adjusting r(0)k′(∞).
When Θ 6∈ {λi : 1 ≤ i ≤ n}, λi is a bifurcation point if and only if λi < Θ.

Proof. (A) By Theorem 5.1 it suffices to show that λ ≤ µ for all (λ, u) ∈ Cµ. This will be
done using the standard comparison principle for the eigenvalues of self-adjoint operators.
(See Theorems 1.2 and 1.3 in Chapter XI of [10], for example.) Let (λ, u) ∈ Cµ ∩ E and set
W = W1 + W2 where

Wi(x) =
gi(x, u(x))

u(x)
if u(x) 6= 0 and Wi(x) = 0 if u(x) = 0 for i = 1, 2.

By assumption (F) for g1 and (2.9) for g2, Wi ∈ L∞(0, 1) for i = 1 and 2 and hence S + W1,
S + W2 and S + W : DA ⊂ L2 → L2 are all self-adjoint operators. By (2.9) and Lemma 2.7 in
[31], multiplication by W2 defines a compact mapping from DA into L2 and so σe(S + W) =

σe(S +W1). But W1(x) ≥ −`g1 on (0, 1) so inf σe(S +W1) ≥ inf σe(S)− `g1 = me − `g1 showing
that inf σe(S+W) ≥ me− `g1 . Also µ < me− `g1 is the k-th eigenvalue of S and so it follows that
λk ≤ µ where λk is the k-th eigenvalue of S + W since W(x) ≤ 0 on (0, 1). But Su + Wu = λu
and u 6≡ 0 since (λ, u) ∈ E and so λ < me is an eigenvalue of S+W with u as an eigenfunction.
We claim that λ = λk since u has exactly k zeros in (0, 1]. This is a standard property of regular
Strum–Liouville problems and it continues to hold in the present singular situation. A proof
is given in Appendix A of [36] for the case V = W = 0 but it can be extended to the general
case V + W ∈ L∞(0, 1) with only notational changes. This being so the proof of part (A) is
now complete since λ = λk ≤ µ.

(B) From Corollary 3.9 and part (iv) of Proposition 3.5, E ∩ (Θ, ∞)× DA = ∅.



28 C. A. Stuart

5.1 The case where n ≡ 0 and g(x, s)s ≥ 0

When n ≡ 0 and g(x, s)s ≥ 0, Theorem 4.10 can be used to deal with problem (1.1)(1.2) instead
of Theorem 4.7. This has the advantage that the size of the Lipschitz constant for g1 no longer
plays a role and so the restriction to the interval (−∞, me− `g1) in Theorem 5.1 can be avoided.

Theorem 5.5. Suppose that assumption (S) is satisfied with n ≡ 0 and that the function g = g1 + g2

has the following additional properties.

(a) g(x, s)s ≥ 0 for all (x, s) ∈ (0, 1)×R.

(b) For some αg1 ≥ 0 and all δ > 0 there exist x(δ) ∈ (0, 1) and M(δ) such that |g1(x, s)− αg1 s| ≤
M(δ) + δ|s| for (x, s) ∈ (0, x(δ))×R.

Consider µ ∈ (−∞, me).

(A) If µ is a bifurcation point for problem (1.1)(1.2) then µ is an eigenvalue of S = SA + V.

(B) If µ is the k-th eigenvalue of S then µ is a bifurcation point for (1.1)(1.2) and the component
Cµ of E ∩ (−∞, me)× DA containing (µ, 0) is a subset of [µ, me)× DA and ](u) = k for all
(λ, u) ∈ Cµ ∩ E . It has at least one of the following properties.

(i) {‖u‖A : (λ, u) ∈ Cµ} = [0, ∞).

(ii) sup{λ : (λ, u) ∈ Cµ} = me.

Proof. For (λ, u) ∈ E ,

λ
∫ 1

0
u2dx =

∫ 1

0
(Su)u + g̃(u)u dx ≥ m

∫ 1

0
u2dx, (5.1)

showing that E ⊂ [m, ∞)× DA.
Choose c > max{0, αg1 − ess inf V}. Then, by property (S1) in Section 2.4, m + c > C1

4 +

αg1 > 0 and Sc ≡ S + c is a positive self-adjoint operator with D(Sc) = DA as discussed at the
end of Section 2.4. In particular, ‖Scu‖L2 ≥ (m + c)‖u‖L2 for all u ∈ DA and ‖u‖c ≡ ‖Scu‖L2

defines a norm, ‖ · ‖c which is equivalent to the graph norm of S on DA. Furthermore,

D(S
1
2
c ) = HA and ‖S

1
2
c u‖L2 ≥ (m + c)1/2‖u‖L2 . For u ∈ DA,

‖u‖2
A =

∫ 1

0
A|∇u|2dx ≤

∫ 1

0
A|∇u|2 + Vu2 + cu2dx =

∫ 1

0
(Scu)u dx = ‖S

1
2
c u‖2

L2 (5.2)

≤ ‖u‖2
A + ‖V + c‖L∞‖u‖2

L2 ≤ K2
c‖u‖2

A, , where Kc =

(
1 +

4‖V + c‖L∞

C1

)1/2

(5.3)

by property (H1) in Section 2.1. Hence ‖u‖A ≤ ‖S
1
2
c u‖L2 ≤ Kc‖u‖A for all u ∈ DA and, since

DA is a dense subspace of HA, these inequalities hold for all u ∈ HA.

Since S−
1
2

c ∈ B(L2, HA) and g̃ ∈ C(HA, L2) by Propositions 2.1 and 2.3, a continuous
mapping f : R× L2 → L2 is defined by

f (λ, v) = v + S−
1
2

c g̃(S−
1
2

c v)− (λ + c)S−1
c v for (λ, v) ∈ R× L2. (5.4)

If f (λ, v) = 0, v ∈ HA and consequently u = S−
1
2

c v ∈ D(Sc) = DA with F(λ, u) = 0, where F
is defined in (2.12). Setting

S = {(λ, v) ∈ R× L2 : f (λ, v) = 0 and v 6= 0},
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it follows easily that

E =
{(

λ, S−
1
2

c v
)

: (λ, v) ∈ S
}

and so S ⊂ [m, ∞)× HA by (5.1). (5.5)

The rest of this proof involves discussing first bifurcation for the equation f (λ, v) = 0 and
then deducing the desired conclusion about F(λ, u) = 0 from this.

Step 1. With H = L2, equation (5.4) has the form (4.5) if we set

M1(v) = v− (c− αg1)S
−1
c v+ S−

1
2

c g̃2(S
− 1

2
c v), M2(v) = S−

1
2

c [g̃1− αg1 ](S
− 1

2
c v) and Tv = S−1

c v

for v ∈ L2. We aim to show that the hypotheses of Theorem 4.10 are satisfied on the interval
J = (αg1 − c, me). We have already shown that αg1 − c < m so J 6= ∅.

From the choice of c we have that T ∈ B(L2, L2) is a positive self-adjoint operator with
0 = inf σ(T) < sup σe(T) = (me + c)−1 ≤ sup σ(T) = (m + c)−1 = ‖T‖. If (Tv, v)L2 = 0 and
u = S−1

c v, 0 = (u, Scu)L2 ≥ (m + c)‖u‖2
L2 so u = 0 and hence v = 0. Thus condition (W0) is

satisfied and 0 ∈ σe(T).

By Proposition 2.3, g̃2 ∈ C1(HA, L2) and so M1 ∈ C1(L2, L2) since S−
1
2

c ∈ B(L2, HA). Also

M′1(v) = I − (c− αg1)S
−1
c + S−

1
2

c g̃2
′(S−

1
2

c v)S−
1
2

c for all v ∈ L2 and, in particular M′1(0) = I −
(c − αg1)T is self-adjoint. Furthermore, M1 − M′1(0) = S−

1
2

c g̃2(S
− 1

2
c ·) : L2 → L2 is compact,

since g̃2 : HA → L2 is compact by Proposition 2.3 and S−
1
2

c ∈ B(L2, HA). Thus condition
(W1) is satisfied. In the same way it follows easily for Proposition 2.1 that M2 ∈ C(L2, L2) is
compact and w-Hadamard differentiable at 0 with M′2(0) = −αg1 T. For v ∈ L2, we now have

that M(v)−M′(0)v = S−
1
2

c g̃(S−
1
2

c v) and so

(M(v)−M′(0)v, v) =
∫ 1

0
[S−

1
2

c g̃(S−
1
2

c v)]v dx =
∫ 1

0
g̃(S−

1
2

c v)S−
1
2

c v dx ≥ 0,

since S−
1
2

c : L2 → L2 is self-adjoint. In view of (4.6), this shows that condition (W2) is satisfied.
Since λ + c− αg1 > 0 for all λ ∈ J, it follows from (2.15) that

inf σe(M′1(0)− λT) = inf σe(I − (λ + c− αg1)T) =
me − λ + αg1

me + c

whereas re(M′2(0)) = re(αg1 T) = αg1
me+c . Thus we see that inf σe(M′1(0)− λT) > re(M′2(0)) for

λ ∈ J = (αg1 − c, me). Let U = J × L2.
We have now verified that the hypotheses of Theorem 4.10 are satisfied in the present

context and so M′(0) − λT ∈ Φ0(L2, L2) for all λ ∈ J and J ∩ σe(S) = ∅. Since M′(0) −
λT = S−

1
2

c [S− λI]S−
1
2

c , it follows that dim ker[M′(0)− λT] = dim ker[S− λI]. Recalling that
S ⊂ [m, ∞)× HA by (5.5) and that inf J < m, it now follows from Theorem 4.10 that µ < me

is a bifurcation point for the equation f (λ, v) = 0 if and only if µ ∈ σ(S). Furthermore, when
µ ∈ σ(S) ∩ (−∞, me) the component Dµ of S ∩ (J × L2) containing (µ, 0) has at least one of
the properties (a), (b) and (c) in part (2) of Theorem 4.10. Since inf J < m ≤ inf p(Dµ) these
properties can be replaced by

(i’) {‖v‖L2 : (λ, v) ∈ Dµ} = [0, ∞).

(ii’) sup p(Dµ) = me.

(iii’) Dµ = Dν for some ν ∈ σ(S) ∩ J where ν 6= µ.

Step 2. It has already been observed that E = H(S) where H(λ, v) = (λ, S−
1
2

c v) for (λ, v) ∈
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R× L2 and that S ⊂ [m, ∞)× HA. We now show that H : S ∪ [R× {0}] → E ∪ [R× {0}] is
a homeomorphism for the metrics induced by ‖ · ‖L2 on L2 and ‖ · ‖c on DA. Clearly, H is a

bijection with H−1(λ, u) = (λ, S
1
2
c u). For (λ, v), (µ, w) ∈ S ∪ [R× {0}],

‖H(λ, v)− H(µ, w)‖E = |λ− µ|+ ‖S−
1
2

c (v− w)‖c = |λ− µ|+ ‖S
1
2
c (v− w)‖L2

= |λ− µ|+ ‖(λ + c)S−
1
2

c v− g̃(S−
1
2

c v)− (µ + c)S−
1
2

c w + g̃(S−
1
2

c w)‖L2

≤ |λ− µ|(1 + ‖S−
1
2

c v‖L2) + (|µ|+ c + `g1)‖S
− 1

2
c (v− w)‖L2

+ CCg2(‖S
− 1

2
c v‖A + ‖S−

1
2

c w‖A)‖S
− 1

2
c (v− w)‖A (by Remark 2.4)

≤ |λ− µ|(1 + (m + c)−
1
2 ‖v‖L2) + {(m + c)−

1
2 (|µ|+ c + `g1)

+ CCg2(‖v‖L2 + ‖w‖L2)}‖v− w‖L2 (by (5.2)),

showing that H is continuous. For the continuity of H−1, consider (λ, u), (µ, z) ∈ E ∪
[R× {0}]. Then

‖H−1(λ, u)− H−1(µ, z)‖S = |λ− µ|+ ‖S
1
2
c (u− z)‖L2 ≤ |λ− µ|+ (m + c)−

1
2 ‖Sc(u− z)‖L2

= |λ− µ|+ (m + c)−
1
2 ‖u− z‖c,

as required. At this point we can now assert that Cµ = H(Dµ) and hence that Cµ has at least
one of the following properties.

(i’) {‖S
1
2
c u‖L2 : (λ, u) ∈ Cµ} = [0, ∞).

(ii’) sup p(Cµ) = me.

(iii’) Cµ = Cν for some ν ∈ σ(S) ∩ J where ν 6= µ.

Recalling that ‖S
1
2
c u‖L2 and ‖u‖A define equivalent norms on HA, it now suffices to show that

property (iii’) cannot occur.

Step 3. The proof that ](u) = k for all (λ, u) ∈ Cµ ∩ E is essentially the same as for part (C)
of Theorem 5.1, using part (ii) of Lemma 3.1 instead of part (i). The only difference occurs in
showing that if (ξ, 0) ∈ Cµ, there is an open neighbourhood Uξ of (ξ, 0) in R× DA such that
Z(λ, u) = ](φξ) for all (λ, u) ∈ Uξ ∩ E , where φξ is a normalised eigenfunction of S associated
with ξ. To prove this we again argue by contradiction, supposing that there is a sequence
(λn, un) ∈ E such that λn → ξ and ‖un‖c → 0 as n → ∞ and, for all n ∈ N, ](un) 6= ](φξ).

Setting vn = S
1
2
c un and ψξ = S

1
2
c φξ , we have that (λn, vn) ∈ S , ‖vn‖L2 → 0 as n → ∞ and

M′(0)ψξ = ξTψξ .
Setting wn = vn/‖vn‖L2 , it follows from part (C) of Theorem 4.10 that by passing to a

further subsequence we can suppose that wn ⇀ dψξ weakly in L2 as n → ∞ where the

constant d is not equal to zero. Since S−
1
2

c ∈ B(L2, HA), this implies that S−
1
2

c wn ⇀ dS−
1
2

c ψξ

weakly in HA. By Propositions 2.1 and 2.3, g̃ : HA → L2 is w-Hadamard differentiable at 0
with g̃′(0) = 0. Hence

g̃(S−
1
2

c vn)

‖vn‖L2
=

g̃(‖vn‖L2 S−
1
2

c wn)

‖vn‖L2
⇀ 0 weakly in L2 as n→ ∞.
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But (λn, vn) ∈ S for all n and so

S
1
2
c wn = (λn + c)S−

1
2

c wn −
g̃(S−

1
2

c vn)

‖vn‖L2
⇀ (ξ + c)dS−

1
2

c ψξ = (ξ + c)dφξ weakly in L2.

Let (·, ·)c denote the scalar product associated with the norm ‖ · ‖c on DA. We now have that

S−
1
2

c wn ∈ DA for all n and, for all u ∈ DA,

(S−
1
2

c wn, u)c = (S
1
2
c wn, Scu)L2 → (ξ + c)d(φξ , Scu)L2 = d(Scφξ , Scu)L2 = d(φξ , u)c as n→ ∞.

Thus qnun = S−
1
2

c wn ⇀ dφξ weakly in DA as n → ∞, where qn = ‖vn‖L2 > 0 for all n.
Recalling that {(λn, un)} ⊂ E with λn → ξ and ‖un‖c → 0 as n → ∞, it follows from Lemma
3.1(ii) that there exists η ∈ (0, 1) such that un(x) 6= 0 for 0 < x ≤ η and all n. By property
(S3) in Section 2.4 we can choose η so that φξ(x) 6= 0 for 0 < x ≤ η. By part (i) of Lemma 3.2,
‖Pη(qnun)− Pη(dφξ)‖η → 0 as n → ∞. It now follows from part (ii) of Lemma 3.2 that there
exists n0 such that ](qnun) = ](dφξ) for all n ≥ n0. Since ](qnun) = ](un) and ](dφξ) = ](φξ),
this contradicts the initial choice of the sequence {(λn, un)} and establishes the continuity of
the mapping Z at (ξ, 0).

As in the proof of Theorem 5.1 we can now conclude that ](u) = ](φµ) = k for all (λ, u) ∈
Cµ ∩ E and consequently that property (iii’) does not occur.

To complete the proof it only remains to show that λ ≥ µ for all (λ, u) ∈ Cµ. This can be
done using the comparison principle self-adjoint operators just as in the proof of Corollary
5.3. Note that in this case, W ≥ 0 on (0, 1) so inf σe(S + W) ≥ inf σe(S) = me.

Under some additional assumptions an “a priori” bound for solutions in a component Cµ

can be established and hence p(Cµ) = [µ, me).

Remark 5.6. Recall from Lemma 3.4 that assumption (b) of Theorem 5.5 implies that Ii(g1) =

Is(g1) = αg1 . Hence if (λ, u) ∈ Cµ with λ < V0 + αg1 , then u ∈ L∞(0, 1) by Proposition 3.5(iv).
But u has only a finite number of zeros in (0, 1] if (λ, u) ∈ Cµ and so it follows from Proposition
3.5(ii) that limx→0 u(x) = ±∞ if λ > V0 + Js(g1). Note that V0 + Js(g1) < me provided
that Js(g1) < a

4 . The next result exhibits a situation where p(Cµ) = [µ, me) and hence, if
µ < V0 + αg1 and Js(g1) < a

4 , the behaviour of solutions in Cµ changes as λ increases. If
(λ, u) ∈ Cµ with λ near µ, u ∈ L∞(0, 1) whereas for λ ∈ (V0 + Js(g1), me), limx→0 u(x) = ±∞. If
g1(x, s) = r(x)k(s) where the functions r and k satisfy the conditions (R) and (K) introduced in
Remark 5.4, Js(g1) = Ii(g1) = `g1 = αg1 = r(0)k′(∞) and the transition occurs when λ crosses
V0 + r(0)k′(∞) if µ < V0 + r(0)k′(∞) and r(0)k′(∞) < a

4 . Both cases u(x)→ ∞ and u(x)→ −∞
as x → 0 occur since k is odd and hence Cµ = {(λ,−u) : (λ, u) ∈ Cµ}. Noting that k(s)/s
is non-decreasing on (0, ∞) with lims→∞ k(s)/s = k′(∞), condition (3) in Theorem 5.7 and
condition (3’) in Proposition 5.8 will be satisfied in this case if k′(∞) > ess sup0<x<1

V0−V(x)
r(x) .

Let t+ = max{0, t} for t ∈ R. Observe that, since V ∈ L∞(0, 1), condition (2) in the
following result only involves the behaviour of V(x) as x → 0. Assumptions (1) and (2) are
satisfied in Examples 2.8 and 2.9.

Theorem 5.7. In addition to the hypotheses of Theorem 5.5 suppose that the following conditions are
satisfied.

(1) A ∈ C1((0, 1)) and {x 1
2 c(x)}′ ≥ 0 for 0 < x < 1 where c(x) = A(x)

x2 − a.
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(2)
∫ 1

0 x−1[V0 −V(x)]+dx < ∞.

(3) There exist K2 > K1 > 0 such that V0 ≤ V(x) + g(x,s)
s for all x ∈ (0, 1) and K1 ≤ x

1
2 |s| ≤ K2.

For every eigenvalue µ of S in (−∞, me), sup p(Cµ) = me where Cµ is defined in Theorem 5.5.

Proof. Let us suppose that me − sup p(Cµ) = η > 0. In view of Theorem 5.5 it suffices to
deduce from this that sup{‖u‖A : (λ, u) ∈ Cµ} < ∞.

Step 1. We claim that if (λ, u) ∈ Cµ, then |u(x)| < K1x−
1
x for all x ∈ (0, 1) where K1 > 0 is

given by assumption (3). To justify this assertion, choose K ∈ (K1, K2) and let U = {(λ, u) ∈
Cµ : x

1
2 |u(x)| < K for all x ∈ (0, 1]}. We now show that U is both open and closed in Cµ.

If (λ, u) ∈ U, it follows that u(1) = 0 and, from property (P2) in Section 2.1, x
1
2 u(x) → 0

as x → 0. Hence there exists ε > 0 such that x
1
2 |u(x)| ≤ K − ε for all x ∈ (0, 1]. Referring

again to property (P2), there exists δ > 0 such that ‖x 1
2 (v − u)‖L∞ < ε/2 for v ∈ DA with

‖SA(v− u)‖L2 < δ and hence

x
1
2 |v(x)| ≤ x

1
2 |u(x)|+ x

1
2 |v(x)− u(x)| < K− ε/2.

This proves that U is an open subset of Cµ.
To prove that it is also a closed subset of Cµ consider (λ, u) ∈ Cµ and a sequence {(λn, un)}

in U such that λn → λ and ‖SA(un − u)‖L2 → 0 as n → ∞. By (P2), un(x) → u(x) for all
x ∈ (0, 1] as n → ∞ and so x

1
2 |u(x)| ≤ K for 0 < x ≤ 1. Suppose that sup0<x≤1 x

1
2 u(x) = K

and let (p, q) be a maximal interval such that x
1
2 u(x) > K1. Since limx→0 x

1
2 u(x) = u(1) = 0

we have 0 < p < q < 1 and, setting v(x) = K1x−
1
2 , u(p) = v(p), u′(p) ≥ v′(p), u(q) = v(q)

and u′(q) ≤ v′(q) since u, v ∈ C1([p, q]). Hence∫ q

p
(Au′)′v− (Av′)′u dx = A[u′v− v′u]|qp

= A(q)v(q)[u′(q)− v′(q)]− A(p)v(p)[u′(p)− v′(p)] ≤ 0.

But it is easy to check that assumption (1) implies that −(Av′)′ ≥ a
4 v on (0, 1). Since u(x) > 0

on (p, q) this yields∫ q

p
(Au′)′v− (Av′)′u dx ≥

∫ q

p
u(x)v(x)

{
V(x) +

g(x, u(x))
u(x)

− λ +
a
4

}
dx,

where

V(x) +
g(x, u(x))

u(x)
− λ +

a
4
= me − λ + V(x)−V0 +

g(x, u(x))
u(x)

≥ me − λ,

by assumption (3) because K1 < x
1
2 u(x) ≤ K < K2 on (p, q). This implies that∫ q

p
(Au′)′v− (Av′)′u dx ≥ (me − λ)

∫ q

p
u(x)v(x) dx > 0

since λ ≤ sup p(Cµ) ≤ me − η, contradicting the previous conclusion.
Hence sup0<x≤1 x

1
2 u(x) < K.

A similar argument shows that x
1
2 u(x) > −K for 0 < x ≤ 1 and so (λ, u) ∈ U, proving

that U is a closed subset of Cµ.
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Clearly (µ, 0) ∈ U and we have now shown that U is both open and closed in Cµ. Since Cµ

is connected this means that U = Cµ and hence |u(x)| < Kx−
1
2 for all x ∈ (0, 1] and (λ, u) ∈ Cµ.

This completes Step 1.

Step 2. Here we prove that ‖u‖2
A ≤

K2
1

ε

∫ 1
0 x−1[V0 − V(x)]+ dx for all (λ, u) ∈ Cµ where ε =

1
2 min

{
1, 4η

a

}
and η = me − sup p(Cµ).

For any (λ, u) ∈ Cµ,

ε‖u‖2
A =

∫ 1

0
A(u′)2dx− (1− ε)‖u‖2

A ≤
∫ 1

0
A(u′)2dx− (1− ε)

∫ 1

0
ax2(u′)2dx

≤
∫ 1

0
A(u′)2dx− (1− ε)

a
4

∫ 1

0
u2dx

by property (H1) in Section 2.1 since assumption (1) implies that A(x) ≥ ax2 for 0 ≤ x ≤ 1.
But g(x, s)s ≥ 0 for all (x, s) ∈ (0, 1)×R so∫ 1

0
A(u′)2dx =

∫ 1

0
[λ−V(x)]u(x)2 − g(x, u(x))u(x) dx ≤

∫ 1

0
(λ−V)u2dx.

Hence

ε‖u‖2
A ≤

∫ 1

0

{
λ−V(x)− (1− ε)

a
4

}
u(x)2dx =

∫ 1

0

{
λ−me + V0 −V(x) +

aε

4

}
u(x)2dx

≤
∫ 1

0
[V0 −V(x)]+u(x)2dx ≤ K2

1

∫ 1

0
x−1[V0 −V(x)]+ dx

by Step 1 since λ−me +
aε
4 ≤ −η + aε

4 ≤ 0.
From assumption (2) it now follows that sup{‖u‖A : (λ, u) ∈ Cµ} < ∞ if sup p(Cµ) < me.

The conclusion follows from Theorem 5.5.

After strengthening assumption (3) the arguments used to prove Theorem 5.7 yield an
“a priori” bound for all solutions of (1.1)(1.2) with λ ≤ me − η for some η > 0, not just those
in the components Cµ.

Proposition 5.8. Suppose that condition (S) is satisfied with n ≡ 0 and that g(x, s)s ≥ 0 for all
(x, s) ∈ (0, 1)×R. Assume also that the following conditions are satisfied.

(1) A ∈ C1((0, 1)) and {x 1
2 c(x)}′ ≥ 0 for 0 < x < 1 where c(x) = A(x)

x2 − a.

(2)
∫ 1

0 x−1[V0 −V(x)]+dx < ∞.

(3’) There exists K > 0 such that V0 ≤ V(x) + g(x,s)
s for all x ∈ (0, 1) and x

1
2 |s| ≥ K.

Then, for every η > 0,

‖u‖2
A ≤

K2

δ(η)

∫ 1

0
x−1[V0 −V(x)]+dx for all (λ, u) ∈ Eη ≡ E ∩ (−∞, me − η)× DA,

where δ(η) = min{1, 4η
a }. By Remark 5.2, this implies an “a priori” bound for ‖SAu‖L2 also.

Proof. Fix η > 0 and then take any ε ∈ (0, δ(η)). Let v(x) = Kx−
1
2 where K is given by

condition (3’).
The argument used to prove that U is a closed subset of Cµ in the proof of Theorem 5.7

shows that |u(x)| ≤ v(x) for all (λ, u) ∈ Eη and all x ∈ (0, 1) when condition (3) is replaced
by (3’). The desired conclusion is then obtained by repeating Step 2 of that proof.
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Remark 5.9. The results in this section improve previous conclusions in Theorem 4.5(ii) of [31]
about bifurcation at eigenvalues of S in the interval (−∞, me), even at the local level, when
n ≡ 0 and g(x, s)s ≥ 0. However, they do not give a complete description of all bifurcation
points in this case since, as shown in Theorem 4.5(iii), bifurcation can occur at points in
[me, ∞) which are not eigenvalues of S. See also Section 6.3 of [33] for generalisations to
higher dimensions.
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