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Abstract. In this paper, we study a class of problems at resonance for a general second-
order linear operator Lu = u′′ + p(t)u′ + q(t)u. We impose abstract functional con-
ditions and derive several criteria for the existence of a solution for every resonance
scenario.
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1 Introduction

We consider the semi-linear equation

u′′(t) + p(t)u′(t) + q(t)u(t) = f (t, u(t), u′(t)), a.e. t ∈ (0, 1), (1.1)

subject to the linear functional conditions

F1(u) = 0, F2(u) = 0, (1.2)

where F1 and F2 are continuous linear functionals on C1[0, 1].
One of the early works that stimulated interest to applications of the coincidence degree

theory to non-local boundary value problems was the paper by Feng and Webb [3]. Our work
is motivated by [3] and [2]. In [2], the authors studied the resonant functional problem

u′′(t) = f (t, u(t), u′(t)), a.e. t ∈ (0, 1), (1.3)

B1(u) = 0, B2(u) = 0, (1.4)

where f is Carathéodory, B1 and B2 are continuous linear functionals on C1[0, 1]. Imposing
B1(t)B2(1) = B2(t)B1(1), the problem (1.3), (1.4) is at resonance of dimension one or two. An
existence result was obtained for every possible resonance scenario.
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In order to apply the coincidence degree approach of Mawhin and many other methods of
functional analysis in ordinary semi-linear differential equations, one relies on the knowledge
of a fundamental solution set. In all known to us papers based on these methods, the linear
operator L, such as Lu = (pu′)′ in [7], can be “inverted” by the reduction of order method.
The method developed here can be also applied to fractional order problems, that is, when L is
an integro-differential operator such as the Riemann–Liouville, Caputo fractional derivatives
and their numerous generalizations. Since we deal with a linear differential operator that,
in general, does not admit the reduction of order, this work is also a generalization of many
results such as [1, 6–8]. Moreover, if the boundary conditions, or, for that matter multi-point
conditions, or even linear conditions involving Riemann–Stieltjes integrals are chosen, a spe-
cific resonance is “fixed”. Obviously, in this case, one would only hope to study one or very
few resonance conditions per paper. We believe a more productive approach would yield a
formalism for solving a class of problems.

In our setting, the problem is abstract since we deal with a large class of general second-
order linear differential operators whose fundamental solution set is {φ1, φ2}. Not only our
work is an abstract generalization of many results in that respect but also due to the functional
conditions (1.2) studied here, which certainly include (1.6). In fact, as in [2], we study every
“geometric” scenario of resonance. In particular, in [2], the authors considered (1.1) with
p(t) = q(t) = 0 subject to (1.2). Thus, the present work extends the results of [2], as well.

In [7], the author considered several resonance cases in the framework of the generalized
Sturm–Liouville boundary value problem

(p(t)u′(t))′ − q(t)u(t) = f
(

t,
∫ t

0
u(s) ds, u′(t)

)
, t ∈ (0, 1), (1.5)

au(0)− bp(0)u′(0) = µ1u(ξ), cu(1) + dp(1)u′(1) = µ2u(ξ), (1.6)

where a, b, c, d ∈ R, 0 < ξ < 1, and f is continuous and

µ1

(
c
∫ 1

ξ

1
p(s)

ds + d
)
+ µ2

(
a
∫ ξ

0

1
p(s)

ds + b
)
= ad + bc + ac

∫ 1

0

1
p(s)

ds. (1.7)

By means of a “shift” operator, a resonant problem can be converted to a non-resonant prob-
lem [5] and, thus, need not be studied as a coincidence equation Lu = Nu. In [7], the problem
is not at resonance if

L0u(t) = (p(t)u′(t))′ − q(t)u(t).

Considering

Lu(t) = (p(t)u′(t))′ = q(t)u(t) + f
(

t,
∫ t

0
u(s) ds, u′(t)

)
, t ∈ (0, 1),

the equation (1.7) becomes a resonance condition. The advantage here is that the fundamental
solution set of L is easy to obtain while for L0 we only know that it exists but, in general, there
is no hope to obtain it explicitly. It is also worth mentioning that whenever a criterion for the
existence of a solution to the coincidence equation Lu = f (t, u, u′) is obtained, it can always,
with a little effort, be extended to Lu = f (t, u, T1(u), u′, T2(u′)), where T1 and T2 are bounded
operators such as the primitive of u(t) in (1.5), on a suitable functional space. Indeed, the
projection scheme needed to apply the coincidence degree approach to these equations is
exactly the same, and the only difference is in the “growth” condition on the function f .
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In [7], the author introduces a convenience assumption

(cµ1 − aµ2)
∫ ξ

0

s
p(s)

ds + c(a− µ1)
∫ 1

0

s
p(s)

ds + d(a− µ1) 6= 0. (1.8)

In order to guarantee that the projector Q is well-defined, conditions similar to (1.8) have
been imposed in many papers (e.g., see the references in [2] and the remarks therein). In our
work, we construct the projection scheme so that Q is well-defined without relying on such
“convenience” assumptions that are rather restrictive and simply unnecessary.

In this section, we state the preliminaries and the result due to Mawhin [4] used, in the
second section, to obtain a solution of (1.1), (1.2).

In order to develop our method, we need to make several basic assumptions. Of course,
we assume that the fundamental solution set {φ1, φ2} is known. We would like to consider a
solution of (1.1) in classical spaces and make use of the representation

u(t) =
∫ t

0
k(t, s)Lu(s) ds + l1(u)φ1(t) + l2(u)φ2(t), (1.9)

where

k(t, s) =
φ1(s)φ2(t)− φ2(s)φ1(t)

W(φ1, φ2)(s)
, l1(u) =

W(u, φ2)(0)
W(φ1, φ2)(0)

, l2(u) =
W(φ1, u)(0)
W(φ1, φ2)(0)

, (1.10)

where

Φ(φ1, φ2)(t) =
[

φ1(t) φ2(t)
φ′1(t) φ′2(t)

]
and W(φ1, φ2)(t) = det Φ(φ1, φ2)(t) = φ1(t)φ′2(t)− φ′1(t)φ2(t) is the Wronskian of the funda-
mental solution set on [0, 1]. Our approach relies on the boundedness of W(φ1, φ2)(t) and
W(φ1, φ2)(0) 6= 0. So, the following would fulfill our wishes:

(L) p, q ∈ C[0, 1], γ1 = maxt,s∈[0,1] |k(t, s)|, γ2 = supt,s∈[0,1]

∣∣∣ ∂
∂t k(t, s)

∣∣∣, γ = max{γ1, γ2}.

It should be mentioned that the assumption on p can be weakened, which would force one to
use weighted norms.

Introduce X = C1[0, 1], ‖u‖X = max{‖u‖0, ‖u′‖0}, where ‖u‖0 = maxt∈[0,1] |u(t)|. The next
standing assumption concerns the linear functions in (1.2):

(F) Fi : X → R, |Fi(u)| ≤ ρi‖u‖X, where ρi > 0, i = 1, 2, F1(φ1) = αa, F1(φ2) = αb,
F2(φ1) = a, F2(φ2) = b, α, a, b ∈ R, a2 + b2 6= 0.

Under this assumption the differential operator in (1.1) is not invertible and the functional
problem is said to be at resonance. Furthermore, in order to claim that all possible resonance
cases have been considered, we also need to study the case a = b = 0, which is only briefly
discussed in Section 2.

Definition 1.1. Let X and Z be normed spaces. A linear mapping L : dom L ⊂ X → Z is
called a Fredholm mapping if the following two conditions hold:

(i) ker L has a finite dimension, and

(ii) Im L is closed and has a finite co-dimension.

If L is a Fredholm mapping, its (Fredholm) index is the integer Ind L = dim ker L− codim Im L.
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Since we work with a Fredholm mapping of index zero, it follows from Definition 1.1 that
there exist continuous projectors P : X → X and Q : Z → Z such that

Im P = ker L, ker Q = Im L, X = ker L⊕ ker P, Z = Im L⊕ Im Q (1.11)

and that the mapping
L|dom L∩ker P : dom L ∩ ker P→ Im L

is invertible. The inverse of L|dom L∩ker P we denote by KP : Im L → dom L ∩ ker P. The gener-
alized inverse of L denoted by KP,Q : Z → dom L ∩ ker P is defined by KP,Q = KP(I −Q).

Definition 1.2. Let L : dom L ⊂ X → Z be a Fredholm mapping, E be a metric space, and
N : E→ Z be a mapping. We say that N is L-compact on E if QN : E→ Z and KP,QN : E→ X
are compact on E. In addition, we say, that N is L-completely continuous if it is L-compact on
every bounded E ⊂ X.

Let Z = L1[0, 1] with the Lebesgue norm denoted by ‖ · ‖1. Consider the mapping
L : dom L ⊂ X → Z with

dom L = {u ∈ X : u′ ∈ AC[0, 1], u satisfies (1.2))}

defined by
Lu(t) = u′′(t) + p(t)u′(t) + q(t)u(t).

Define the mapping N : X → Z by

Nu(t) = f (t, u(t), u′(t)).

Thus, (1.1), (1.2) is converted into the coincidence equation Lu = Nu whose solution will
be shown to exist by applying the following theorem due to Mawhin [4, Theorem IV.13].

Theorem 1.3. Let Ω ⊂ X be open and bounded, L be a Fredholm mapping of index zero and N be
L-compact on Ω. Assume that the following conditions are satisfied:

(i) Lu 6= λNu for every (u, λ) ∈ ((dom L\ ker L) ∩ ∂Ω)× (0, 1);

(ii) Nu /∈ Im L for every u ∈ ker L ∩ ∂Ω;

(iii) deg(JQN|ker L∩∂Ω, Ω ∩ ker L, 0) 6= 0, with Q : Z → Z a continuous projector such that
ker Q = Im L and J : Im Q→ ker L is any isomorphism.

Then the equation Lu = Nu has at least one solution in dom L ∩Ω.

Lemma 1.4. The mapping L : dom L ⊂ X → Z is a Fredholm mapping of index zero.

Proof. By (F), it is clear that ker L = {c(−bφ1 + aφ2) : c ∈ R} ∼= R. For convenience, let

Tg(t) =
∫ t

0
k(t, s)g(s) ds. (1.12)

We claim that Im L = {g ∈ Z : (F1 − αF2)Tg = 0}. Now, g ∈ Im L if there exists u ∈ dom L
such that Lu = g. Recalling (1.9), that is, u = Tg + l1(u)φ1 + l2(u)φ2, we have, by (F),

F1(u) = F1(Tg) + α(l1(u)a + l2(u)b) = 0, F2(u) = F2(Tg) + l1(u)a + l2(u)b = 0.
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It follows, Im L ⊂ {g ∈ Z : (F1 − αF2)Tg = 0}.
Let g ∈ {g ∈ Z : (F1 − αF2)Tg = 0}. Define

u = Tg− F2(Tg)
a2 + b2 (aφ1 + bφ2).

Then

Lu = LTg− F2(Tg)
a2 + b2 (aLφ1 + bLφ2) = g.

Also,

F1(u) = F1(Tg)− F2(Tg)
a2 + b2 (aF1(φ1) + bF1(φ2)) = F1(Tg)− αF2(Tg) = 0

and, similarly, F2(u) = 0. That is, u ∈ dom L, so g ∈ Im L. We have

{g ∈ Z : (F1 − αF2)Tg = 0} ⊂ Im L.

Therefore, {g ∈ Z : (F1 − αF2)Tg = 0} = Im L.
We show that there exists h ∈ Z such that (F1 − αF2)Th 6= 0. Let F = F1 − αF2. By (F),

F(φ1) = F(φ2) = 0. Since F1 and F2 are linearly independent on X, there exists u0 ∈ X such
that F(u0) 6= 0. Since F is continuous on X, for ε > 0, there exists a polynomial p such that
‖p− u0‖X < ε and F(p) 6= 0. Set h = Lp ∈ Z. Again, recall (1.9). Then F(Th) = F(TLp) =
F(p − l1(p)φ1 − l2(p)φ2) = F(p) − l1(p)F(φ1) − l2(p)F(φ2) = F(p) 6= 0. Since T and F are
linear, we may assume, without loss of generality, that (F1 − αF2)Th = 1. Define Q : Z → Z
by

Qg(t) = (F1 − αF2)(Tg)h(t) = (F1 − αF2)

(∫ t

0
k(t, s)g(s) ds

)
h(t).

Since Qh(t) = (F1 − αF2)(Th)h(t) = h(t), then Q2q = Qg, g ∈ Z. It is obvious that Q : Z → Z
is a continuous map and Z = ker Q⊕ Im Q, Im Q = {ch : c ∈ R} with dim Im Q = 1, and
ker Q = Im L.

Define P, P̃, P0 : X → X by

Pu(t) =
−bW(u, φ2)(0) + aW(φ1, u)(0)

(a2 + b2)W(φ1, φ2)(0)
(−bφ1(t) + aφ2(t))

=
−bl1(u) + al2(u)

a2 + b2 (−bφ1(t) + aφ2(t)), (1.13)

P̃u(t) =
aW(u, φ2)(0) + bW(φ1, u)(0)

(a2 + b2)W(φ1, φ2)(0)
(aφ1(t) + bφ2(t))

=
al1(u) + bl2(u)

a2 + b2 (aφ1(t) + bφ2(t)), (1.14)

and

P0(t) =
W(u, φ2)(0)
W(φ1, φ2)(0)

φ1(t) +
W(φ1, u)(0)
W(φ1, φ2)(0)

φ2(t) = l1(u)φ1(t) + l2(u)φ2(t), (1.15)

where the second expression of each map is obtained using (1.10). Since

Pφ1 = − b
a2 + b2 (−bφ1 + aφ2), Pφ2 =

a
a2 + b2 (−bφ1 + aφ2),

then P(−bφ1 + aφ2) = −bφ1 + aφ2. Therefore, P2 = P, X = ker P ⊕ Im P, where Im P =

{c(−bφ1 + aφ2) : c ∈ R} = ker L. Similarly, P̃2 = P̃, X = ker P̃ ⊕ Im P̃, where Im P̃ =
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{c(aφ1 + bφ2) : c ∈ R}. Moreover, P2
0 = P0, X = ker P0 ⊕ Im P0, where Im P0 = {c1φ1 + c2φ2 :

c1, c2 ∈ R}. Finally,
P + P̃ = P0 (1.16)

and PP̃ = P̃P = 0 on X.
Since the relationships (1.11) hold, the projectors P and Q are exact. In summary, L is a

Fredholm mapping of index zero.

The next two results provide the generalized inverse of L and its norm-estimates. Recall
(1.12).

Lemma 1.5. If the map KP : Z → X is defined by

Kpg = − 1
a2 + b2 F2(Tg)(aφ1 + bφ2) + Tg, (1.17)

then LKPg = g, g ∈ Z, and KpLu = u, u ∈ dom L ∩ ker P.

Proof. It is easy to see that LKPg = g, g ∈ Z. Let u ∈ dom L ∩ ker P and g = Lu. Using (1.9)
and (1.15),

Tg = u− l1(u)φ1 − l2(u)φ2 = u− P0u.

Then F2(Tg) = F2(u)− l1(u)F2(φ1)− l2(u)F2(φ2) = −al1(u)− bl2(u) since u ∈ dom L. As a
result,

KPLu =
al1(u) + bl2(u)

a2 + b2 (aφ1 + bφ2) + u− P0u = P̃u + u− P0u = u− Pu = u

by (1.16) and since u ∈ ker P.

Obviously,

‖Tg‖0 ≤ γ1‖g‖1, ‖(Tg)′‖0 ≤ γ2‖g‖1, ‖Tg‖X ≤ γ‖g‖1.

Also, |F2(Tg)| ≤ ρ2‖Tg‖X ≤ γρ2‖g‖1. Hence,

‖KPg‖0 ≤
ρ2‖aφ1 + bφ2‖0

(a2 + b2)
‖Tg‖X + ‖Tg‖0 ≤

(
ρ2γ‖aφ1 + bφ2‖0

a2 + b2 + γ1

)
‖g‖1,

‖(KPg)′‖0 ≤
ρ2‖aφ′1 + bφ′2‖0

(a2 + b2)
‖Tg‖X + ‖(Tg)′‖0 ≤

(
ρ2γ‖aφ′1 + bφ′2‖0

a2 + b2 + γ2

)
‖g‖1.

The estimates on the generalized inverse are summarized in the next result.

Lemma 1.6. The map KP : Z → X satisfies

(a) ‖KPg‖0 ≤ A‖g‖1, where

A =
ρ2γ‖aφ1 + bφ2‖0

a2 + b2 + γ1,

(b) ‖(KPg)′‖0 ≤ B‖g‖1, where

B =
ρ2γ‖aφ′1 + bφ′2‖0

a2 + b2 + γ2,

(c) ‖KPg‖X ≤ ‖KP‖‖g‖1, where ‖KP‖ = max{A, B}.
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2 Main results

Assume that the following conditions on the function f (t, x1, x2) are satisfied:

(H1) there exists a constant M0 > 0 such that, for each u ∈ dom L \ ker L with |u(t)| +
|u′(t)| > M0, t ∈ [0, 1], we have QNu(t) 6= 0,

(H2) there exist functions δ0, δ1, δ2 ∈ L1[0, 1] such that, for all (x1, x2) ∈ R2 and a.e. t ∈ [0, 1],

| f (t, x1, x2)| ≤ δ(t) + δ1(t)|x1|+ δ2(t)|x2|.

(H3) there exists a constant M1 > 0 such that if |c| > M1, then c(F1 − αF2)(TNuc) > 0, where
uc = c(−bφ1 + aφ2).

In the next result, ‖Φ−1(φ1, φ2)(t)‖ is the matrix norm compatible with the norm
max{|a1|, |a2|} of a vector [a1, a2]T ∈ R2.

Theorem 2.1. If (L), (F), (H1)–(H3) hold, then the functional problem (1.1), (1.2) has at least one
solution provided

D1(‖δ1‖1 + ‖δ2‖1) < 1, (2.1)

where

D1 = max
{

γ1 + γ max
t∈[0,1]

‖Φ−1(φ1, φ2)(t)‖(‖φ1‖0 + ‖φ2‖0),

γ2 + γ max
t∈[0,1]

‖Φ−1(φ1, φ2)(t)‖(‖φ′1‖0 + ‖φ′2‖0)
}

.

Proof. Let Ω1 = {u ∈ dom L \ ker L : Lu = λNu, λ ∈ (0, 1)}. If u ∈ Ω1, it follows, from (H1),
that there exists t0 ∈ [0, 1] such that |u(t0)|, |u′(t0)| ≤ M0. Now,

u = λTNu + l1(u)φ1 + l2(u)φ2, u′ = λ(TNu)′ + l1(u)φ′1 + l2(u)φ′2. (2.2)

Thus, [
l1(u)
l2(u)

]
= Φ−1(φ1, φ2)(t0)

[
u(t0)− λTNu(t0)

u′(t0)− λ(TNu)′(t0)

]
.

In what follows, Ci, i = 1, . . . , 5, are positive constants whose exact values are ignored. Hence,

|l1(u)|, |l2(u)| = max{|l1(u)|, |l2(u)|}
= ‖Φ−1(φ1, φ2)(t0)‖max

{
|u(t0)− λTNu(t0)|, |u′(t0)− λ(TNu)′(t0)|

}
≤ max

t∈[0,1]
‖Φ−1(φ1, φ2)(t)‖max

{
|u(t0)|+ λ|TNu(t0)|, |u′(t0)|+ λ|(TNu)′(t0)|

}
≤ max

t∈[0,1]
‖Φ−1(φ1, φ2)(t)‖max

{
M0 + λ|TNu(t0)|, M0 + λ|(TNu)′(t0)|

}
< max

t∈[0,1]
‖Φ−1(φ1, φ2)(t)‖max {M0 + γ1‖Nu‖1, M0 + γ2‖Nu‖1}

= C1 + γ max
t∈[0,1]

‖Φ−1(φ1, φ2)(t)‖‖Nu‖1.

We have

‖u‖0 ≤ γ1‖Nu‖1 + |l1(u)|‖φ1‖0 + |l2(u)|‖φ2‖0

< C2 +

(
γ1 + γ max

t∈[0,1]
‖Φ−1(φ1, φ2)(t)‖(‖φ1‖0 + ‖φ2‖0)

)
‖Nu‖1



8 N. Kosmatov

and, similarly,

‖u′‖0 < C3 +

(
γ2 + γ max

t∈[0,1]
‖Φ−1(φ1, φ2)(t)‖(‖φ′1‖0 + ‖φ′2‖0)

)
‖Nu‖1.

Hence,

‖u‖X < C4 + max
{

γ1 + γ max
t∈[0,1]

‖Φ−1(φ1, φ2)(t)‖(‖φ1‖0 + ‖φ2‖0),

γ2 + γ max
t∈[0,1]

‖Φ−1(φ1, φ2)(t)‖(‖φ′1‖0 + ‖φ′2‖0)
}
‖Nu‖1.

By (H2), ‖Nu‖1 ≤ ‖δ0‖1 + ‖δ1‖1‖u‖0 + ‖δ2‖1‖u′‖0 ≤ ‖δ0‖1 + (‖δ1‖1 + ‖δ2‖1)‖u‖X, so

‖u‖X < C5 + D1(‖δ1‖1 + ‖δ2‖1)‖u‖X

for all u ∈ Ω1. In view of the inequality (2.1), Ω1 is bounded.
Define Ω2 = {u ∈ ker L : Nu ∈ Im L}. Then u = c(−bφ1 + aφ2) for some c ∈ R. Since

Nu ∈ Im L = ker Q, (F1 − αF2)TNu = 0. By (H3), |c| ≤ M1, that is, Ω2 is bounded.
Define J : Z → X by

Jg(t) = (F1 − αF2)(Tg)(−bφ1(t) + aφ2(t)).

Recall the characterization of Im Q in the proof of Lemma 1.4. Since J(ch)(t) = c(F1 −
αF2)(Th)(−bφ1 + aφ2) = c(−bφ1 + aφ2), J : Im Q→ ker L is an isomorphism.

Let Ω3 = {u ∈ ker L : λu + (1 − λ)JQNu = 0, λ ∈ [0, 1]}. Let u ∈ Ω3 be denoted by
uc = c(−bφ1 + aφ2). Then λu + (1− λ)JQNu = 0 implies λc + (1− λ)(F1 − αF2)TNuc = 0. If
λ = 0, then JQNuc = 0, that is, u ∈ Ω2, which is bounded. If λ = 1, then c = 0. If λ ∈ (0, 1),
then, by (H2),

0 < λc2 = −(1− λ)c(F1 − αF2)TNuc < 0,

which is a contradiction. Thus, Ω3 is bounded.
Let Ω be open and bounded such that ∪3

i=1Ωi ⊂ Ω. Then the assumptions (i) and (ii) of
Theorem 1.3 are fulfilled. It is a routine exercise to show that the mapping N is L-compact
on Ω. Lemma 1.4 states that L if Fredholm of index zero. We now demonstrate that the third
assumption of Theorem 1.3 is verified.

We apply the degree property of invariance under a homotopy to

H(u, λ) = λIu + (1− λ)JQNu, (u, λ) ∈ X× [0, 1].

If u ∈ ker L ∩ ∂Ω, then

ker(JQN|ker L∩∂Ω, Ω ∩ ker L, 0) = ker(H(·, 0), Ω ∩ ker L, 0)

= ker(H(·, 1), Ω ∩ ker L, 0)

= ker(I, Ω ∩ ker L, 0)

6= 0,

that is, the assumption (iii) of Theorem 1.3 is checked and the proof is completed.

It is worth mentioning that the inequality in (H3) may be reversed since the proof will
carry over with a slight modification.

We will replace (H1) of Theorem 2.1 with



A coincidence problem 9

(H4) there exists a constant M0 > 0 such that, for each u ∈ dom L \ ker L with |u(t)| > M0,
t ∈ [0, 1], we have QNu(t) 6= 0.

Theorem 2.2. If (L), (F), (H2)–(H4) hold, then the boundary value problem (1.1), (1.2) has at least
one solution provided −bφ1(t) + aφ2(t) 6= 0 on [0, 1], and

D2(‖δ1‖1 + ‖δ2‖1) < 1, (2.3)

where

D2 =
A‖ − bφ1 + aφ2‖X

mint∈[0,1] | − bφ1(t) + aφ2(t)|
+ ‖KP‖.

Proof. As in the proof of Theorem 2.1, let Ω1 = {u ∈ dom L \ ker L : Lu = λNu, λ ∈ (0, 1)}.
For u ∈ Ω1, it follows from (H4) that there exists t0 ∈ [0, 1] such that |u(t0)| ≤ M0.
Remark: Note that it does not follow from (H4) that |u′(t0)| ≤ M0, so we cannot apply the
approach taken in the proof of Theorem 2.1 to the present case. Likewise, the inequality
|u(t0)| ≤ M0 can not be obtained from (H5) of Theorem 2.3, which will not allows us to apply
the argument of Theorem 2.1. For this reason, here and in the proof of Theorem 2.3 we rely
on u = Pu + (I − P)u.

Consider u ∈ Ω1 and u = u1 + u2, u1 = Pu ∈ Im P = ker L, u2 = (I − P)u = KPLu =

λKPNu. We have, by Lemma 1.6,

‖u2‖0 < A‖Nu‖1, ‖u2‖X < ‖KP‖‖Nu‖1. (2.4)

Now, u1 = u− u2, so that |Pu(t0)| = |u1(t0)| ≤ |u(t0)|+ |u2(t0)| < M0 + A‖Nu‖1. We have

|u1(t0)| =
| − bl1(u) + al2(u)|

a2 + b2 | − bφ1(t0) + aφ2(t0)| < M0 + A‖Nu‖1.

In particular,
| − bl1(u) + al2(u)|

a2 + b2 ≤ M0 + A‖Nu‖1

mint∈[0,1] | − bφ1(t) + aφ2(t)|
.

Hence,

‖u1‖X = ‖Pu‖X ≤
| − bl1(u) + al2(u)|

a2 + b2 ‖ − bφ1 + aφ2‖X

≤ ‖− bφ1 + aφ2‖X

mint∈[0,1] | − bφ1(t) + aφ2(t)|
(M0 + A‖Nu‖1). (2.5)

Combining (2.5) and (2.4), we conclude

‖u‖X ≤ ‖u1‖X + ‖u2‖X

< C1 +

(
A‖ − bφ1 + aφ2‖X

mint∈[0,1] | − bφ1(t) + aφ2(t)|
+ ‖KP‖

)
‖Nu‖1

< C2 +

(
A‖ − bφ1 + aφ2‖X

mint∈[0,1] | − bφ1(t) + aφ2(t)|
+ ‖KP‖

)
(‖δ1‖1 + ‖δ2‖1)‖u‖X

< C2 + D2(‖δ1‖1 + ‖δ2‖1)‖u‖X.

Therefore, by (2.3), Ω1 is bounded. The rest of the proof is identical to that of Theorem 2.1.
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The next result relies on the assumption

(H5) there exists a constant M0 > 0 such that, for each u ∈ dom L \ ker L with |u′(t)| > M0,
t ∈ [0, 1], we have QNu(t) 6= 0.

Theorem 2.3. If (L), (F), (H2), (H3), and (H5) hold, then the boundary value problem (1.1), (1.2)
has at least one solution provided −bφ′1(t) + aφ′2(t) 6= 0 on [0, 1], and

D3(‖δ1‖1 + ‖δ2‖1) < 1, (2.6)

where

D3 =
B‖ − bφ1(t) + aφ2‖X

mint∈[0,1] | − bφ′1(t) + aφ′2(t)|
+ ‖KP‖.

Proof. Again, let Ω1 = {u ∈ dom L \ ker L : Lu = λNu, λ ∈ (0, 1)} and u ∈ Ω1. By (H5), there
exists t0 ∈ [0, 1] such that |u′(t0)| ≤ M0.

As in the proof of Theorem 2.2, choose u ∈ Ω1, where u = u1 + u2, u1 = Pu ∈ Im P = ker L,
u2 = (I − P)u = KPLu = λKPNu. We have, by Lemma 1.6,

‖u′2‖0 < B‖Nu‖1, ‖u2‖X < ‖KP‖‖Nu‖1. (2.7)

Since u1 = u− u2, then |(Pu)′(t0)| = |u′1(t0)| ≤ |u′(t0)|+ |u′2(t0)| < M0 + B‖Nu‖1. We have

|u′1(t0)| =
| − bl1(u) + al2(u)|

a2 + b2 | − bφ′1(t0) + aφ′2(t0)| < M0 + A‖Nu‖1.

For u ∈ Ω1, we have

| − bl1(u) + al2(u)|
a2 + b2 ≤ M0 + B‖Nu‖1

mint∈[0,1] | − bφ′1(t) + aφ′2(t)|
.

We infer

‖u1‖X = ‖Pu‖X ≤
| − bl1(u) + al2(u)|

a2 + b2 ‖ − bφ1 + aφ2‖X

≤ ‖− bφ1 + aφ2‖X

mint∈[0,1] | − bφ′1(t) + aφ′2(t)|
(M0 + B‖Nu‖1). (2.8)

Applying (2.7) and (2.8), we deduce

‖u‖X ≤ ‖u1‖X + ‖u2‖X

< C1 +

(
B‖ − bφ1 + aφ2‖X

mint∈[0,1] | − bφ′1(t) + aφ′2(t)|
+ ‖KP‖

)
‖Nu‖1

< C2 +

(
B‖ − bφ1 + aφ2‖X

mint∈[0,1] | − bφ′1(t) + aφ′2(t)|
+ ‖KP‖

)
(‖δ1‖1 + ‖δ2‖1)‖u‖X

< C2 + D3(‖δ1‖1 + ‖δ2‖1)‖u‖X.

Therefore, Ω1 is bounded in view of (2.6). The rest of the proof replicates those of the previous
theorems.
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Note that the preceding results depend on a2 + b2 6= 0 and deal with such resonance
conditions that dim ker L = 1. If a = b = 0, then dim ker L = 2 and the projector P is simply
P0. We can find linearly independent h1, h2 ∈ Z such that Im Q = {c1h1 + c2h2 : c1, c2 ∈ R}.
Moreover, the generalized inverse has a simple form, namely, KPg = Tg. Finally, we observe
that the method of proof of Theorem 2.1 applies directly to this case.

Note that (1.3), (1.4) is a special case of (1.1), (1.2), that is, the former serves as an example
of the latter. In conclusion, we present an example that cannot be so cheaply obtained.

Consider

Lu(t) = u′′(t)− u(t) = κ(1 + 2 sin u′(t) + u(t)), a.e. t ∈ (0, 1), (2.9)

where κ 6= 0, and

F1(u) = u(0)− u(1) = 0, F2(u) = u′(0) + u′(1) = 0. (2.10)

In this case, φ1(t) = et and φ2(t) = e−t with W(φ1, φ2)(t) = −2, k(t, s) = sinh (t− s). The
equation (1.9) becomes

u(t) =
∫ t

0
sinh (t− s)Lu(s) ds + u′(0) sinh t + u(0) cosh t.

Then F1(φ1) = 1− e, F1(φ2) = 1− e−1, F2(φ1) = 1 + e, F2(φ2) = −1− e−1, that is, we have (F)
with a = 1 + e, b = −1− e−1, and α = 1−e

1+e . Hence,

ker L = {c(−bφ1(t) + aφ2(t)) : c ∈ R} = {c(et + e1−t) : c ∈ R}.

Note that −bφ1(t) + aφ2(t) 6= 0 on [0, 1].
We also derive

(F1 − αF2)Tg = −
∫ 1

0
sinh (1− s)g(s) ds +

1− e
1 + e

∫ 1

0
cosh (1− s)g(s) ds

= −
∫ 1

0

(
sinh (1− s) +

e− 1
e + 1

cosh (1− s)
)

g(s) ds.

In particular,

Im L = {g ∈ Z : (F1 − αF2)Tg = 0}

=

{
g ∈ Z :

∫ 1

0

(
sinh (1− s) +

e− 1
e + 1

cosh (1− s)
)

g(s) ds = 0
}

.

Introduce, for convenience,

K(s) = − sinh (1− s)− e− 1
e + 1

cosh (1− s) < 0

on [0, 1]. As a result, if |u(t)| > M0 = 4, we have

(F1 − αF2)TNu = κ
∫ 1

0
K(s)(1 + 2 sin u′(s) + u(s)) ds 6= 0.

Hence (H4) holds. It is also easy to find M1 > 0 such that |c| > M1 implies c(F1− αF2)TNuc 6=
0. Indeed,

c(F1 − αF2)TNuc = cκ
∫ 1

0
K(s)(1 + 2 sin u′c(s)) ds + c2κ

∫ 1

0
K(s)(−bφ1(s) + aφ2(s)) ds,
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where the first integral is bounded in c and the second integral is a constant. Thus, if |c| is
large enough, the assumption (H3) is fulfilled.

Obviously, if |κ| is small enough, then also (2.1) holds. Indeed,

|κ(1 + 2 sin u′(t) + u(t))| ≤ |κ|+ 2|κ||u′(t)|+ |κ||u(t)|,

that is, ‖δ1‖1 = 2|κ| and ‖δ2‖1 = |κ| can be made small enough to fulfill (H3) by choosing
a sufficiently small |κ|. By Theorem 2.2, the problem (2.9), (2.10) has a solution. Finally,
since −bφ′1(1/2) + aφ′2(1/2) = 0, Theorem 2.3 cannot be applied to this particular problem at
resonance.
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