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Abstract. We provide a complete description of the existence/non-existence and multi-
plicity of distinct pairs of nontrivial solutions to the problem with Minkowski operator

−div

(
∇u√

1− |∇u|2

)
= λu(1− a|u|q) in Ω, u|∂Ω = 0, (a ≥ 0 < q),

when λ ∈ (0, ∞), in terms of the spectrum of the classical Laplacian. Beforehand,
we obtain multiplicity of solutions for parameterized and non-parameterized Dirichlet
problems involving odd perturbations of this operator. The approach relies on critical
point theory for convex, lower semicontinuous perturbations of C1-functionals.
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1 Introduction and preliminaries

In this paper we deal with the Dirichlet boundary value problem{
−M(u) = λg(u) in Ω,

u|∂Ω = 0,
(1.1)

where Ω is a bounded domain in RN (N ≥ 2) with boundary ∂Ω of class C2, λ > 0 is a real
parameter, g : R → R is an odd continuous function and M stands for the mean curvature
operator in Minkowski space:

M(u) = div

(
∇u√

1− |∇u|2

)
.
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Problems involving the operatorM are originated in differential geometry and relativity.
These are related to maximal and constant mean curvature spacelike hypersurfaces (spacelike
submanifolds of codimension one in the flat Minkowski space LN+1 :={(x, t) : x ∈ RN , t ∈ R}
endowed with the Lorentzian metric ∑N

j=1(dxj)
2 − (dt)2, where (x, t) are the canonical coordi-

nates in RN+1) having the property that the trace of the extrinsic curvature is zero, respectively,
constant. On the other hand, assuming that a spacelike hypersurface in LN+1 is the graph of
a smooth function u : Ω→ R with Ω a domain in

{
(x, t) : x ∈ RN , t = 0

}
' RN , the (strictly)

spacelike condition implies |∇u| < 1 and u satisfies an equation of type

M(u) = H(x, u) in Ω,

where H is a prescribed mean curvature function. If H is continuous and bounded, it has
been shown in [4] that the above equation subjected to a Dirichlet condition has at least one
solution. More recently, the existence of additional solutions, such as of mountain pass type,
was obtained in [5, 6] and the existence of Filippov type solutions for discontinuous Dirichlet
problems involving the operatorM was established in [7]. For other recent developments of
the subject, we refer the reader to [2, 3, 9–11, 15, 16] and the references therein.

As in [10], by a solution of (1.1) we mean a function u ∈ C0,1(Ω), such that ‖∇u‖∞ < 1,
which vanishes on ∂Ω and satisfies∫

Ω

∇u · ∇w√
1− |∇u|2

dx = λ
∫

Ω
g(u)w dx, (1.2)

for every w ∈ W1,1
0 (Ω). Here and below, ‖ · ‖∞ stands for the usual sup-norm on L∞(Ω). As

shown in [10, Remark 2], if u is a solution of (1.1), in the sense of the previous definition, then
u ∈ W2,r(Ω) for all finite r ≥ 1 and satisfies the equation a.e. in Ω. Reciprocally, since, for
p > N, one has

W2,p(Ω) ⊂ C1(Ω) ⊂W1,∞(Ω) = C0,1(Ω),

it is straightforward to check that if a function u ∈W2,p(Ω) for some p > N, with ‖∇u‖∞ < 1
satisfies the equation a.e. in Ω and vanishes on ∂Ω, then it is a solution of (1.1).

This study is mainly motivated by the result obtained in [17] concerning the multiplicity
of T-periodic solutions for the equation with relativistic operator:

−
(

u′√
1− |u′|2

)′
= λg1(u) in [0, T]; (1.3)

by ga we denote the Fisher–Kolmogorov type nonlinearity ga(t) = t(1− a|t|q), ∀ t ∈ R (a ≥
0 < q). This type of nonlinearities was originally motivated by models in biological population
dynamics and led to the reaction-diffusion equation

∂u
∂t
− ∂2u

∂x2 = u(1− u2),

referred to as the classical Fisher–Kolmogorov equation [12, 13, 18]. Also, higher-order equations
of type

uiv − pu′′ = u(q(t)− r(t)u2), (with q, r positive functions)

which corresponds, if p > 0, to the extended Fisher–Kolmogorov equations are models for phase
transitions and other bistable phenomena (see e.g. [8, 20–23, 27]). So, in [17, Theorem 2.1] it is
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shown that if λ > 4π2m3/T2 for some m ≥ 2, then equation (1.3) subjected to periodic bound-
ary conditions has at least m− 1 distinct pairs of non-constant solutions. By comparison, in
the case of the Dirichlet problem for the parametrized equation

−M(u) = λga(u) in Ω,

we obtain (see Theorem 2.5) a complete description of the existence/non-existence and mul-
tiplicity of distinct pairs of nontrivial solutions when λ ∈ (0, ∞), in terms of the eigenvalues
of the classical −∆. It is worth to point out that the multiplicity part of the result relies on a
Clark type theorem for the general problem (1.1) (see Theorem 2.2). Moreover, this theorem
enables us to derive existence of finitely or infinitely many solutions to Dirichlet problems for
non-parametrized equations having the form

−M(u) = f (u) in Ω,

with odd continuous f : R → R, by controlling the asymptotic behavior of the primitive of f
near the origin (see Corollary 2.3).

We conclude this introductory part by briefly recalling some notions and results in the
frame of Szulkin’s critical point theory [26], which will be needed in the sequel. Let (Y, ‖ · ‖)
be a real Banach space and I : Y → (−∞,+∞] be a functional of the type

I = F + ψ, (1.4)

where F ∈ C1(Y, R) and ψ : Y → (−∞,+∞] is convex, lower semicontinuous and proper
(i.e., D(ψ) := {u ∈ Y : ψ(u) < +∞} 6= ∅). A point u ∈ Y is said to be a critical point of I if
u ∈ D(ψ) and if it satisfies the inequality

〈F ′(u), v− u〉+ ψ(v)− ψ(u) ≥ 0 ∀ v ∈ D(ψ).

It is straightforward to see that each local minimum of I is necessarily a critical point of I
[26, Proposition 1.1]. A sequence {un} ⊂ D(ψ) is called a (PS)-sequence if I(un)→ c ∈ R and

〈F ′(un), v− un〉+ ψ(v)− ψ(un) ≥ −εn‖v− un‖ ∀ v ∈ D(ψ),

where εn → 0. The functional I is said to satisfy the (PS) condition if any (PS)-sequence has a
convergent subsequence in Y.

Let Σ be the collection of all symmetric subsets of Y \ {0} which are closed in Y. The genus
(Krasnoselskii) of a nonempty set A ∈ Σ is defined as being the smallest integer k with the
property that there exists an odd continuous mapping h : A→ Rk \ {0}; in this case we write
γ(A) = k. If such an integer does not exist, γ(A) = +∞. Also, if A ∈ Σ is homeomorphic
to Sk−1 (k− 1 dimension unit sphere in the Euclidean space Rk) by an odd homeomorphism,
then γ(A) = k (see e.g. [25, Corollary 5.5]). For properties and more details of the notion
of genus we refer the reader to [24, 25]. Denoting by Γ ⊂ 2Y the collection of all nonempty
compact symmetric subsets of Y, considered with the Hausdorff–Pompeiu distance, we set

Γj := cl{A ∈ Γ : 0 6∈ A, γ(A) ≥ j}.

The following is an immediate consequence of [26, Theorem 4.3].

Theorem 1.1. Let I be of type (1.4) with F and ψ even. Also, suppose that I is bounded from below,
satisfies the (PS) condition and I(0) = 0. If

inf
A∈Γm

sup
v∈A
I(v) < 0,

then the functional I has at least m distinct pairs of nontrivial critical points.
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2 Main results

Using the ideas from [5], we introduce the variational formulation for problem (1.1). Accord-
ingly, let

K0 := {u ∈W1,∞(Ω) : ‖∇u‖∞ ≤ 1, u|∂Ω = 0}.

The convex set K0 is compact in C(Ω) [5, Lemma 2.2]. The functional Ψ : C(Ω) → (−∞,+∞]

defined by

Ψ(u) =


∫

Ω
[1−

√
1− |∇u|2]dx, for u ∈ K0,

+∞, for u ∈ C(Ω) \ K0

is convex and lower semicontinuous [5, Lemma 2.4]. Also, it is easy to see that

Ψ(u) ≤
∫

Ω
|∇u|2, ∀ u ∈ K0. (2.1)

Let the C1-functional Gλ : C(Ω)→ R be given by

Gλ(u) = −λ
∫

Ω
G(u)dx,

where

G(t) =
∫ t

0
g(τ)dτ.

Then, the energy functional Iλ : C(Ω)→ (−∞,+∞] associated to problem (1.1) is

Iλ = Ψ + Gλ

and it has the structure required by Szulkin’s critical point theory. Also, by the compactness
of K0 ⊂ C(Ω) it is easy to see that Iλ satisfies the (PS) condition.

From [5, Theorem 2.1], one has the following:

Proposition 2.1. If a function uλ ∈ C(Ω) is a critical point of Iλ, then it is a solution of problem
(1.1). Moreover, Iλ is bounded from below and attains its infimum at some uλ ∈ K0, which is a critical
point of Iλ and hence, a solution of (1.1).

We briefly recall some classical spectral aspects of the operator −∆ in the Sobolev space
H1

0(Ω) - which is seen as being endowed with the usual scalar product

(u, v)1 =
∫

Ω
∇u · ∇v dx, for all u, v ∈ H1

0(Ω).

A real number λ∆ ∈ R is called an eigenvalue of −∆ in H1
0(Ω), if problem{

−∆u = λ∆u in Ω,

u|∂Ω = 0

has a nontrivial weak solution ϕ, i.e. there exists ϕ ∈ H1
0(Ω) \ {0} such that∫

Ω
∇ϕ · ∇v dx = λ∆

∫
Ω

ϕv dx, for all v ∈ H1
0(Ω).
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The solution ϕ is called eigenfunction corresponding to the eigenvalue λ∆. It is known that
there exists a sequence of eigenvalues 0 < λ∆

1 < λ∆
2 ≤ · · · ≤ λ∆

j ≤ · · · (going to +∞) and a
sequence of corresponding eigenfunctions {ϕj}j∈N defining an orthonormal basis of H1

0(Ω).
Also, since ∂Ω is of class C2 one has that each eigenfunction ϕj belongs to H2(Ω) and by a
bootstrap argument combining a standard regularity result [14, Theorem 9.15] and the Sobolev
embedding theorem [1, Theorem 4.12] we get that ϕj actually belongs to W2,p(Ω) with some
p > N. Therefore, ϕj belongs to C1(Ω) and hence |∇ϕj| ∈ C(Ω) for all j ∈N.

Theorem 2.2. If λ > 2λ∆
m for some m ∈N and

lim inf
t→0+

2G(t)
t2 ≥ 1, (2.2)

then problem (1.1) has at least m distinct pairs of nontrivial solutions.

Proof. We apply Theorem 1.1 with Y = C(Ω) and I = Iλ. Set

c1(m) :=

(
m

∑
j=1
‖∇ϕj‖2

∞

) 1
2

and c2(m) :=

(
m

∑
j=1
‖ϕj‖2

∞

) 1
2

.

Since λ > 2λ∆
m, we can choose ε ∈ (0, 1) so that λ > 2λ∆

m/(1− ε) and by virtue of (2.2), there
exists δ > 0 such that

2G(t) ≥ (1− ε)t2 as |t| ≤ δ. (2.3)

Consider the finite dimensional space

Xm := span {ϕ1, ϕ2, . . . , ϕm} ,

equipped with the norm

‖α1ϕ1 + · · ·+ αm ϕm‖Xm
=
(
α2

1 + · · ·+ α2
m
) 1

2 .

and let Am(ρ) be the subset of C(Ω) defined by

Am(ρ) := {v ∈ Xm : ‖v‖Xm = ρ} ,

where ρ is a positive number ≤ min
{

1
c1(m)

, δ
c2(m)

}
. Then, it is easy to see that the odd mapping

H : Am(ρ)→ Sm−1 defined by

H

(
m

∑
k=1

αk ϕk

)
=

(
α1

ρ
, . . . ,

αm

ρ

)

is a homeomorphism between Am(ρ) and Sm−1 and so, γ(Am(ρ)) = m. Hence, Am(ρ) ∈ Γm ⊂
2C(Ω).

Let v = ∑m
k=1 αk ϕk ∈ Am(ρ). Clearly, v|∂Ω = 0 and we have

|∇v| ≤
m

∑
k=1
|αk||∇ϕk| ≤

(
m

∑
k=1

α2
k

)1/2( m

∑
k=1
|∇ϕk|2

)1/2

≤ ρc1(m).
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Therefore, as ρ was chosen ≤ 1/c1(m), one get ‖∇v‖∞ ≤ 1, meaning that v ∈ K0. On the
other hand, using that {ϕj}j∈N is orthonormal in H1

0(Ω), one has

∫
Ω

v2dx ≥ ρ2

λ∆
m

and
∫

Ω
|∇v|2dx = ρ2. (2.4)

Then, from

|v| ≤
(

m

∑
k=1

α2
k

)1/2( m

∑
k=1
|ϕk|2

)1/2

≤ ρc2(m) ≤ δ,

together with (2.1), (2.3) and (2.4), we estimate Iλ as follows

Iλ(v) = Ψ(v) + Gλ(v) ≤
∫

Ω
|∇v|2dx− λ

2
(1− ε)

∫
Ω

v2dx

≤ ρ2
(

1− λ(1− ε)

2λ∆
m

)
= ρ2 2λ∆

m − λ(1− ε)

2λ∆
m

< 0.

This yields
inf

A∈Γm

sup
v∈A
Iλ(v) ≤ sup

v∈Am(ρ)

Iλ(v) < 0

and, since Iλ is bounded from below, the proof is accomplished by Theorem 1.1 and Proposi-
tion 2.1.

The above theorem can be applied to derive multiplicity of nontrivial solutions for au-
tonomous non-parameterized Dirichlet problems having the form{

−M(u) = f (u) in Ω,

u|∂Ω = 0,
(2.5)

where the mapping f : R→ R is odd and continuous. We set F(t) =
∫ t

0 f (τ)dτ (t ∈ R).

Corollary 2.3.

(i) If

lim inf
t→0+

F(t)
t2 > λ∆

m (2.6)

for some m ∈N, then problem (2.5) has at least m distinct pairs of nontrivial solutions.

(ii) If

lim
t→0+

F(t)
t2 = +∞, (2.7)

then problem (2.5) has infinitely many distinct pairs of nontrivial solutions.

Proof. (i) By (2.6), there exists λ such that

lim inf
t→0+

2F(t)
t2 ≥ λ > 2λ∆

m

and the result follows from Theorem 2.2 with g(t) = f (t)/λ.

(ii) This is immediate from (i) and (2.7).
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Example 2.4.

(i) For any m ∈N and ε > 0, problem{
−M(u) = 2(λ∆

m + ε) sin u in Ω,

u|∂Ω = 0

has at least m distinct pairs of nontrivial solutions.

(ii) If α ∈ (0, 1), then problem {
−M(u) = |u|α−1u in Ω,

u|∂Ω = 0

has infinitely many distinct pairs of nontrivial solutions.

Now, we study existence/non-existence and multiplicity of nontrivial solutions for Dirich-
let problems involving Fisher-Kolmogorov nonlinearities:{

−M(u) = λu(1− a|u|q) in Ω,

u|∂Ω = 0,
(2.8)

where a ≥ 0 and q > 0 are constants. Notice, in this case one has

G(t) =
t2

2
− a
|t|q+2

q + 2
, ∀ t ∈ R (2.9)

and

Iλ(u) = Ψ(u)− λ
∫

Ω

[
u2

2
− a
|u|q+2

q + 2

]
dx, u ∈ C(Ω). (2.10)

The next theorem will invoke the constant

aΩ :=
diam(Ω)

2
,

where diam(Ω) stands for the diameter of Ω. Using the mean value theorem, it is straightfor-
ward to check that any solution u of a problem of type (1.1) satisfies

‖u‖∞ < aΩ. (2.11)

Theorem 2.5.

(i) If λ > 2λ∆
m, for some m ≥ 2, then problem (2.8) has at least m distinct pairs of nontrivial

solutions.

(ii) If λ > λ∆
1 , then problem (2.8) has at least one pair of nontrivial solutions (uλ,−uλ), with uλ

a minimizer of the corresponding Iλ. In addition, if a ∈ [0, a−q
Ω ), one may suppose that uλ > 0

on Ω.

(iii) If λ ∈ (0, λ∆
1 ], the only solution of (2.8) is the trivial one.
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Proof. (i) This follows from Theorem 2.2 and (2.9).

(ii) Let ϕ1 > 0 be an eigenfunction of −∆ in H1
0(Ω) corresponding to the first eigenvalue λ∆

1
and set

ψ1 :=
ϕ1

‖∇ϕ1‖∞
.

As ϕ1 ∈ C1(Ω), it is clear that ψ1 ∈ K0 \ {0}. Since

λ∆
1 =

∫
Ω
|∇ψ1|2 dx∫
Ω

ψ2
1 dx

,

we have (as observed in [19]):

lim
t→0+

∫
Ω

[
1−

√
1− |t∇ψ1|2

]
dx

1
2

∫
Ω
(tψ1)

2dx
= lim

t→0+

∫
Ω

t|∇ψ1|2√
1− |t∇ψ1|2

dx

t
∫

Ω
ψ2

1 dx
= λ∆

1 . (2.12)

Now, let λ > λ∆
1 and let us fix some ε > 0 with λ∆

1 < λ− ε. On account of (2.12), there
exists tλ,ε ∈ (0, 1) such that∫

Ω

[
1−

√
1− |t∇ψ1|2

]
dx

1
2

∫
Ω
(tψ1)

2dx
< λ− ε, ∀ t ∈ (0, tλ,ε). (2.13)

Next, from (2.13) and taking t∗λ,ε ∈ (0, tλ,ε) with

λa
(t∗λ,εψ1(x))q

q + 2
<

ε

2
, ∀ x ∈ Ω,

we estimate Iλ in (2.10) as follows

Iλ(t∗λ,εψ1) = Ψ(t∗λ,εψ1)− λ
∫

Ω

[
(t∗λ,εψ1)

2

2
− a

(t∗λ,εψ1)
q+2

q + 2

]
dx

=
∫

Ω

[
1−

√
1− |∇(t∗λ,εψ1)|2

]
dx− λ

∫
Ω

[
(t∗λ,εψ1)

2

2
− a

(t∗λ,εψ1)
q+2

q + 2

]
dx

<
λ− ε

2

∫
Ω
(t∗λ,εψ1)

2dx− λ

2

∫
Ω
(t∗λ,εψ1)

2dx + λ
∫

Ω
a
(t∗λ,εψ1)

q+2

q + 2
dx

=
∫

Ω
(t∗λ,εψ1)

2

[
λa

(t∗λ,εψ1)
q

q + 2
− ε

2

]
dx < 0 = Iλ(0).

From Proposition 2.1 we infer that, if λ > λ∆
1 , the even functional Iλ attains its infimum at

some uλ ∈ K0 \ {0}, hence problem (2.8) has a pair of nontrivial solutions (uλ,−uλ). Since
|uλ| is still a minimizer of Iλ, it also solves (2.8) and, taking into account (2.11), we obtain

−M(|uλ|) = λ|uλ|(1− a|uλ|q) ≥ λ|uλ|
(
1− a aq

Ω

)
.

Then, since |uλ| > 0 in a subset of Ω having positive measure, from [11, Lemma 2.6] it follows
that actually |uλ| > 0 in the whole Ω.
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(iii) Assume, by contradiction, that for such a λ, a function u is a nontrivial solution of (2.8).
On account of (1.2), one gets

λ
∫

Ω
u2(1− a|u|q) dx =

∫
Ω

|∇u|2√
1− |∇u|2

dx ≥
∫

Ω
|∇u|2 dx ≥ λ∆

1

∫
Ω

u2 dx. (2.14)

If a > 0, we have
0 > −λa

∫
Ω
|u|q+2 dx ≥ (λ∆

1 − λ)
∫

Ω
u2 dx ≥ 0,

i.e. a contradiction. In the case a = 0, if λ < λ∆
1 , as above we obtain the contradiction

0 ≥ (λ∆
1 − λ)

∫
Ω

u2 dx > 0.

Also, if λ = λ∆
1 , from (2.14) (with a = 0) we have that

∫
Ω
|∇u|2

(
1√

1− |∇u|2
− 1

)
dx = 0,

or, ∫
Ω

|∇u|4(
1 +

√
1− |∇u|2

)√
1− |∇u|2

dx = 0

which, since u ∈ C1(Ω), implies |∇u| = 0 on Ω. It follows that u is constant and then,
as u ∈ K0, we infer that u ≡ 0 – a contradiction. Hence, (2.8) has only the trivial solution
provided that λ ∈ (0, λ∆

1 ] and the proof is now complete.

Remark 2.6. (i) It is worth noticing that in the particular case a = 0, Theorem 2.5 recovers and
improves the main result of paper [19], which states that problem{

−M(u) = λu in Ω,

u|∂Ω = 0,

has a nontrivial solution iff λ > λ∆
1 and for such a λ, a nontrivial solution can be chosen to be

nonnegative on Ω and to minimize the corresponding Iλ.

(ii) In Theorem 2.5 it is assumed: if m = 1, λ > λ∆
m, and if m > 1, λ > 2λ∆

m, instead of λ > λ∆
m.

This comes from the fact that in Theorem 2.2 we were not able to prove that λ > 2λm can be
replaced by the weaker condition λ > λ∆

m. Actually, at the moment it is not clear that this can
be done under assumption (2.2) – this remains an open problem. Nevertheless, it is worth to
point out that Theorem 2.2 yields the following: problem (1.1) has at least m (∈ N) distinct
pairs of nontrivial solutions if λ > λ∆

m and

lim inf
t→0+

G(t)
t2 ≥ 1. (2.15)

To see this, rewrite the equation in (1.1) as

−M(u) = 2λg̃(u) in Ω,

with g̃(u) = g(u)/2 and apply Theorem 2.2. In this form this seems to allow in Theorem 2.5
the more natural assumption λ > λ∆

m, instead of λ > 2λ∆
m, for m > 1. However, this cannot be

applied to problem (2.8) since G defined in (2.9) does not satisfy (2.15).
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