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Abstract. We consider a family of three point n− 2, 1, 1 conjugate boundary value prob-
lems for nth order nonlinear ordinary differential equations and obtain conditions in
terms of uniqueness of solutions imply existence of solutions. A standard hypothe-
sis that has proved effective in uniqueness implies existence type results is to assume
uniqueness of solutions of a large family of n−point boundary value problems. Here,
we replace that standard hypothesis with one in which we assume uniqueness of solu-
tions of large families of two and three point boundary value problems. We then close
the paper with verifiable conditions on the nonlinear term that in fact imply global
uniqueness of solutions of the large family of three point boundary value problems.
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1 Introduction

In a seminal paper, [23], Lasota and Opial proved that for second order ordinary differential
equations, global existence and uniqueness of solutions of initial value problems and unique-
ness of solutions of two point conjugate (Dirichlet) boundary value problems implies existence
of solutions of two point conjugate boundary value problems. A vast study of problems re-
ferred to as uniqueness implies existence for higher order (n−th order) nonlinear problems
was initiated. Following this work many related results were obtained; see for example,
[3,8,9,15,19,21,22,24]. Henderson and many different co-authors have obtained analogous re-
sults for nonlocal boundary value problems, [2,14,16], for example, as well as boundary value
problems for finite difference equations [11–13] for example, and boundary value problems
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for dynamic equations on time scales [17, 18], for example. Recently, these types of results
were gathered in the monograph [4].

The results for n-th order problems, referred to above, all assumed a baseline unique
solvability criterion for n-point Dirichlet type boundary conditions (n-point conjugate type
boundary conditions.) Recently, the authors [5] revisited these uniqueness implies existence
arguments with the baseline of a unique solvability criterion for two-point n− 1, 1 conjugate
type boundary conditions. In this paper, we continue to develop the ideas initiated in [5] and
begin with a baseline of unique solvability for two-point n − 1, 1 conjugate type boundary
conditions and unique solvability criterion for two-point n− 2, 1, 1 conjugate type boundary
conditions.

Let n ≥ 2 denote an integer and let a < T1 < T2 < T3 < b. Let ai ∈ R, i = 1, . . . , n.
Throughout this work, we shall consider the ordinary differential equation

y(n)(t) = f (t, y(t), . . . , y(n−1)(t)), t ∈ [T1, T3], (1.1)

where f : (a, b)×Rn → R, or the ordinary differential equation

y(n)(t) = f (t, y(t)), t ∈ [T1, T3], (1.2)

where f : (a, b)×R → R. We shall consider three point boundary value problems for either
(1.1) or (1.2) with the boundary conditions, for j ∈ {1, 2},

y(i−1)(T1) = ai, i = 1, . . . , n− 2, y(T2) = an−1, y(j−1)(T3) = an, (1.3)

and we shall consider two point boundary value problems for either (1.1) or (1.2) with the
boundary conditions, for j ∈ {1, 2},

y(i−1)(T1) = ai, i = 1, . . . , n− 1, y(j−1)(T2) = an. (1.4)

For expository reasons only we state the n−point conjugate boundary conditions,

y(Ti) = ai, i ∈ {1, . . . , n}, (1.5)

where a < T1 < · · · < Tn < b.
The intent of this work is to show that under the assumptions of uniqueness of solutions

of the boundary value problems (1.1), (1.3) and of the boundary value problems (1.1), (1.4),
then there exists a solution of the boundary value problem (1.1) with boundary conditions
(1.3) in the case j = 1.

With respect to (1.1), common assumptions for the types of results that we consider are:

(A) f (t, y1, . . . , yn) : (a, b)×Rn → R is continuous;

(B) Solutions of initial value problems for (1.1) are unique and extend to (a, b);

With respect to (1.2), the assumptions (A) and (B) are replaced, respectively, by

(A′) f (t, y) : (a, b)×R→ R is continuous;

(B′) Solutions of initial value problems for (1.2) are unique and extend to (a, b).
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There are two main purposes of this work. The first purpose is to obtain uniqueness
of solutions for the boundary value problems (1.1), (1.3) and (1.1), (1.4) implies existence of
solutions for the family of two-point boundary value problems (1.1), (1.3) in the case j = 1,
and the primary tool will be a modification of the original sequential compactness argument
provided by Lasota and Opial [23]. The second purpose is to obtain verifiable hypotheses that
imply the uniqueness of solutions for the boundary value problems (1.2), (1.3) and (1.2), (1.4);
hence, as a corollary, these verifiable hypotheses imply existence of solutions for the family
of two-point boundary value problems (1.1), (1.3) in the case j = 1. And as it turns out, the
existence will be global in T2 < T3 < b.

In Section 2, we remind the reader of a generalized mean value theorem for higher order
derivatives that is commonly used in interpolation theory. It is this generalized mean value
theorem that allows the Lasota and Opial argument [23] to be modified. Then in Section 3, we
shall consider the general ordinary differential equation (1.1) with the boundary conditions
(1.3) or (1.4). It is in Section 3 where we carry out the first main purpose of this work; in
particular we produce hypotheses such that uniqueness of solutions for the boundary value
problems (1.1), (1.3) and (1.1), (1.4) implies existence of solutions for the family of two-point
boundary value problems (1.1), (1.3) in the case j = 1.

To implement the results in the literature cited above or likewise for the main result in
Section 3, bounds on T3 − T1 are often required so that the contraction mapping principle can
be employed to obtain the appropriate uniqueness criteria. This has led to the concept of best
interval lengths for Lipschitz equations [6, 10, 20]. So in Section 4, to carry out the second
purpose of this work to produce verifiable hypotheses, we consider the ordinary differential
equation (1.2) with boundary conditions (1.3) or (1.4) and we assume f satisfies a Lipschitz
condition in y. We construct Green’s functions and estimates so that the contraction mapping
principle can apply. Then in Section 5, we impose monotonicity hypotheses on f (in addition
to the Lipschitz assumption) to produce the verifiable hypotheses to fulfill the second purpose
of the article. In doing so, we obtain a type of global uniqueness implies existence result as
will be discussed further in Section 5.

We state three further common assumptions, two of which are used throughout the paper.

(C) Solutions of the n−point boundary value problems (1.1), (1.5) are unique if they exist.

(D) Solutions of the two-point boundary value problems (1.1), (1.4) are unique if they exist.

(E) Solutions of the three point boundary value problems (1.1), (1.3) are unique if they exist.

We do not assume Condition (C) in this work; we state it to clearly see the contrast between
this work and those cited in the first paragraph.

2 A review of divided differences

Lasota and Opial [23] literally employed the mean value theorem to construct a sequential
compactness argument for the the second order conjugate boundary value problem. To mod-
ify that construction, we introduce a divided difference construction that is employed to derive
an error bound for interpolating polynomials. An extension of the mean value theorem is the
result. For the sake of self containment, we provide the following details. We refer the reader
to the text by Conte and de Boor [1]. Let t0, . . . , ti denote i + 1 distinct real numbers and let
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z : R → R. Define z[tl ] = z(tl), l = 0, . . . , i and if tl , . . . , tk+1 denote k− l + 2 distinct points,
define

z[tl , . . . , tk+1] =
z[tl+1, . . . , tk+1]− z[tl , . . . , tk]

tk+1 − tl
.

The following theorem is obtained by repeated applications of Rolle’s theorem to the differ-
ence of z and the polynomial that interpolates z at the i + 1 distinct points t0, . . . , ti ; a proof
can be found in [1, Theorem 2.2].

Theorem 2.1. Assume z(t) is a real-valued function, defined on [a, b] and i times differentiable in
(a, b). If t0, . . . , ti are i + 1 distinct points in [a, b], then there exists

c ∈ (min{t0, . . . , ti}, max{t0, . . . , ti})

such that

z[t0, . . . , ti] =
z(i)(c)

i!
.

In Section 3, we shall set h > 0 and choose t0 = T, t1 = T + h, . . . , ti = T + ih to be equally
spaced. In this setting

z[T, T + h, . . . , T + ih] =
∑i

l=0(−1)i−l(i
l)z(T + lh)

i!hi .

For example, if i = 1, Theorem 2.1 is the mean value theorem and if i = 2, there exists
c ∈ (T, T + 2h) such that

z(T)− 2z(T + h) + z(T + 2h)
2!h2 =

z′′(c)
2!

.

So, in general there exists c ∈ (T1, T1 + ih) such that

∑i
l=0(−1)i−l(i

l)z(T + ih)
hi = z(i)(c). (2.1)

3 Uniqueness of solutions implies existence of solutions

In this section we consider the families of boundary value problems (1.1), (1.3) and (1.1), (1.4).
We shall provide two preliminary results, Lemma 3.1 and Theorem 3.3, one addressing the
continuous dependence of solutions of (1.1) on initial conditions and another addressing the
continuous dependence of solutions of (1.1) on two point boundary conditions.

We state the first lemma without proof. See [7, page 14].

Lemma 3.1. Assume that with respect to (1.1), Conditions (A) and (B) are satisfied. Then, given a
solution y of (1.1), given t0 ∈ (a, b), given any compact interval [c, d] ⊂ (a, b), and given ε > 0, there
exists δ > 0 such that if z is a solution of (1.1) satisfying |y(i−1)(t0)− z(i−1)(t0)| < δ, i = 1, . . . , n,
then |y(i−1)(t)− z(i−1)(t)| < ε, i = 1, . . . , n, for all t ∈ [c, d].

For the sake of self-containment, we also state the Brouwer invariance of domain theorem.

Theorem 3.2. If U ⊂ Rk is open, φ : U → Rk is one-to-one and continuous on U , then φ is a
homeomorphism and φ(U ) is open in Rk.
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In [5], the authors employed the Brouwer invariance of domain theorem to prove continu-
ous dependence of solutions on the boundary conditions (1.4); in particular, they proved the
following theorem.

Theorem 3.3. Assume that with respect to (1.1) Conditions (A), (B), and (D) are satisfied. Let j ∈
{1, 2}.

(i) Given any a < T1 < T2 < b, and any solution y of (1.1), there exists ε > 0 such that if
|T11 − T1| < ε, |y(i−1)(T1) − yi1| < ε, i = 1, . . . , n − 1, and |T21 − T2| < ε |y(j−1)(T2) −
yn1| < ε, then there exists a solution z of (1.1) such that z(i−1)(T11) = yl1, i = 1, . . . , n− 1,
z(j−1)(T21) = yn1.

(ii) If T1k → T1, T2k → T2, yik → yi, i = 1, . . . , n and zk is a sequence of solutions of (1.1)
satisfying z(i−1)

k (T1k) = yik, i = 1, . . . , n− 1, z(j−1)
k (T2k) = ynk, then for each i ∈ {1, . . . , n},

z(i−1)
k converges uniformly to y(i−1) on compact subintervals of (a, b).

Here, we shall employ the Brouwer invariance of domain theorem to prove continuous
dependence of solutions on the boundary conditions (1.3).

Theorem 3.4. Assume that with respect to (1.1) Conditions (A), (B), and (E) are satisfied. Let j ∈
{1, 2}.

(i) Given any a < T1 < T2 < T3 < b, and any solution y of (1.1), there exists ε > 0 such that if
|T11 − T1| < ε, |y(i−1)(T1)− yi1| < ε, i = 1, . . . , n− 2, |T21 − T2| < ε, and |T31 − T3| < ε,
|y(T2) − y(n−1)1| < ε, |y(T3) − yn1| < ε, then there exists a solution z of (1.1) such that
z(i−1)(T11) = yl1, i = 1, . . . , n− 2, z(T21) = y(n−1)1, and z(j−1)(T31) = yn1.

(ii) If T1k → T1, T2k → T2, T3k → T3, yik → yi, i = 1, . . . , n and zk is a sequence of solutions of
(1.1) satisfying z(i−1)

k (T1k) = yik, i = 1, . . . , n− 2, zk(T2k) = y(n−1)k, z(j−1)
k (T3k) = ynk, then

for each i ∈ {1, . . . , n}, z(i−1)
k converges uniformly to y(i−1) on compact subintervals of (a, b).

Proof. Let j ∈ {1, 2}. Define U ⊂ Rn+3 to be the open set

U = {(T1, T2, T3, c1, . . . , cn) : a < T1 < T2 < T3 < b, ci ∈ R, i = 1, . . . , n}.

Let t0 ∈ (a, b). Define φ : U → Rn+3 by

φ(T1, T2, T3, c1, . . . , cn) = (T1, T2, T3, y(T1), . . . , y(n−3)(T1), y(T2), y(j−1)(T3)),

where y is the unique solution of (1.1) satisfying the initial conditions y(i−1)(t0) = ci, i =

1, . . . , n. Then by Lemma 3.1, φ is continuous on U .
To see that φ is a 1− 1 map on U let

(t1, t2, t3, c1, . . . , cn), (s1, s2, s3, d1, . . . , dn) ∈ U

and assume
φ(t1, t2, t3, c1, . . . , cn) = φ(s1, s2, s3, d1, . . . , dn).

By the definition of φ, ti = si, i = 1, 2, 3. It follows by Condition (E) that ci = di, i = 1, . . . , n,
since if y, z are solutions of (1.1) and y(i−1)(T1) = z(i−1)(T1), i = 1, . . . , n− 2, y(T2) = z(T2),
y(j−1)(T3) = z(j−1)(T3), then y ≡ z on (a, b); in particular, ci = y(i−1)(t0) = z(i−1)(t0) = di,
i = 1, . . . , n. Apply Brouwer’s invariance of domain theorem to obtain that φ(U ) is open in
Rn+3 which proves (i), and to obtain that φ−1 is continuous on U which proves (ii).
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Finally we state the uniqueness implies existence theorem proved by the authors in [5].

Theorem 3.5. Assume that with respect to (1.1), Conditions (A), (B), and (D) are satisfied. Then for
each a < T1 < T2 < b, ai ∈ R, i = 1, . . . , n, the two point boundary value problem (1.1), (1.4) has a
solution.

We are now in a position to adapt the method of Lasota and Opial [23] and show that the
uniqueness of solutions of the boundary value problems (1.1), (1.3) and (1.1), (1.4) implies the
existence of solutions of the boundary value problem (1.1), (1.3) for j = 1.

Theorem 3.6. Assume that with respect to (1.1), Conditions (A), (B), (D) and (E) are satisfied. Then
for each a < T1 < T2 < T3 < b, ai ∈ R, i = 1, . . . , n, then for j = 1, the three point boundary value
problem (1.1), (1.3) has a solution.

Proof. Let m ∈ R and denote by y(t; m) the solution of the two-point boundary value problem
(1.1), with boundary conditions

y(i−1)(T1; m) = ai, i = 1, . . . , n− 2, y(n−2)(T1; m) = m, y(T2) = an−1.

Let
Ω = {p ∈ R : there exists m ∈ R with y(T3; m) = p}.

So the theorem is proved by showing Ω = R. By Theorem 3.5, Ω 6= ∅, so the theorem is
proved by showing Ω is opened and closed. That Ω is open follows from Theorem 3.4.

To show Ω is closed, let p0 denote a limit point of Ω and without loss of generality let pk
denote a strictly increasing sequence of reals in Ω converging to p0. Assume y(T3; mk) = pk
for each k ∈N1. It follows by the uniqueness of solutions, Condition (E), that

y(j−1)(t; mk1) 6= y(j−1)(t; mk2), t ∈ (T2, b), (3.1)

for each j ∈ {1, 2}, if k1 < k2 and in particular,

y(t; m1) < y(t; mk) t ∈ (T2, b), (3.2)

for each k.
Either y′(T3; mk) ≤ 0 infinitely often or y′(T3; mk) ≥ 0 infinitely often. Relabel if necessary

and assume y′(T3; mk) ≤ 0 or y′(T3; mk) ≥ 0 for each k. Finally note that (3.1) implies that we
may assume y′(T3; mk) < 0 or y′(T3; mk) > 0 for each k.

We first assume the case y′(T3; mk) < 0 for each k. Find T3 < T4 < b such that y′(t; m1) ≤ 0,
for t ∈ [T3, T4]. Then y(t; m1) is decreasing on [T3, T4]. By (3.2), if t ∈ [T3, T4] and k ≥ 1, then

L = y(T4; m1) ≤ y(t; m1) ≤ y(t; mk). (3.3)

Fix k and find T3 < T4k ≤ T4 such that y′(t; mk) < 0 on [T3, T4k]. Then y(t; mk) is decreasing
on [T3, T4k]; in particular

L ≤ y(T4k; m1) < y(T4k; mk) ≤ y(t; mk) ≤ y(T3; mk) ≤ p0 (3.4)

for t ∈ [T3, T4k].
The observation employed by Lasota and Opial [23] is

0 >
y(T4k; mk)− y(T3; mk)

T4k − T3
≥ L− p0

T4k − T3
≥ L− p0

T4 − T3
= K1. (3.5)
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Apply the mean value theorem (or (2.1) in the case i = 1 to the left hand side of (3.5), to see
that

Sk1 = {t ∈ [T3, T4k] : K1 − 1 ≤ y′(t; mk) < 0} 6= ∅;

by the continuity of y′(t; mk), there exists a closed interval of positive length,

I1 = [T3k1, T4k1] ⊂ Sk1 ⊂ [T3, T4k].

To outline an induction argument in i, the order of the derivative y(i−1), set h = T4k1−T3k1
2

and consider
y(T3k1; mk)− 2y(T3k1 + h; mk) + y(T3k1 + 2h; mk)

h2 .

Then, continuing to observe that y(t, mk) is decreasing on I1,

y(T31; mk)− 2y(T31 + h) + y(T31 + 2h)
h2 ≥ 2(L− p0)

h2 =
23(L− p0)

(T4k1 − T3k1)2 ≥
23(L− p0)

(T4 − T3)2 = K2

and
y(T31; mk)− 2y(T31 + h) + y(T3 + 2h)

h2 ≤ 2(p0 − L)
h2 ≤ −K2.

In particular, ∣∣∣y(T31; mk)− 2y(T31 + h) + z(T31 + 2h)
h2

∣∣∣ ≤ K2.

Apply (2.1) in the case i = 2 and the set

Sk2 = {t ∈ [T3k1, T4k1] : |y′′(t; mk)| ≤ −K2 + 1} 6= ∅

and contains a closed interval of positive length

I2 = [T3k2, T4k2] ⊂ Sk2 ⊂ [T3k1, T43k1] ⊂ [T3, T4].

The induction hypothesis is then, for i ∈ {2, . . . n− 2} assume there exist T3ki < T4ki such
that Ii = [T3ki, T4ki] ⊂ [T3k(i−1), T4k(i−1)] ⊂ [T3, T4] and

|y(i)(t; mk)| ≤ −Ki + 1, t ∈ Ii

where

Ki =
ii2i−1(L− p0)

(T4 − T3)i .

Set h = T4ki−T3ki
i+1 . Then,

∣∣∣∑i+1
l=0(−1)i+1−l(i+1

l )y(T3ki + lh)
hi+1

∣∣∣ ≥ (i + 1)i+12i(L− p0)

(T4ki − T3ki)i+1 ≥ (i + 1)i+12i(L− p0)

(T4 − T3)i+1 = −Ki+1.

Apply (2.1) in the case i + 1 and the set,

Sk(i+1) = {t ∈ [T3ki, T4ki] : |y(i+1)(t; mk)| ≤ −Ki+1 + 1} 6= ∅

and contains a closed interval of positive length

Ii+1 = [T3(i+1), T4(i+1)] ⊂ [T3i, T4i] ⊂ [T3, T4].
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Recall, k is fixed. For this fixed k, choose tk ∈ In−1. Then

(tk, y(tk; mk), y′(tk; mk), . . . , y(n−1)(tk; mk)) ∈ [T3, T4]× [L, p0]×Πn−1
i=1 [−Ki − 1, Ki + 1].

The set on the righthand side is a compact subset of Rn+1 and independent of k. Perform this
process for each k and generate a sequence

{(tk, y(tk; mk), y′(tk; mk), . . . , y(n−1)(tk; mk))}∞
k=1 ⊂ [T3, T4]× [L, p0]×Πn−1

i=1 [−Ki − 1, Ki + 1].

In particular, there exists a convergent subsequence (relabeling if necessary)

{(tk, y(tk; mk), y′(tk; mk), . . . , y(n−1)(tk; mk))} → (t0, c1, . . . , cn)

where t0 ∈ [T3, T4]. Since t0 ∈ (a, b) and by the continuous dependence of solutions of initial
value problems, Lemma 3.1, y(t; mk) converges in Cn−1[T1, T3] to a solution, say z(t), of the
initial value problem (1.1), with initial conditions, y(i−1)(t0) = ci, i = 1, . . . , n. Thus, p0 = z(T3)

which implies p0 ∈ Ω and Ω is closed. This completes the proof if y′(T3; mk) < 0 for each k.
If y′(T3; mk) > 0 for each k, find T2 < T4 < T3 such that y′(t; m1) ≥ 0, for t ∈ [T4, T3]. Then

L = y(T4; m1) < y(T4; mk) ≤ y(t; mk) ≤ p0, T4 ≤ t ≤ T3,

and the above argument can be modified to apply on [T4, T3]. This completes the proof.

4 Local uniqueness of solutions

In this section, we state conditions on f (t, y) such that solutions of a boundary value problem
(1.2), (1.3) are unique, if they exist, for T3 − T1 sufficiently small. The ideas here are not new
and the result we state is standard, but the estimates that are employed are possibly new and
the construction is provided for the sake of self containment. Assume that f : (a, b)×Rn → R

is continuous and that there exists a positive constant, P such that

| f (t, y)− f (t, z)| ≤ P|y− z| (4.1)

for all (t, y), (t, z) ∈ (a, b)×R.
We require specific estimates for the Green’s function for the boundary value problem

(1.2), (1.3) for each j = 1, 2.
For j = 1, the Green’s function, G(1; t, s) for the boundary value problem (1.2), (1.3) has

the following representation. If T1 ≤ s ≤ T2,

G(1; t, s) =


(t−T1)

n−2

(T3−T2)(n−1)! [
(T2−s)n−1(t−T3)

(T2−T1)n−2 + (T3−s)n−1(T2−t)
(T3−T1)n−2 ], T1 ≤ t ≤ s ≤ T2,

(t−T1)
n−2

(T3−T2))(n−1)! [
T2−s)n−1(t−T3)
(T2−T1)n−2 + (T3−s)n−1(T2−t)

(T3−T1)n−2 ] + (t−s)n−1

(n−1)! , T1 ≤ s ≤ t ≤ T3,

and if T2 ≤ s ≤ T3,

G(1; t, s) =


(t−T1)

n−2(T3−s)n−1(T2−t)
(T3−T2)(T3−T1)n−2(n−1)! , T1 ≤ t ≤ s ≤ T2,

(t−T1)
n−2(T3−s)n−1(T2−t)

(T3−T2)(T3−T1)n−2(n−1)! +
(t−s)n−1

(n−1)! , T1 ≤ s ≤ t ≤ T3.
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The Green’s function is constructed in the following way. If (1.1) or (1.2) is a nonhomoge-
nous linear equation, then the general solution is

y(t) =
n

∑
i=1

ci(t− T1)
i−1 +

∫ t

T1

(t− s)n−1

(n− 1)!
f (s)ds.

The homogeneous boundary conditions at T1 imply ci = 0, i = 1, . . . , n− 2. The homogeneous
boundary conditions at T2 and T3 imply

0 = cn−1 + cn(T2 − T1) +
∫ T2

T1

(T2−s)n−1

(T2−T1)n−2(n−1)! f (s)ds,

0 = cn−1 + cn(T3 − T1) +
∫ T3

T1

(T3−s)n−1

(T3−T1)n−2(n−1)! f (s)ds.

We now seek a bound on |G(1; t, s)| on [T1, T3]× [T1, T3]. The term (T3− T2) in the common
denominator is apparently problematic. We provide algebraic details to show the term is not
problematic. First note that if T1 ≤ s, then usual calculus methods imply that the function

h(α) =
(α− s)n−1

(α− T1)n−2

is increasing in α for s ≤ α. In particular,

(T2 − s)n−1

(T2 − T1)n−2 <
(T3 − s)n−1

(T3 − T1)n−2 .

If T1 ≤ t ≤ T2,

(T2 − s)n−1

(T2 − T1)n−2 (t− T3) >
(T3 − s)n−1

(T3 − T1)n−2 (t− T3)

=
(T3 − s)n−1

(T3 − T1)n−2 (t− T2) +
(T3 − s)n−1

(T3 − T1)n−2 (T2 − T3).

So,
(T2 − s)n−1

(T2 − T1)n−2 (t− T3) +
(T3 − s)n−1

(T3 − T1)n−2 (T2 − t) >
(T3 − s)n−1

(T3 − T1)n−2 (T2 − T3).

Similarly, if T2 ≤ t ≤ T3,

(T2 − s)n−1

(T2 − T1)n−2 (t− T3) +
(T3 − s)n−1

(T3 − T1)n−2 (T2 − t) <
(T2 − s)n−1

(T2 − T1)n−2 (T2 − T3).

Keeping in mind that the function h(α) is increasing we have, for T1 ≤ s ≤ T2, T1 ≤ t ≤ T3,

∣∣∣ (T2 − s)n−1

(T2 − T1)n−2 (t− T3) +
(T3 − s)n−1

(T3 − T1)n−2 (T2 − t)
∣∣∣ ≤ (T3 − s)n−1

(T3 − T1)n−2 (T3 − T2). (4.2)

Now with the help of (4.2) it is now clear to see that

|G(1; t, s)| ≤ 2(T3 − T1)
n−1

(n− 1)!
, (t, s) ∈ [T1, T2]× [T1, T2]. (4.3)



10 P. Eloe, J. Henderson and J. Neugebauer

For j = 2, to construct the Green’s function, G(2; t, s), we solve a similar system of two
equations to compute cn−1 and cn for the boundary value problem (1.2), (1.4) and obtain the
following representation. Let D = (T3 − T1) + (n− 2)(T3 − T2). Define

g(t, s) =
(T2 − s)n−1

(n− 1)!(T2 − T1)n−2 (−(n− 1)(T3 − T1) + (n− 2)(t− T1))

+
(T3 − s)n−2

(n− 2)!(T3 − T1)n−3 (T2 − t).

If T1 ≤ s ≤ T2,

G(2; t, s) =


(t−T1)

n−2g(t,s)
D , T1 ≤ t ≤ s ≤ T2,

(t−T1)
n−2g(t,s)
D + (t−s)n−1

(n−1)! , T1 ≤ s ≤ t ≤ T3,

and if T2 ≤ s ≤ T3,

G(2; t, s) =


(t−T1)

n−2(T3−s)n−2

D(n−2)!(T3−T1)n−3 (T2 − t), T1 ≤ t ≤ s ≤ T2,

(t−T1)
n−2(T3−s)n−2

D(n−2)!(T3−T1)n−3 (T2 − t) + (t−s)n−1

(n−1)! , T1 ≤ s ≤ t ≤ T3.

Now the term T3 − T2 in D is not problematic since D > T3 − T1.
To bound |G(2; t, s)|, we keep in mind that h(α) is increasing and write

| − (n− 1)(T3 − T1) + (n− 2)(t− T1)| = |(n− 2)(t− T3)− (T3 − T1)| ≤ (n− 1)(T3 − T1).

Then, ∣∣∣∣∣ (T2 − s)n−1

(n− 1)!(T2 − T1)n−2 (−(n− 1)(T3 − T1) + (n− 2)(t− T1))

∣∣∣∣∣ ≤ (T3 − T1)
n−1

(n− 2)!

and ∣∣∣∣∣ (T3 − s)n−2

(n− 2)!(T3 − T1)n−3 (T2 − t)

∣∣∣∣∣ ≤ (T3 − T1)
n−1

(n− 2)!
.

Thus,

|G(2; t, s)| ≤ (2n− 1)(T3 − T1)
n−1

(n− 1)!
, (t, s) ∈ [T1, T2]× [T1, T2]. (4.4)

For each a < T1 < T2 < T3 < b, consider the usual Banach space C[T1, T3] with norm

‖y‖ = max
T1≤t≤T3

|y(t)|.

For each j ∈ {1, 2}, define the fixed point operator T(j; ·) : C[T1, T3]→ C[T1, T3] by

T(j; y)(t) = pcj(t) +
∫ T3

T1

G(j; t, s) f (s, y(s))ds,

where pcj denotes the n− 1 order polynomial satisfying the boundary conditions (1.3). Then
(4.1), (4.3) and (4.4) are readily employed to see that if y, z ∈ C[T1, T3], then for T1 ≤ t ≤ T3,

|T(j; y)(t)− T(j; z)(t)| ≤
∫ T3

T1

|G(j; t, s)|| f (s, y(s)− f (s, z(s))|ds (4.5)

≤ max

{
2(T3 − T1)

n

(n− 1)!
,
(2n− 1)(T3 − T1)

n

(n− 1)!

}
P‖y− z‖.
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Choose

δ =

(
(n− 1)!
(2n− 1)P

) 1
n

= min

{(
(n− 1)!

2P

) 1
n

,
(

(n− 1)!
(2n− 1)P

) 1
n
}

and assume |T3 − T1| < δ. Then the each fixed point map T(j; ·) for j ∈ {1, 2} is a contraction
map on C[T1, T3].

Theorem 4.1. Assume that f : (a, b)×Rn → R is continuous and that there exists positive constant
P such that f satisfies (4.1) for all (t, y), (t, z) ∈ (a, b)×Rn. Assume |T3 − T1| < δ where

δ =

(
(n− 1)!
(2n− 1)P

) 1
n

.

Then for each j ∈ {1, 2} there exists a unique solution of the boundary value problem (1.2), (1.3).

The following information about the boundary value problem (1.2), (1.4) will be required
in the next section so we state it here. For each j ∈ {1, 2}, it was shown in [5] that the
corresponding Green’s function G(j; t, s) for the boundary value problem (1.2), (1.4) has the
following representation and satisfies the following estimate:

G(j; t, s) =


− (t−T1)

n−1(T2−s)n−j

(n−1)!(T2−T1)n−j , T1 ≤ s ≤ t ≤ T2,

− (t−T1)
n−1(T2−s)n−j

(n−1)!(T2−T1)n−j + (t−s)n−1

(n−1)! , T1 ≤ s ≤ t ≤ T2.
(4.6)

Note that for each i ∈ {1, . . . , n},

|G(j; t, s)| ≤ 2|(T2 − T1)|n−1

(n− 1)!
, (t, s) ∈ [T1, T2]× [T1, T2]. (4.7)

5 A type of global uniqueness of solutions implies existence of so-
lutions for n = 3

In this section we consider the boundary value problem (1.2), (1.3) or the boundary value
problem (1.2), (1.4), for j ∈ {1, 2} in the specific case that n = 3. We assume f continues to
satisfy a Lipschitz condition in y; we shall also impose a new monotonicity condition on f .
We shall assume that f is monotone decreasing in y for t ∈ (T1, T2) and that f is monotone
increasing in y for t ∈ (T2, T3). Since the monotonicity of f depends on T2, beginning with
Theorem 5.2 we shall assume that T2 is fixed and f is a function of (T2; t, y). For sake of
exposition, we shall also assume that T1 is fixed.

For j ∈ {1, 2}, we first briefly address the local uniqueness of solutions for the boundary
value problem, (1.2), (1.4). Continuing in the framework of the contraction mapping principle,
employ the Banach space B = C[T1, T2] with the usual supremum norm. Then the fixed point
operator

T (j; y)(t) = pc(t) +
∫ T2

T1

G(j; t, s) f (s, y(s))ds,

maps B into B if f is continuous and fixed points are 3 times continuously differentiable. By
the estimates obtained in the preceding section, if each operator T(j; y) is a contraction map,
then each operator T (j; y) is a contraction map.
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Theorem 5.1. Assume that f : (a, b) ×R → R is continuous and assume there exists a positive
constant, P, such that

| f (t, y)− f (t, z)| ≤ P|y− z|

for all (t, y), (t, z) ∈ (a, b)×R. Assume a < T1 < T2 < T3 < b and and T3 − T1 < δ where

δ =

(
(3− 1)!
(6− 1)P

) 1
3

.

Then for each j ∈ {1, 2} there exists a unique solution of the boundary value problem (1.2), (1.3) and
there exists a unique solution of the boundary value problem (1.2), (1.4).

In the next result, we assume, in addition, that f is increasing in y and we prove a type of
global uniqueness of solutions of the boundary value problem (1.2), (1.3). By global, we mean
that although there is a constraint on T2 − T1, there is no local constraint on T3 − T2.

Theorem 5.2. Assume a < T1 < T2 < b and assume T1 and T2 are fixed. Assume that f : (a, b)×
R→ R is continuous and assume there exists a positive constant, P, such that

| f (t, y)− f (t, z)| ≤ P|y− z|

for all (t, y), (t, z) ∈ (a, b)×R. Assume a < T1 < T2 < T3 < b. Set

δ =

(
(3− 1)!
(6− 1)P

) 1
3

and assume T2 − T1 < δ. Assume

f (t, y) ≥ f (t, z), t ∈ (T1, T2], y < z, (5.1)

f (t, y) ≤ f (t, z), t ∈ [T2, b), y < z.

Then solutions of the boundary value problem (1.2), (1.3) are unique if they exist.

Proof. Assume for the sake of contradiction that y1 and y2 are distinct solutions of the bound-
ary value problem (1.2), (1.3). We first argue that there exists T4 ∈ (T1, T2) ∪ (T2, T3) such
that (y1 − y2)(T4) = 0. So, for the sake of contradiction, assume y1 − y2 is of constant sign on
(T1, T2) ∪ (T2, T3) and without loss of generality assume (y1 − y2)(t) > 0 for T2 < t < T3. Set
u(t) = (y1 − y2)(t) and so u(t) > 0 on (T2, T3).

To obtain the contradiction, we shall consider multiple cases.
First assume u(t) < 0 on (T1, T2). Then by (5.1), u′′′(t) > 0 on (T1, T2) ∪ (T2, T3). Thus,

u′′ is monotone increasing on (T1, T3). Apply Rolle’s theorem to u which satisfies u(T1) =

0, u(T2) = 0, u(T3) = 0 to obtain T11, T12 and T21 satisfying

T1 < T11 < T2 < T12 < T3, T11 < T21 < T12

such that
u′(T1i) = 0, i = 1, 2, u′′(T21) = 0.

Since u′′ is monotone, there are no other roots of u′′ or u′ in (T1, T3). Since u′′ is monotone
increasing, u′′(t) > 0 for T21 < t, this in turn implies u′ is increasing for T21 < t. As T21 < T12,
this implies u′(T3) > 0 which contradicts the hypothesis u(t) > 0 on (T2, T3).
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Second, assume u(t) > 0 on (T1, T2). So now, u′′′(t) < 0 on (T1, T2), u′′′(t) > 0 on (T2, T3).
In particular, u′′ is decreasing on (T1, T2) and increasing on (T2, T3). We know u′′ has at least
one root in [T1, T3] by Rolle’s theorem and u′′ has at most two roots in [T1, T3] by the mono-
tonicity property we have just observed on u′′. Three more cases to consider are introduced.

Assume u′′ has precisely one root, T21 ∈ [T1, T3]. By Rolle’s theorem, T21 ∈ [T1, T3] and u′

has precisely two roots, T11, T12 in [T1, T3] satisfying

T1 < T11 < T21 < T12 < T3.

Since u′′ is decreasing on (T1, T2) and increasing on (T2, T3) it must be the case that T21 ≤ T2.
(If T21 = T2, then T21 is a repeated root. The argument works here too, so we are not counting
multiplicity in the assumption u′′ has precisely one root.) In particular, u′′(t) > 0, on [T1, T21).
Thus u′ is increasing on [T1, T21) and u′(T11) = 0, where T11 < T21. From here, we conclude
u′(T1) < 0. This yields a contradiction because it is assumed that u(t) > 0 on (T1, T2).

We now come to the possibility that u′′ has two distinct roots, T21 < T22 in [T1, T3]. By
Rolle’s theorem, either T11 < T21 or T22 < T21. These are the final two cases to consider.

Assume T11 < T21. Now T11 has been generated by Rolle’s theorem and u′′ has no roots
in (T1, T21]. So we can conclude that u′(T1) 6= 0. So u′′ is decreasing on (T1, T2) again implies
u′′(t) > 0 on [T1, T21). This in turn implies u′ is increasing on (T1, T21) and so u′(t) < 0 on
[T1, T11). We conclude that u′(T1) < 0 contradicts u(t) > 0 on (T1, T2).

For the final case, assume T22 < T12. Due due the monotone nature of u′′ it is clear
that u′′(t) > 0 on (T1, T21) ∪ (T22, T3) and u′′(t) < 0 on (T21, T22). (It could be the case that
T1 = T21. In this case, u′′(t) < 0 on (T1, T22) and u′′(t) > 0 on (T22, T3).) Regardless, u′′(t) > 0
on (T22, T3), which implies u′ is increasing on (T22, T3). Finally, T22 < T12 implies u′(T3) > 0.
This produces the final contradiction since it is assume throughout that u(t) > 0 on (T1, T2).

Thus there exists T4 ∈ (T1, T2) ∪ (T2, T3) such that y1(T4) = y2(T4). It is clear by Theorem
4.1 in the case n = 3 and the hypothesis |T2 − T1| < δ that T4 /∈ (T1, T2). So, T4 ∈ (T2, T3).

Let
S = {t ∈ (T2, T3) : (y1 − y2)(t) = 0}.

We have just shown S 6= ∅. Let τ = inf S. If τ > T2, argue that (y1 − y2)(τ) = 0. This follows
by continuity if τ is a limit point of S and by definition if τ is an isolated point of S. Thus if
τ > T1, y1 and y2 are distinct solutions of a boundary value problem (1.2), (1.3) for T3 = τ.
Apply the argument that employed four cases to conclude there exists T4 ∈ (T2, τ) such that
(y1 − y2)(T3) = 0; in particular, the assumption that τ = inf S > T1 is false.

So, inf S = T2. Find T ∈ S such that 0 < T − T1 < δ. Then Theorem 5.1 implies y1 ≡ y2 on
[T1, T]. Now Condition (B) implies y1 ≡ y2 on (a, b).

We close the article with a corollary, which represents the main result addressing the
second purpose of this work.

Corollary 5.3. Assume a < T1 < T2 < b and assume T1 and T2 are fixed. Assume that f :
(a, b)×R→ R is continuous and assume there exists a positive constant, P, such that

| f (t, y)− f (t, z)| ≤ P|y− z|

for all (t, y), (t, z) ∈ (a, b)×R. Assume a < T1 < T2 < T3 < b. Set

δ =

(
(3− 1)!
(6− 1)P

) 1
3
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and assume T2 − T1 < δ. Assume f satisfies (5.1). Assume that with respect to (1.2), Conditions (A′)
and (B′) are satisfied. Then for j = 1, and for each T2 < T3 < b, the three point boundary value
problem (1.2), (1.3) has a solution.
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