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Abstract. The equation

x′′(t) = a(t, x(t)) + b(t, x) + d(t, x)e(x′(t))

is considered, where a : R2 → R, b, d : R× C(R, R) → R, e : R → R are continuous,
and a, b, d are T-periodic with respect to t. Using the Leray–Schauder degree theory we
prove that a sign condition, in which a dominates b, is sufficient for the existence of a
T-periodic solution. The main theorem is applied to the equation of the forced damped
pendulum.
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1 Introduction

Second order differential equations of the type

x′′ = h(t, x, x′)

are basic models in mechanics: h is the resultant force acting on the system. When h is T-
periodic with respect to t then it is an important problem to find conditions for the existence
of T-periodic answer, T-periodic motions of the system. A simple model is the periodically
forced damped mathematical pendulum

x′′ + g(t, x, x′) + a sin x = e(t), (1.1)

where e is T-periodic, g is T-periodic with respect to t and satisfies the following Nagumo-
type condition: there exists a constant C such that every possible solution x of (1.1) satisfying
sup[0,T] |x| < 3π/2 has the property |x′(t)| < C (t ∈ R). H. W. Knobloch [8] proved that if
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sup[0,T] |e| < a, then equation (1.1) has T-periodic solutions. J. Mawhin and M. Willem [10,12]
extended this result to more general equations.

In the practice many important technical models connected with the pendulum are de-
scribed by more general differential equations than (1.1). As particular cases we will con-
sider in detail the mathematical pendulum with periodically vibrating suspension point and
a functional differential equation model. The equations cannot be handled by Knobloch’s
or by Mawhin’s and Willem’s extensions. We extend the Leray–Schauder method for more
general pendulum-like equations, i.e., differential equations containing a main part satisfying
the same sign condition as the sine function in the pendulum equation but admitting also
periodic perturbations.

In this paper we introduce a wide class of pendulum-like differential equations admitting
a variety of perturbations including ordinary and functional terms even with unbounded
delays. The proof of the existence of periodic solutions is based upon the Leray–Schauder
continuation method [5, 6, 9, 10].

2 The main theorem and its proof

For a fixed T > 0 we will use the standard notations:

C := {ϕ : R→ R | ϕ is continuous};
C1 := {ψ : R→ R | ψ is continuously differentiable};

CT := {ϕ ∈ C : ϕ is T-periodic}, C1
T := {ψ ∈ C1 : ψ is T-periodic}.

If ϕ ∈ C is bounded, ψ ∈ C1, and ψ, ψ′ are bounded on R, then define

‖ϕ‖0 := sup
t∈R

|ϕ(t)|, ‖ψ‖1 := max
{

sup
t∈R

|ψ(t)|; sup
t∈R

|ψ′(t)|
}

.

Consider the equation

x′′(t) = a(t, x(t)) + b(t, x) + d(t, x)e(x′(t)), (2.1)

where functions a : R×R → R; b, d : R× C → R; e : R → R are continuous, and e(0) = 0.
Moreover, we suppose that for every fixed u ∈ R, ϕ ∈ C functions t 7→ a(t, u), b(t, ϕ), d(t, ϕ)

are T-periodic.
Functions a, b, d, e generate the following operators:

A : C → C, ϕ 7→ Aϕ, (Aϕ)(t) := a(t, ϕ(t));

B : C → C, ϕ 7→ Bϕ, (Bϕ)(t) := b(t, ϕ);

D : C → C, ϕ 7→ Dϕ, (Dϕ)(t) := d(t, ϕ);

De : C1 → C, ψ 7→ Deψ, (Deψ)(t) := d(t, ψ)e(ψ′(t)).

For R > 0, S > 0 given we define the subset

CT(−R, S) := {ϕ ∈ CT : −R ≤ ϕ(t) ≤ S (t ∈ R)}.

By the use of the notations f : R× C1 → R, F : C1 → C,

f (t, ψ) := a(t, ψ(t)) + b(t, ψ) + d(t, ψ)e(ψ′(t)),

Fψ := f (·, ψ) = a(·, ψ(·)) + b(·, ψ) + d(·, ψ)e(ψ′(·)) = Aψ + Bψ + Deψ
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equation (2.1) can be rewritten in the shortened form

x′′(t) = f (t, x) = Fx(t). (2.2)

Theorem 2.1. Suppose that there exist positive constants R, S and a continuous nondecreasing func-
tion φ : (0, ∞)→ (0, ∞) such that

a(t, S) > sup{|b(t, ϕ)| : ϕ ∈ CT(−R, S)} =: β−R,S(t),(i)

a(t,−R) < −β−R,S(t) (t ∈ R);

(ii) operators B and D map bounded sets of CT into bounded sets of CT;

(iii)
∫ ∞

1

u
φ(u)

du = ∞, |e(u)| ≤ φ(|u|) (u ∈ R)

hold.
Then there exists a T-periodic solution x ∈ CT(−R, S) of (2.1).

Proof. We use the Leray–Schauder degree for completely continuous perturbation of the iden-
tity operator [5, 6, 9, 10, 13]. We suppose that the reader is familiar with the definition of the
Brouwer degree and the Leray–Schauder degree and their most basic properties (see, e.g., [4]).

Now we sketch the main steps of the proof. We find an open bounded set Ω ⊂ C1
T and a

family of mappings Mλ : Ω→ C1
T (λ ∈ [0, 1]) having the following properties:

(a) if x is a fixed point of M1 in Ω, then x is the desired periodic solution of (2.1), i.e.,
x ∈ CT(−R, S), and x is a solution of (2.1);

(b) the function
M∗ : Ω× [0, 1]→ C1

T, M∗(ψ, λ) = Mλψ

is completely continuous;

(c) if ϕ ∈ ∂Ω and λ ∈ [0, 1], then ϕ 6= Mλ ϕ;

(d) if I : C → C is the identity operator and d[I − Mλ, Ω, 0] denotes the Leray–Schauder
degree of Mλ with respect to Ω, then d[I −M0, Ω, 0] 6= 0.

Then an application of basic theorems of the theory of the Leray–Schauder degree yields the
assertion of the theorem.

For the definition of Ω ⊂ C1
T we need a Nagumo-type result [13] for the family of equations

x′′(t) = λ f (t, x) (λ ∈ [0, 1]) (2.3)

associated with (2.2).

Lemma 2.2. Suppose that conditions (i)–(iii) in Theorem 2.1 are satisfied. Then there is a K > 1 such
that for any λ ∈ [0, 1] and for an arbitrary solution x ∈ CT(−R, S) of (2.3) the inequality

|x′(t)| ≤ K− 1 (t ∈ R)

holds.
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Proof. Consider an arbitrary solution x ∈ CT(−R, S) of (2.1). By conditions (ii) and (iii) there
exist constants K1 and K2 independent of λ ∈ [0, 1] and the solution x such that

|x′′(t)| ≤ max{|a(s, u)| : 0 ≤ s ≤ T,−R ≤ u ≤ S}+ K1 + K2φ(|x′(t)|) (0 ≤ t ≤ T).

Let us define
φ̃(v) := K1 + K2φ(v) (v > 0).

Then
v

φ̃(v)
≥ 1

2K2

v
φ(v)

,

provided that φ(v) ≥ K1/K2. The Nagumo–Hartman Lemma [7, Lemma XII. 5.1] and condi-
tion (iii) of the theorem imply the existence of the desired K.

Now we can define the basic set Ω and the homotopy mapping Mλ for the Leray–Schauder
degree. Let K be the constant associated with R, S by Lemma 2.2 and consider the set

Ω := ΩR,S,K :=
{

ψ ∈ C1
T : −R < ψ(t) < S, |ψ′(t)| < K (t ∈ [0, T])

}
. (2.4)

This set is open and bounded in C1
T.

To define the family of mappings Mλ : Ω → C1
T (λ ∈ [0, 1]) we need further notation. The

mean value operator P : CT → CT is defined by

(Pϕ)(t) :=
1
T

∫ T

0
ϕ(t)dt (ϕ ∈ CT).

Introduce the subspace CT,I−P := {ϕ ∈ CT : Pϕ = 0} and the operator of the primitivation
H : CT,I−P → CT,I−P ∩ C1

T by

(Hϕ)(t) :=
∫ t

0
ϕ(s)ds− 1

T

∫ T

0

(∫ t

0
ϕ(s)ds

)
dt.

It is easy to see that

d
dt

(H (I − P) ϕ) (t) = ϕ(t)− Pϕ (ϕ ∈ CT). (2.5)

Now for λ ∈ [0, 1] we define the mapping:

Mλ : Ω→ C1
T, Mλψ := M∗(ψ, λ), (2.6)

where
M∗ : C1

T × [0, 1]→ C1
T, M∗(ψ, λ) := Pψ− PFψ + λH2(I − P)Fψ. (2.7)

Property (a) is a consequence of the following lemma.

Lemma 2.3. For λ ∈ (0, 1] a function ψ ∈ C1
T is a fixed point of Mλ, i.e., ψ = Mλψ if and only if ψ

is a T-periodic solution of (2.3).
Function ψ ∈ C1

T is a fixed point of M0 if and only if

ψ = Pψ and PFPψ = 0. (2.8)
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Proof. Suppose that λ ∈ (0, 1] is fixed, and ψ ∈ C1
T is a fixed point of Mλ:

ψ = Pψ− PFψ + λH2(I − P)Fψ. (2.9)

Applying functional P to both sides we get PFψ = 0. By (2.9) ψ is two times differentiable
and we obtain ψ′′(t) = λ f (t, ψ) (t ∈ R), which means that ψ is a solution of (2.3).

On the other hand, if ψ is a T-periodic solution of (2.3) then

Pψ′′ =
1
T

∫ T

0
ψ′′(t)dt =

1
T
(
ψ′(T)− ψ′(0)

)
= 0,

consequently PFψ = 0, and we can write

ψ′′(t) = λ{ f (t, ψ)− PFψ}.

Integrating this equality we obtain

ψ′(t) = ψ′(0) + λ
∫ t

0
( f (s, ψ)− PFψ)ds,

which, together with the definition of H, gives

ψ′ = ψ′(0) +
λ

T

∫ T

0

(∫ t

0
( f (s, ψ)− PFψ)ds

)
dt + λH(I − P)Fψ.

Apply functional P to both sides of this equality. Since Pψ′ = 0 we have

ψ′(0) +
λ

T

∫ T

0

(∫ t

0
( f (s, ψ)− PFψ)ds

)
dt = 0,

therefore ψ′ = λH(I − P)Fψ. Integration yields

ψ = const. + λH2(I − P)Fψ.

From the definition of H there follows const. = Pψ, which, together with PFψ = 0, shows that
ψ is a fixed point of Mλ, i.e., (2.9) holds.

Now we turn to the proof of the second statement of the lemma concerning the case λ = 0.
Suppose that ψ ∈ C1

T is a fixed point of M0 = P− PF, i.e.,

ψ = Pψ− PFψ. (2.10)

Obviously, ψ = Pψ and, consequently, (2.8) holds.
On the other hand, if (2.8) holds, then

ψ = Pψ = Pψ + PFPψ = Pψ + PFψ = M0ψ.

In other words, ψ is a fixed point of M0.

Step (b) is contained in the following lemma.

Lemma 2.4. Under the conditions of Theorem 2.1 function M∗ is completely continuous on the set
Ω× [0, 1], provided that the norm |||·||| in Ω× [0, 1] is defined by

|||(ψ, λ)||| := ‖ψ‖1 + |λ| ((ψ, λ) ∈ Ω× [0, 1]).
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Proof. The continuity of M∗ follows from the conditions on a, b, d, e. In fact, to this property
it is enough to prove the continuity of F : C1

T → CT. Obviously, A, B, D : C1
T → CT are

continuous. For De : C1
T → CT, let us fix a ψ ∈ C1

T and consider the sets

Q :=
{

ψ ∈ C1
T : ‖ψ− ψ‖1 ≤ 1

}
⊂ C1

T,

Q1 :=
{

v ∈ R : min
[0,T]

ψ
′
(t)− 1 ≤ v ≤ max

[0,T]
ψ
′
(t) + 1

}
⊂ R.

There are constants K0, K1 such that

|d(t, ψ)| ≤ K0 if ‖ψ− ψ‖1 ≤ 1, 0 ≤ t ≤ T,

|e(ψ′(t))| ≤ K1 if 0 ≤ t ≤ T.

Let ε > 0 be arbitrary. Function e is uniformly continuous on Q1, and D is continuous at ψ.
Therefore there is a δ (0 < δ < 1) such that‖ψ− ψ‖1 < δ and v1, v2 ∈ Q1, |v1 − v2| < δ imply

‖Dψ− Dψ‖0 <
ε

2K1
, |e(v1)− e(v2)| <

ε

2K0
.

If ‖ψ− ψ‖1 < δ, then

|d(t, ψ)e(ψ′(t))− d(t, ψ)e(ψ′(t))|
≤ |d(t, ψ)||e(ψ′(t))− e(ψ′(t))|+ |d(t, ψ)− d(t, ψ)||e(ψ′(t))|

≤ K0
ε

2K0
+ K1

ε

2K1
= ε,

i.e., De is continuous.
Finally, we prove that M∗ maps Ω × [0, 1] into a precompact set in C1. It is easy to see

that ‖Hϕ‖1 ≤ (2T + 1)‖ϕ‖0 (ϕ ∈ CT,I−P). Continuity of a, e and condition (ii) in Theorem 2.1
imply the existence of K2, K3 such that

|||(ψ, λ)||| ≤ K2, ‖Fψ‖0 ≤ K3 ((ψ, λ) ∈ Ω× [0, 1]).

Therefore

‖M∗(ψ, λ)‖0 ≤ ‖ψ‖0 + ‖Fψ‖0 + 2(2T + 1)2‖Fψ‖0

≤ K2 + (1 + 2(2T + 1)2)K3 ((ψ, λ) ∈ Ω× [0, 1]).

On the other hand,

‖M∗(ψ, λ)′‖0 ≤ ‖λH(I − P)Fψ‖0

≤ 2(2T + 1)‖Fψ‖0 ≤ 2(2T + 1)K3,

‖M∗(ψ, λ)′′‖0 ≤ ‖λ(Fψ− PFψ)‖0

≤ 2‖Fψ‖0 ≤ K3 ((ψ, λ) ∈ Ω× [0, 1]),

consequently the elements of M∗(Ω × [0, 1]) ⊂ C1
T are uniformly bounded and equicontin-

uous. By the Arzelà–Ascoli Theorem [7, Selection Theorem I.2.3] M∗(Ω × [0, 1]) is precom-
pact.

In general, step (c) is the biggest challenge in proofs of Leray–Schauder type; it depends
most strongly on the specialities of the differential equation.
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Lemma 2.5. Under the conditions of Theorem 2.1, if ψ ∈ Ω is a fixed point of Mλ for some λ ∈ [0, 1],
then ψ 6∈ ∂Ω.

Proof. Suppose that the statement is not true, i.e., ψ ∈ ∂Ω. If λ ∈ (0, 1], then by Lemma 2.3 ψ

is a solution of (2.3). According to Lemma 2.2 there exists at least one τ ∈ [0, T) such that the
function t 7→ r(t) := ψ2(t) (t ∈ R) has a total maximum at t = τ, therefore r′(τ) = ψ′(τ) = 0,
r′′(τ) ≤ 0, and either ψ(τ) = S or ψ(τ) = −R. Condition (i) implies that either

r′′(τ) = 2ψ(τ)ψ′′(τ) = 2λψ(τ){a(τ, ψ(τ)) + b(τ, ψ)}
≥ 2λ|ψ(τ)|{a(τ, ψ(τ))sign(ψ(τ))− β−R,S(τ)}
= 2λS{a(τ, S)− β−R,S(τ)} > 0,

(2.11)

or
r′′(τ) ≥ 2λR{−a(τ,−R)− β−R,S(τ)} > 0. (2.12)

Both of them contradict r′′(τ) ≤ 0.
If λ = 0, then from (2.8) we know that ψ(t) ≡ ψ0 = const. and

m(ψ0) :=
1
T

∫ T

0
(a(t, ψ0) + b(t, ψ0))dt = 0. (2.13)

On the other hand, we also know that either ψ0 = S or ψ0 = −R. In the first case from
condition (i) we get

|a(t, ψ0) + b(t, ψ0)| > a(t, S)− β−R,S(t) > 0 (t ∈ R), (2.14)

which contradicts (2.13). The second case is similar.

Lemma 2.6. Under conditions of Theorem 2.1,

d[I −M0, Ω, 0] = d[m, (−R, S), 0], (2.15)

and the Brower degree on the right-hand side is equal to 1.

Proof. (2.15) is a consequence of (2.8). By virtue of condition (i) we have

m(−R) =
1
T

∫ T

0
(a(t,−R) + b(t,−R))dt

<
1
T

∫ T

0
(a(t,−R) + β−R,S(t))dt < 0,

m(S) =
1
T

∫ T

0
(a(t, S) + b(t, S))dt

<
1
T

∫ T

0
(a(t, S)− β−R,S(t))dt > 0.

But d[m, (−R, S), 0] depends only on m(−R) and m(S), and for the linear function connecting
m(−R) and m(S) the degree is equal to 1, so d[m, (−R, S), 0] = 1.

Lemmas 2.3–2.4–2.5 make it possible to apply the theorem of invariance of the Leray–
Schauder degree with respect to homotopy to the mapping M∗ defined by (2.7), consequently

d[I −M1, Ω, 0] = d[m, (−R, S), 0] = 1.

On the basis of the Kronecker Existence Theorem [13] and Lemma 2.3 this means that (2.1)
has a T-periodic solution x ∈ CT(−R, S).
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3 Applications

3.1 The forced mathematical pendulum with vibrating suspension point

The mathematical pendulum is one of the most important model equations in the nonlinear
mechanics (see, e.g., [2]). When it is under the action of an outer periodic force then its
motions are described by the equation

ϕ′′ +
g
l

sin ϕ = q(t) (3.1)

where ϕ denotes the angle between the direction vertically downward and the rod of the
pendulum measured anticlockwise, l is the length of the rod, g denotes the constant of gravity,
and q : R → R is a T-periodic continuous function. A great number of papers have been
devoted to the problem of finding T-periodic solutions of the equation (see an excellent history
and literature in [11]). H. W. Knobloch [8], using the degree theory and taking also some
damping, proved that the equation

ϕ′′ + |ϕ′|ϕ′ + g
l

sin ϕ = q(t) (3.2)

has at least one T-periodic solution, provided that

‖q‖∞ := max
[0,T]
|q(t)| < g

l
. (3.3)

Using the same technique, J. Mawhin and M. Willem [12] could guarantee multiple periodic
solutions.

In the technical practice it often happens that the suspension point of the rod is vibrating
in the plane of the motions of the pendulum. Consider now the case of the vibration

x0(t) = Ue1 cos ωt, y0(t) = Ue2 sin ωt (t ∈ R),

where the x-axis is directed vertically downward, U > 0 is the amplitude, ω := mπ/T is the
frequency of the vibration; m ∈ N and the unit vector (e1, e2) ∈ R2 are fixed. It can be seen
that Lagrange’s equation of motion of the second kind has the form

ϕ′′ − U
l

ω sin ωt(e1 cos ϕ + e2 sin ϕ)ϕ′

+

(
g
l
+

U
l

ω2e1 cos ωt
)

sin ϕ− U
l

ω2e2 cos ωt cos ϕ

= b1(t, ϕ)− d(t, ϕ)e(ϕ′).

(3.4)

Here the force function b1 : R × R → R is continuous, the function b1(·, u) is T-periodic,
d : R×R → R, e : R → R are continuous, d(·, ϕ) is T-periodic, and e(0) = 0. Introduce the
notation

V := max
{
|b1(t, u)| : 0 ≤ t ≤ T,

π

2
≤ u ≤ 3π

2

}
.

Corollary 3.1. Suppose that there exists a continuous function φ : (0, ∞) → (0, ∞) (φ(r) ≥ r) such
that the condition (iii) in Theorem 2.1 is satisfied. If

Uω2 + Vl < g, (3.5)

then equation (3.4) has a T-periodic solution ϕ such that π/2 ≤ ϕ(t) ≤ 3π/2 (t ∈ R).
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Proof. In the new variable θ := ϕ− π equation (3.4) has the form

θ′′ = − U
l

ω sin ωt(e1 cos θ + e2 sin θ)θ′ +

(
g
l
+

U
l

ω2e1 cos ωt
)

sin θ

− U
l

ω2e2 cos ωt cos θ + b1(t, θ + π)− d(t, θ + π)e(θ′).
(3.6)

There are constants c1, c2 such that∣∣∣∣Ul ω sin ωt(e1 cos θ + e2 sin θ)θ′
∣∣∣∣+ |d(t, θ + π)e(θ′)| ≤ c1|θ′|+ c2φ(|θ′|) ≤ (c1 + c2)φ(|θ′|),

so condition (iii) in Theorem 2.1 is satisfied. We can choose a(t, u) := (g/l) sin u, R :=
π/2, S := 3π/2. Then β−R,S(t) ≡ V and we apply Theorem 2.1 to equation (3.6) to get
the corollary.

Condition (3.5) can be considered as a generalization of (3.3) to (3.6). In Knobloch’s special
case (3.5) gives (3.3).

3.2 A second order integro-differential equation with unbounded delay

Consider the equation

x′′(t) = a(t, x(t)) +
∫ ∞

−∞
k(t, s)x(s)ds + d1(t, xt)e(x′(t)) + p(t), (t ∈ R) (3.7)

where k : R2 → R is continuous, k(t+ T, s+ T) ≡ k(t, s) (t, s ∈ R), d1 : R×C((−∞, 0]; R)→ R

is continuous, d1(t + T, χ) ≡ d1(t, χ) (χ ∈ C((−∞, 0]; R)), p : R → R is continuous and T-
periodic. We used the standard notation xt(τ) := x(t + τ) (t ∈ R, τ ≤ 0).

Equation (3.7) can be considered as a perturbation of the pendulum equation (3.1). As
we will see in the following corollary, function sin will be replaced by a function a satisfying
a sign condition like the sine function and dominating the other terms in the equation. By
example of (3.7) we would like to illuminate that our main result Theorem 2.1 is robust in
the sense that it makes possible a variety of applications where different types of equations
appear such as functional differential equations even with unbounded delays. Actually, such
equations can occur among others in mechanics (see, e.g., [1, 4.3. Examples]) and population
dynamics [3].

The following corollary is a direct consequence of Theorem 2.1.

Corollary 3.2. Suppose that there exists a continuous function φ : (0, ∞) → (0, ∞) such that the
condition (iii) in Theorem 2.1 is satisfied. If there are positive constants R, S such that

a(t, S) > max{R, S}
∫ ∞

−∞
|k(t, s)|ds + ‖p‖0 =: β−R,S(t),

a(t,−R) < −β−R,S(t) (t ∈ R),
(3.8)

and d1 transforms every bounded set contained in R×C((0, ∞]; R) into a bounded set of R, then there
exists a T-periodic solution x ∈ CT(−R, S) of (3.7).

Acknowledgements

Supported by the National Reserch, Development and Innovation Fund, NKFIH-K-129322.

*

The author is very grateful to the referee for the valuable comments and remarks.



10 L. Hatvani

References

[1] T. A. Burton, Volterra integral and differential equations, Mathematics in Science and Engi-
neering, Vol. 167, Academic Press, New York, 1983. MR2155102

[2] C. Chicone, Ordinary differential equations with applications, Texts in Applied Mathemat-
ics, Vol. 34, Springer-Verlag, New York, 1999. https://doi.org/10.1007/0-387-35794-7;
MR1707333

[3] J. M. Cushing, Integrodifferential equations and delay models in population dynamics, Lecture
Notes in Biomathematics, Vol. 20, Springer-Verlag, Berlin, 1977. https://doi.org/10.
1007/978-3-642-93073-7; MR0496838

[4] K. Deimling, Nonlinear functional analysis, Springer-Verlag, Berlin, 1985. https://doi.
org/10.1007/978-3-662-00547-7; MR0787404

[5] J. Cronin, Fixed points and topological degree in nonlinear analysis, Mathematical Surveys,
Vol. 11, American Mathematical Society, Providence, R.I., 1964. MR0164101

[6] R. Gaines, J. Mawhin, Coincidence degree and nonlinear differential equations, Lecture Notes
in Mathematics, Vol. 568, Springer-Verlag, Berlin-New York, 1977. MR0637067

[7] P. Hartman, Ordinary differential equations, Birkhäuser, Boston–Basel–Stuttgart, 1982.
MR0658490

[8] H. W. Knobloch, Eine neue Methode zur Approximation periodischer Lösungen nicht-
linearer Differenzialgleichungen zweiter Ordnung, Math. Z. 82(1963), 177–197. https:
//doi.org/10.1007/BF01111422; MR0158124

[9] J. Mawhin, Periodic solutions of nonlinear functional differential equations, J. Dif-
ferential Equations 10(1971), 240–261. https://doi.org/10.1016/0022-0396(71)90049-0;
MR0294823

[10] J. Mawhin, Topological degree methods in nonlinear boundary value problems, in: Ex-
pository lectures from the CBMS Regional Conference held at Harvey Mudd College, Claremont,
Calif., June 9–15, 1977, CBMS Regional Conference Series in Mathematics, Vol. 40, Ameri-
can Mathematical Society, Providence, R.I., 1979. MR0525202

[11] J. Mawhin, Periodic oscillations of forced pendulum-like equations, in: Ordinary and
Partial Differential Equations (Dundee, 1982), Lecture Notes in Math., Vol. 964, Springer,
Berlin-New York, 1982, 458–476. https://doi.org/10.1007/BFb0065017; MR0693131

[12] J. Mawhin, M. Willem, Multiple solutions of the periodic boundary value problem for
some forced pendulum-type equations, J. Differential Equations 52(1984), 264–287. https:
//doi.org/10.1016/0022-0396(84)90180-3; MR0741271

[13] N. Rouche, J. Mawhin, Ordinary differential equations. Stability and periodic solutions, Sur-
veys and Reference Works in Mathematics, Vol. 5, Pitman (Advanced Publishing Pro-
gram), Boston, Mass.–London, 1980. MR0615082

https://www.ams.org/mathscinet-getitem?mr=2155102
https://doi.org/10.1007/0-387-35794-7
https://www.ams.org/mathscinet-getitem?mr=1707333
https://doi.org/10.1007/978-3-642-93073-7
https://doi.org/10.1007/978-3-642-93073-7
https://www.ams.org/mathscinet-getitem?mr=0496838
https://doi.org/10.1007/978-3-662-00547-7
https://doi.org/10.1007/978-3-662-00547-7
https://www.ams.org/mathscinet-getitem?mr=0787404
https://www.ams.org/mathscinet-getitem?mr=0164101
https://www.ams.org/mathscinet-getitem?mr=0637067
https://www.ams.org/mathscinet-getitem?mr=0658490
https://doi.org/10.1007/BF01111422
https://doi.org/10.1007/BF01111422
https://www.ams.org/mathscinet-getitem?mr=0158124
https://doi.org/10.1016/0022-0396(71)90049-0
https://www.ams.org/mathscinet-getitem?mr=0294823
https://www.ams.org/mathscinet-getitem?mr=0525202
https://doi.org/10.1007/BFb0065017
https://www.ams.org/mathscinet-getitem?mr=0693131
https://doi.org/10.1016/0022-0396(84)90180-3
https://doi.org/10.1016/0022-0396(84)90180-3
https://www.ams.org/mathscinet-getitem?mr=0741271
https://www.ams.org/mathscinet-getitem?mr=0615082

	Introduction
	The main theorem and its proof
	Applications
	The forced mathematical pendulum with vibrating suspension point
	A second order integro-differential equation with unbounded delay


