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Abstract. We show practical solvability of the following two-dimensional systems of
difference equations

Uy_20p—3+4a Wy—25,—3+ 4

X 1 = — =
n+ s Yntl Wz +50_a

, ne No,
Uy +0y-3

where u,, v,, w, and s, are x, or y,, by presenting closed-form formulas for their
solutions in terms of parameter 4, initial values, and some sequences for which there
are closed-form formulas in terms of index n. This shows that a recently introduced
class of systems of difference equations, contains a subclass such that one of the delays
in the systems is equal to four, and that they all are practically solvable, which is a bit
unexpected fact.
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1 Introduction

Solvability of difference equations is one of the basic topics studied in the area. Presenta-
tions of some results in the topic can be found in any book on the equations, for instance,
in: [4,5,9,10,12,13]. The equations frequently appear in various applications (see, e.g.,
[4,5,7,8,11,12,23,25,41]). There has been also some recent interest in solvability (see, e.g.,
[2,22,28-32,35,37-40]). If it is not easy to find solutions to the equations, researchers try to
find their invariants, as it was the case in [15-17,21,26,27,33,34]. In some cases they can be
used also for solving the equations and systems, as it was the case in [33, 34].

Each difference equation can be used for forming systems of difference equations pos-
sessing some types of symmetry. A way for forming such systems can be found in [28].
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Papaschinopoulos, Schinas and some of their colleagues proposed studying some systems of
this and other types (see, e.g., [6,14-21,26,27]). We have devoted a part of our research to
solvable systems of difference equations, unifying the two topics (see, e.g., [2,28-32,35,38-40]).

During the last several years, we have studied, among other things, practical solvability of
product-type systems of difference equations. For some of our previous results in the topic
see, for instance, [29,30], as well as the related references therein. The systems are theoretically
solvable, but only several subclasses are practically solvable, which has been one of the main
reasons for our study of the systems.

Quite recently, we have started studying solvability of the, so called, hyperbolic-cotangent-
type systems of difference equations. They are given by

Up_kUp—1 +0a Wy—kSy—] + 4

" o Ynt Wy + Sn—1

, n €Ny, (1.1
Uy + 0y )

where delays k and | are nonnegative integers, parameter a and initial values are complex
numbers, whereas each of the four sequences u,, v,, w, and s, is one of the sequences x,, or
yn for all possible values of index n.

Note that this is a class of nonlinear systems of difference equations which is formed by
using the method for forming symmetric types of systems of difference equations described
in [28]. For the case of one-dimensional difference equation corresponding to the systems in
(1.1) see [24] and [37].

What is interesting is that the systems in (1.1) are connected to product-type ones. As we
have mentioned the product-type systems are theoretically solvable, but only few of them are
practically solvable. The reason for this lies in impossibility to solve all polynomial equations,
as well as the fact that with each product-type system of difference equations is associated a
polynomial. The mentioned connection between the systems in (1.1) and product-type ones
implies that also only several subclasses of the systems in (1.1) are practically solvable. More-
over, the connection shows that for guaranteeing practical solvability of all the systems in (1.1)
values of k and ! seems should be small. Note that we may assume k < [. The case k = 0
and I = 1 was studied in [39] and [40], whereas in [32] was presented another solution to
the problem. The case k = 1 and | = 2 was studied in [31], whereas the case k = 0 and
I = 2 was studied in [35], which finished the study of practical solvability in the case when
max{k,/} <2and k # . The case k = | € Ny was solved in [36].

Thus, it is of some interest to see if all the systems in (1.1) are solvable when | = 3 and k is
such that 0 < k < 2.

One of the cases is obvious. Namely, if k = 1, then the systems in (1.1) are with interlacing
indices (the notion and some examples can be found in [38]), since each of the systems in (1.1)
in this case, reduces to two systems of the exactly same form with k = 0 and [ = 1. Thus, it is
of some interest to study the other cases.

Here, we show that the systems of difference equations

Up—20p-3+4a Wy—25p—3 + 4

" s Yt Wyp—2 + Sp—3

7 ne NO/ 12
Up—2 + Uy-3 (12)

are practically solvable, that is, we show the solvability of all sixteen systems in (1.1), in
the case k = 2 and | = 3, which is a bit surprising result. Namely, as we have said, to
each system in (1.2) is associated a polynomial, several of which have degree bigger than
four (some of them have degree eight). By a well-known theorem of Abel [1], polynomials
of degree bigger than four need not be solvable by radicals. However, it turns out that all
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the associate polynomials to the systems in (1.2) are solvable by radicals, implying practical
solvability of the corresponding systems. Using the fact that there is no universal method for
showing practical solvability of such systems, as well as the fact that the situation in the case
max{k, [} > 5 is different, shows the importance of studying solvability of the systems in (1.2).

The case 2 = 0 was considered in [32] where it was shown its theoretical solvability.
Namely, by using the changes of variables

L1 1
i’l_i‘\n/ yl’l_y\n/

system (1.2) becomes linear, from which together with a known theorem from the theory of
homogeneous linear difference equations with constant coefficients the theoretical solvability
of the system follows. Hence, from now on we will consider only the case a # 0.

2 Connection of (1.2) to product-type systems and a lemma

First, we present above mentioned connection of the systems in (1.2) to some product-type
systems.
Some simple calculations yield

(wn—2 £ Va)(su-3+Va)

Wyp—2 + Sp—3

Xpp1 £Va = (it £ /@) (V3 £ \/a)

and ++a=
Uy + Uy_3 Y1 \[

for n € Ny, implying

xn-i—l'f"\/azuan"‘\/a'7)11734’\/‘3 yn—o—l‘f’\/a_wan‘f’\/lE.

Sn-3++/a

Xny1— VA B

Yn2—+a

Xn—-3 — \/E

Yn1 — \/E

Xp—2 — \/E

Xpn—3 — \/a

, = (2.1)
Xpt1— VA Up 2= Vp3—+a  Yup1—Va  wpo2—+a sp3—+/a
for n € Ny.

System (2.1) written in a compact form, can be written as follows
Xnr1tVE _ Xn2+Va X3+ Va YatVaE X2+ Va ezt Va 2.2)
Xn+1 — \/ﬁ Xpn—2 — \/ﬁ Xn—-3 — \/ﬁl Yny1 — \/a Xn—2 — \/ﬁ Xn—3 — \/El/

Xpr1 VA _ X2+ VA Xn3t VA Yt VA yuo2tVa xpstVa (2.3)
Xn41 — \/E Xp—2 — \/a Xn—3 — \/E’ Yny1 — \/E Yn—2— \/E Xn—-3 — \/a,
xn—&-l“"\/a:xan‘f‘\/a.3511734‘\/a yn+1+\/azxn72+\/a.yn73+\/a (2.4)
Xus1— VA Xp2a—+a Xy3—+/a’ Yni1—Va  Xp2—+/0 Yn3— Va'
Xur1+V/a _ Xn2+VA X3t VA Ypn+ VA Yno2tVE ynstva (2.5)
Xn+1 — \/El Xn—2 — \/ﬁ Xn—3 — \/ﬁ/ Y41 — \/E Yn—2 — \/E Yn—3 — \/El’
xn+1+\/a i yn—2‘|’\/a ) xn—3+\/a y11+1‘+’\/a Xn_z-i-\/ﬁ ] xn—S‘f’\/a (2.6)
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Xn41 Va0 Ynoa+Va CXp-3+ Vi Ypri+Va  ypo+va Xn-3+ Va
Xn+1 — \/a Yn—2 — \/a Xn—3 — \/E, Ynt1 — \/E Yn—2 — \/E Xn—3 — \/a/
xn+1+\/a ;'/11—24’\/5.xn—?)‘i‘\/a ]/n—l—l‘i‘\/a_xn—2‘|‘\/E']/n—?,‘f‘\/a
Xny1 — /4 Yn—2— Va  x,_3— \/ﬁl Yn1 — Va o x,o—+/a Yn-—3— \/E’
Xnp1 +VE _ Yn2+VE Xn3+VE Yu1 VA Yno2tVa YustVa
Xnt1— /4 Yn—2— Va x,_3— \/5’ Yny1 — Va Yn—2— Va Yn-—3— \/E’
Xpp1+a  Xg 244 Yn-3+ Vi Ypri+Va x4+ y/a Xp3+ Va
X1 —VE8  Xp2—VA Yn3—+a  Yu1—VaE  Xua—\a xp3—a
xn—}—l‘*’\/‘;:351172‘+‘\/a.ynf3'|‘\/a yn+1+\/azyn72+\/a‘xn73+\/a
X4l — VA Xn2— A Yu3— VA Ypp1— VA Y2 —a xy3—/a'
Xp4+1 + \/a xn—2+\/ﬁ . yn—?;"’\/a ]/n+1‘|’\/a xn—Z"’\/a ) Yn-3 + \/a
Xn+1 — \/a Xp—2 — \/E Yn-3— \/E’ Yny1 — \/E Xn—2 — \/a Yn—3 — \/a,
xn+1+\/ﬁzxn72+\/5.yn73+\/5 yn+1+\/5:yn72+\/5.yn73+\/5
Xnp1 = Va  Xn2 =A@ Yu3— VA Yur1—Va  Ya2—Va Yus—a’
X1tV Y2+t VA Ypst VA yptVa  Xe2t+Va xps3+Va
Xn+1 — \/E Yn—2 — \/E Yn—3 — \/E, Yn41 — \/ﬁ Xn—2 — \/a Xn—3 — \/El
X1+ VA Yn2+ VA yus3+tVa  yut VA yn2t+Va ezt Va
Xn41 — \/ﬁ Yn—2 — \/ﬁ Yn-3 — \/a’ Yn+1 — \/E Yn—2 — \/E Xn—3 — \/E,
X1 VA _Yn2tVa Yu3+ VA Y tVa _ xe2+Va ynstVa
X1 = VA8 Y2 —VE Ynz—Va Y1 —Va  Xn2—+a Yp3—+/a
xn+1+\/a yn—2+\/ﬁ . ]M—S"’\/E yn+1+\/ﬁ yn—2+\/a . yn—3‘|’\/a
g1 —VE  Yn2—a4 Yn3— \/ﬁ’ Yni1—Va  Yn2— 0 Yn-3— \/E’
for n € Ny.
Let
Cn:xn—i_\/a and ﬂn:yn_{—\/al
Xn—+/a Yn —Va
then
_ Cnt1 _ Mn+1
Xy = agn_l and vy, = 1"

2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)
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so (2.2)—(2.17) become

Cnt1 = Cn2Cn-3, Mny1 = Cu—20n—3, (2.19)
Cni1 = Cn20n-3, Mns1 = Nn—20n-3, (2.20)
Cnv1 = Cn2C8n-3, Mn+1 = Cn-2Mn-3, (2.21)
Cnv1 = Cn—2Cn-3, Mnt1 = Nn—2Mn-3, (2.22)
Cnt1 = Mn—20n-3, Mut1 = Cn—2Cn-3, (2.23)
Cn1 = Nn—28n-3, Mn+1 = Mn—2Cn-3, (2.24)
Cne1 = Mn—28n-3, Nut1 = Cu—21n-3, (2.25)
Cnt1 = Mn—28n-3, Mn+1 = Nu—21n-3, (2.26)
Cnt1 = Cn2ln-3, Mn+1 = Cn—20n-3, (2.27)
Cnt1 = Cn2Mn-3, N1 = Nu—20u-3, (2.28)
Cne1 = Cn—2Mn-3, Nut1 = Cu—21n-3, (2.29)
Cnv1 = Cn-2Mn—3, Mn+1 = Nu—21n-3, (2.30)
Cnt1 = Mn—2Mn-3, N1 = Cn—2Cn-3, (2.31)
Cnt1 = Mn—2Mn-3, Mn+1 = n—2Gn—3, (2.32)
Cn1 = Mn—21n-3, Mn+t1 = Cu—21n-3, (2.33)
Cntl = Mn—2Mn—3, Mnt+1 = n—2Mn—3, (2.34)

for n € Ny.

So, if systems (2.19)—(2.34) are practically solvable, then by using (2.18) the systems (2.2)-
(2.17) will be also such. Hence, it should be first proved practical solvability of systems
(2.19)—(2.34).

The following auxiliary result is used for several times in the rest of the article. The proof
is omitted since it can be found, for example, in [31].

Lemma 2.1. Assume R(s) = sk —bp_q15F T —by_psK "2 — .. — by, by # 0, is a real polynomial with
simple roots s;, i = 1,k, and a,, n > | — k, is defined by

ap = by_1ap-1 +brsan2+ - +boay,_r, n>1,

witha; =0,j=1L1+k—=2,a,1=1,and 1 € Z. Then

3 Main results

Here we show that each of the product-type systems of difference equations in (2.19)—(2.34) is
practically solvable, and following the analysis of each of the systems, by using the relations
in (2.18), we present closed-form formulas for general solutions to systems (2.2)—(2.17).

3.1 System (2.19)
The equations in (2.19) immediately imply the following relation

Cn=1n, n€NN. (3.1)
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The first equation in (2.19) can be written as follows

gn —gn 3€n 4 — €C1 gn 67

for n € IN, where, of course, the exponents are defined as follows
C1:d1:1, 6’1:f1:0.

An application of the first equality in (3.2) into the second one yields

n = (Qn-6Qn-7)100 000 o0l =00 00 oo =g o g o

for n > 4, where ¢ :=dy, dy :=e1, 2 :=c1 + f1 and fo := c1.
It is natural to assume that the following relations hold

é’”_érnI{ZérnkiiérnkélnkS’

Cr =dk—1, dr=ex—1, ex=Ck1+ fie1,  fi = Ck1

forak>2andn > k+ 2.
Relations (3.2), (3.4) and (3.5) yield

g (gn k— 5€n k— 6)Ck€n k— 3€ 4€n k—57

ekt fi
gn k— Sgn k— 4gnfk Sgn k—6

_ gckﬂ gdkﬂ Ck+1 gfkﬂ
~ on—k—3°n—k—4°n—k—5°n—k—6’

where
Cke1:=dr,  diy1 =€k €1 =kt fro frp1 = Cre

The inductive argument proves that (3.4) and (3.5) really hold for 2 < k <n —2.

It is easy to see that from (3.3) and (3.5), we get
Cn = Cn—3+ Cpn—y,

for n > 5 (in fact, for n € Z), and

co=¢-1=0, c»=1, c3=c4=c_5=0, c¢=1, c_r=-—1.

Choose k = n — 2 in relation (3.4). Then (3.5) and (3.6) yield
gn — ggn—zgfinl—zgﬁ_ni2§,§13—z — ggn—zgirl—l gC_nz ’:_"373,

for n € IN. A simple verification shows that (3.8) holds also for n > —3.
Thus, (3.1) and (3.8) imply

=g ®, neNN.
Let

PiA)=At—A—-1=0.

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)
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It is the characteristic polynomial associated with (3.6). Its roots A;, j = 1,4, are simple and
can be found by radicals [3].

Lemma 2.1 shows that the solution to (3.6) satisfying the initial conditions c_5 = c_4 =
c_3=0,c_» =1, is given by

n+5
v

! j=1 Py(A7)”

nez. (3.11)

M»&

(%)

The following theorem follows from (2.18), (3.8) and (3.9).

Theorem 3.1. If a # 0, then the general solution to (2.2) is

()™ (Em) ™ () ()
= \f 0 — 1 — 2 _ 5 _ , > 3,
T T T e )
()" ()™ ()" ()
" e ) () (e

where c,, is given by (3.11).

3.2 System (2.20)

Since the first equation in (2.20) is the same as in (2.19), formula (3.8) must hold. Further, we
have 1, = 1,-3(,—4, n € IN, or equivalently

Wan+i = N3(n-1)+i03(n-1)+i-1, M EN, (3.12)

fori=-2,—-1,0,and n € IN.
Relations (3.8) and (3.12), for i = —2, yield

nan—2 = -2 [ Z3j-6
j=1

n
C3i— C3j— C3j— C3j—
S|
j=1
_ 17_2%27:1 C3j-8 gzjy":l C3j77CZ}1=1 C3j—6€2;‘1=1 €379 (3.13)

-1 -2 -3 ,

for n € Ny.
From (3.8) and (3.12), for i = —1, we obtain

Nan—1=1-1] [ C3i-5
=1

n
C3j—7 »C3j—6 »C3j—5 »C3j—8
=100 7500
j=1
"

Y 1 C3i 6 Y1 C3ii5 Y3
:17_1€0]13] 75_]113] 6C7]213] 5€7]31 3j 8’ (314)

for n € Ny.



S. Stevié¢

From (3.8) and (3.12), for i = 0, it follows that

n
Nan = 1o HC3]'—4

Ca, 63] €C3j—7
-3

=10 H CC3]

_ 770€0 ]:1 C3}76€_]1:] C3]75€,j2:1 Caj74€7é:1 C3j—7’
for n € Ny.
From (3.6) and (3.7), we have
n n
Z C3j—9 = 2(‘33]'75 - C3j78) = C3n-5,
j=1 j=1
n n
Y csis=) (c3j-4—C357) = Cans,
j=1 j=1
n n
Z C3j—7 = Z(C3j—3 - C3j—6) = C3n-3
j=1 j=1
n n
Y csi6=) (3 2—c35) =cama—1,
j=1 j=1
n n
ZC3]'—5 = Z(CBj—l - C3j—4) = C3n—1,
j=1 j=1
n n
Y csia=) (c35—c35-3) = Can,
j=1 j=1
for n € Ny.
From (3.13)—(3.21), we have
Nan—a = 1]_ 2€C3n 4 C311 3€C3n 2— 1€C3n 5
Han_1 = 1]_ 1€C3n 3 C3n 2— 1€C3n 1€C3n —4
Nan = Uoécan 2— 1§03n 1€C3n C3§ 3,
for n € Npy.
The following theorem follows from (2.18), (3.8), (3.22), (3.23) and (3.24).
Theorem 3.2. If a # 0, then the general solution to (2.3) is
(xoﬁ/ﬁ)c"*z (x71+\/ﬁ)c”—1 (x z+\f)c” (x 3+\f)c” 3
xo—+/a x_1—/a X_2—+/a x_3—/a
= > 3,
T ) () () ()
xXo—+/a X_1—+/4a X2 X-3
(y,2+\/ﬁ> (JCo-I-\/E>63"74 (x71+\/ﬁ)c3" 8 <x 2+\/E>C3" 21 <x73+\/a>63n_5 +1
y—2—va) \x—va x_1—Va X2—a x_3—Va
=a
" ) ()™ (2™ () ()
Y-o2—va Xo—v/a X_1—y/a X_2—y/a X_3—y/4a
(yfwa) (w) (xfwa)%z—l (w) <+f> +1
y1—va) \x—a x_1—/a X 2—/a x_3—/a
=a
Y3n-1 \f (y_l—h/E) (x0+\/ﬁ>c3’1*3 (x71+\/a)03n72_1 (x_z_i_\/a)CSnfl <x_3+\/;,>c3n—4 1
y1—va Xo—+/a x_1—a x_2—/a X 3—/a

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)
(3.23)
(3.24)
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o) () () () ()

() ()™ ()™ ()" ()™

for n € Ny, where ¢, is given by (3.11).

7

3.3 System (2.21)

Since the first equation in (2.21) is the same as in (2.19), formula (3.8) must hold. Further, we
have 7, = {;,—3%y—4, for n € IN, or equivalently

Nan+i = Can—3+illa(n—1)+ir (3.25)

formeN,i=-3,-2,—1,0.
From (3.8) and (3.25), we have

Nan—3 = 1]-3 H C4j-6

C. C C. Cqj—
=1 3HC4J 4] _41 4]39

_ Y caj—8 X Caj—7 N q Cajg 1 Caj—9
- 77—3€0 g_l gfz €73 ’ (3.26)

for n € Ny,
n
Nan—2 = 77—2H§4j—5
_ C4j—7 64] C4j—5 »C4j—8
=1- ZHC -1 62 6-3

_ Y caj—7 X Cajmg 201 Cajms 2 Cajs
=120, 1 ¢ {3 , (3.27)

for n € Ny, and
n
Nan—1 =11 H€4j—4
=17_ 11—[ C% 04] 041 @’C_‘%”

—1C4j—6 —1 C4j-5 " Cajg " Caj7
=77f1C0” ’ é_’ll NG S (3.28)

for n € Ny,
n
Nan = WOHC4]‘—3
= 1o H CC4] 54] C4; g“jgé

= 0 Lj1Cajs g_ =1 C4j— 4€)521C41 3€)E31C41 ’ (3.29)

for n € Ny.
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Relations (3.6) and (3.7) yield

n n

Z Caj—9 = Z(C4j—6 —C4j-10) = Can—6— 1, (3.30)
j=1 j=1

n n

Z Caj-8 = Z(C4j—5 — C4j-9) = Can-5, (3.31)
j=1 j=1

M:

(C4j-a — Caj-8) = Can—4, (3.32)

n

) Caj7 =
=1

n

) caj-6 =
=1

~
[y

n

g

(c4j-3 — Caj-7) = can-3, (3.33)
=1

~

n n
Z C4j—5 = Z(C4j72 — C4j-6) = Can—2 — 1, (3.34)

=1 j=1

n n
Y ocyia=) (caj1—Csj5) = Can1, (3.35)

j=1 j=1

n n
Y caj-s =) (caj — caj—a) = Can, (3.36)

j=1 j=1

for n € IN.
From (3.26)—(3.36), we have

T I o i S di S (3.37)
Man—a = 1-20g" 02T, (3.38)
Han—1 = -10" 14;*2‘16_43*156_4;*4, (3.39)
Man = 100g" 2 {410, (3.40)

for n € Ny.
The following theorem follows from (2.18), (3.8), (3.37)—(3.40).

Theorem 3.3. If a # 0, then the general solution to (2.4) is

()T () () ()
BN e = N C= R
3 tvVa\ ((x0Hva A5 (xg/@ At (x g/a 3 (x a/a\ e
oS R
() Gma) () () (BT -
e B () (52E) (&) ()
() ()™ (mm)™ ()™ ()™
o) () (zﬁg)“”j (m0) ()
(8) ()™ (=)™ (22) ™ (22) ™ -1
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o ) (o)™ ()™ ()™ ()™

(08) (220)™ ()™ ()" ()™

7

for n € INo, where sequence c,, is given by (3.11).

3.4 System (2.22)

Since the first equation in (2.22) is the same as in (2.19), formula (3.8) must hold, as well as
the following one

Tn = 1" "2 2757, n = =3, (3:41)
The following theorem follows from (2.18), (3.8) and (3.41).

Theorem 3.4. If a # 0, then the general solution to (2.5) is

xotva\ "2 (xoa+va\ T (xa+va\ T (xat/a R
x:\/a(xo\f) (X1\f) (xzf X 53—/ +1
" (xlﬁ*?)cn =2 (x_ 1+§ Cn=1 [y 2+§ X_ 3+ﬁ Cn-3 ’
X0 X_q X_p X_3—+/a

]/n:\/a

E=
(22)" (222)" (2228
(22 (o)™ (=

1+\f Cnt
for n > =3, where c,, is given by (3.11).

3.5 System (2.23)
The equations in (2.23) yield the relation
Cn = Cn-aCn-6Cn-7, n=>4 (3.42)
We can write (3.42) as follows
Tn =0y Zl 50 Z1—7 sl Cn w =4 (3.43)
where, of course, the exponents are defined as follows
ap=1 b=0, cg=di=1 e=fi=3=0. (3.44)
From (3.42) and (3.43), we have
Cn = (Zn-sCn- m@n D S A B N S A

+ a+
= o elé Yt 1%1€n 11

= é’117561176Cnf7€77178c C n 11’

forn > 8, whereap := by, by :=c1,c0:=dy, dy:=a1 + ey, 62 := f1, for:=a1+ g1 and g 1= a;.
It is natural to suppose that the following relations hold

Cn _Cn k— 3Cn k— 4€n k— 5§n k— 6§n k— 7€n k— SCn k—9/ (3.45)
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ay =br_1, br=cr1, cx=di_1, dp=ar_1+e_,

(3.46)
ex = fi—1, fx = -1+ 81, 8k = r-1,
forak>2and n > k+6.
From (3.42) and (3.45), we have
C :gnk3€nk4€nk5€nk6€nk7€nk8€nk9
= (Cn—rk—7Cn—k-9Cn—k-10)" Cn ealok i 5Cn P S CLIN G
+ex i 4 t8.
- gn k— 4€n k— 5€n k— 6€:11k—kef7€nk—k—8gnk—k k9€n k—10
b, d
= gzkillc—4gnkili—Sgzkillc—6€nk—+li—7§;ki;c—8gﬁillc—9gik—+li—10'
where
Afyq1 = bk, bk+1 = Ck, Cky1 = dk, dk+1 = ai + e,
ekr1 = for fir1 = A+ 8k Skt 1= Ak
forak > 2and n > k+ 7. Thus, (3.45) and (3.46) are true for 2 < k < n — 6.
Relations (3.44) and (3.46) yield
Ay = Ay +ay_6+ay_y, (3.47)
for n > 8 (in fact, for n € Z), and
ag=4ad_1 =04y = O, a_3 = 1, El_]' = 0, ] = 4,9, a_10 = 1, a_11 = —1.
By choosing k = n — 6 in (3.45), we get
n— bn, n— d", n— n—e n—
Cn = G5 o0y ogsm e g o g o gl gy
dn* n— n—e n—
= (100 1)" 5 (7-1G—2)" 6 (20 _3) 5o og e g8
— C n— 6€’1n 6t+en— 6C n— 6+fn 6 3136"’8;1 6;7”n 6;71771 61,]Cn26
— é’gn 3Cﬂn 2@’”71 1Can 4+ay—7 un 6;7ﬂn15;7an24, (3.48)
for n > —3.
Relations (2.23) and (3.48) yield
Mn = Cnf?)gn—él
— an76+ﬂn77é’521175+ﬂn—6€a_nz—4+an—5 gﬂ_n;—i-anq }761;179—&-117,,10q:i,,fg—i-an,gﬂa_nz,y-&-u,,,sl (3.49)

for n € IN. A direct check shows that (3.49) also holds for n = 0.
Let
PA)=A" =N —A—-1=A+1)A* -1 -1).
Clearly it is the characteristic polynomial of (3.47). Four roots of P; are those of (3.10), while
A= ol " ), j =0,2. The roots are distinct. Lemma 2.1 shows that
7 /\ifl+9
]
a, = , ne-, (3.50)
’ g P (7))

is the solution to (3.47) satisfying the initial conditionsa_;=0,j=4,9=0,a_3 = 1.
The following theorem follows from (2.18), (3.48) and (3.49).
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Theorem 3.5. If a # O, then the general solution to (2.6) is

b (E0)™ " ()" T ()
va

Xn = \/EH] . ( 7,+§)ﬂn+] 3 (iji_g)an—hwznq H]ZZO (Z:ji_\/gylnﬂ‘w 1

7

forn > =3, and

2 x_j++/a butj-s x_3++/a ”n—4+an—7H2 y_j+\a bn+i*9+l
J=0 \x_j—a x_3—/a 1=0 \y_j—va

) R butj-6 X_34+/a Ap_g+ay_7 H2 y_+va butjo - 1/
1=0 \x_j—va x_3—/a j

yn:\/a

for n € Ny, where ay, is given by (3.50) and b, = a, + a,_1.

3.6 System (2.24)
From the equations in (2.24) we have {, = 17,, n € IN. This together with (2.24), implies

€n+l = gn—Zgn—Sz n>3.

If we use (3.8), we get

é’ CZn 6€’§n 5€;n 4€’Cn 7
= (1-2808-3)" (00 -1) " (1118 —2)"* (1128 -3) ™"
— é’cn 6@'511 5€Cn 4€Cn33176n 517Cn14;,lcn23, (351)

for n € INg, where ¢, is given by (3.11).
Therefore

g(c)n 6CCn Sgcn 4@*511331731 5;,]Cn14175n23/ n € N. (352)
The following theorem follows from (2.18), (3.51) and (3.52).
Theorem 3.6. If a # 0, then the general solution to (2.7) is

M ()
() s

(26)

<y7]:+\/ﬁ) Cntj—5 1 ’

xn:\/a

for n € Ny, and

e o ()™ T ()
' H ( *J*é) En+j—6 sz‘:() (i:i%)cnﬂ% B 1;

for n € IN, where ¢, is given by (3.11).
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3.7 System (2.25)

It is not difficult to see that in the case of the system the following relation holds

Tn =10 4ln-6Cyly, 1 >5. (3.53)
Let '
gi(il) - C2n+i/ n 2 _1/
fori = —1,0, then we have
0 = (@100 nzs (354
Let further
by=2, c1=1, dy=-1, e =0. (3.55)
Then, we have
o) = @)@ e
= (@ )2 5@ )@ e ) 5
= (g e (g ok (D) yorres 70y
(@) )2 R e,
for n > 5, where by := cq, ¢ :=2by +dy, dp := by + e and ey := —Db;.
It is natural to assume that
U (UM LY (AU LY (UM L (SN L (3.56)

forak>2and n > k-+3,and
by =ck—1, x=2bx_1+dio1, di =b_1+e—1, ex= —by_1. (3.57)
From (3.54) and (3.56), we have
T (S LI (S L (R L (S
<<a<llk_3>2g£;>k (o s L (S L (SR L (S L
= (
= (

C(l)

R L (e k (AN LA TP

)
SRR L (AP L (AP L (SO LES
for n > k + 4, where

bei1:=cr,  Crp1:=2bx +di, dip1:=br+er, ek = by

So, the method of induction shows that (3.56) and (3.57) hold for 2 < k < n — 3.
From (3.55) and (3.57) we get

by = 2by_2 + by_3 — by_a, (3.58)

for n > 5 (in fact, for n € Z), and

bo=0, b1=1 b ;=0,j=24 bs=-1
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If we choose k = n — 3 in (3.56), we get

o) = @) (@) g8y (g e
= (@) @) (g () e,
forn> —1,andi = —1,0.
If i = 0, we obtain
Lo = 840 g
= (CoZ—211—3)" 2 (110 ) Vr2g gt 203y s

nlan annzbn3
=0y Ty,

whereas for i = —1, we get

Con1 = ggnfs d’nfz é%«—l_2bn—3 g—gnfz;
—2b —b,_
= (100 —1)"2 (520 —3)Pr2g 20
— Cbnll bn 3@’ n—2_ bn 4;71771 317bn22/

forn > —1.
Since (2.25) is symmetric, we get

111 bn3b 1125112€

Mon = My
;,]2]1 1:;,]111] bn3 an bn 4€n3€
forn > —1.
Let
Py(A) = AT —2A2 - A 41,

It is the characteristic polynomial of (3.58). Its zeros /A\j, j= 1,4, are distinct.

Therefore

4X
— € Z,
Zlu

1=

is the solution to (3.58) satisfying the initial conditions b_; = 0, k = 2,4, b_; = 1.

The following theorem follows from (2.18), (3.59)—(3.62).
Theorem 3.7. If a # 0, then the general solution to (2.8) is

Q

X0+\/ﬁ)h”7]7b"’3 (xfz-i-\/ﬁ)b"ib”*z (y_1+\f bu— (y +$

2

»

n—3

Xon = /@ (xr\/ﬁ X_2—Va y—l*f)
)

Y
<x0+ﬁ)bn71*bn73 (xfz-i-ﬁ)b"*b”% <y71+\\? n—2 (y
X 2—a Y- Y3

y:
—

1—

2

3
+1
-1
+1

@nl:vg(ﬁiﬁY”l“%@z:EY“”*©?$> (2

:
—

)
"

(Lﬁﬁ)bn*‘b"% (i)” (wa) (e bia=T

x_1—/a x_3—/a Yo—a yo—+/a
n-1—bn— a\bn=bu2 s N2 g
= v )T () () ()
() () () )

15

(3.59)

(3.60)

(3.61)
(3.62)

(3.63)
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s (B2 () () ()

(58" (D)) )

for n > —1, where the sequence b, is given by (3.63).

3.8 System (2.26)

By interchanging letters { and 7, system (2.26) is obtained from (2.21). Hence

Cans = Coay™ ™y oy e, (3.64)
Gan—2 = {0 ™ ™2y, (3.65)
L (I e (3.66)
Zan = Cong™ 2y, (3.67)
for n € Ny,
M =062 7S, > =3, (3.68)

The following theorem follows from (2.18), (3.64)—(3.68).

Theorem 3.8. If a # 0, then the general solution to (2.9) is

) () () ()
() () () ()T T
o E) ) () ) (?) +1
(E00) () () () ()
I =) ] =) I ) B == M =) B
(5259) ()™ () ™ (=)™ (22) ™
x bV (Wokv/a) S (@) Tl (e a\ et (y o y/a)
= T e e
(F8) ()™ ()™ ()™ ()™
)T () () ()
(25) (20)™ 7 (=)™ (20) ™ ()™

i
S

Y Va y3—a

for n € Ny, where sequence c,, is given by (3.11).

3.9 System (2.27)

It is easy to see that the following relation holds

Cn = Cn-30n-7Cn-s, 1 2>5. (3.69)
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We can write (3.69) as follows
O SN L I S s S N N LT3 (3.70)
where, of course, the exponents are defined as follows
ap=1 bi=c=d1=0, es=fi=1 g =h=0. (3.71)
Employing (3.69) in (3.70), we have
Tn = (Cn—6ln—10Gn_11)" 0,20 @ VAN GLIN

+d +h
= C T Sl St 7€fl e 9@? 10001

:gn—4 n—5€n—6 n—7€ C 9Cn 10§n 117

forn > 8, where ay :== by, by :=cy,cp :=a1+dy,dy:==e1,e2:= f1, fo := g1, g2 '= a1 + h; and
hz =ai.
As in the case of equation (3.53) is obtained

Cn :gn k— 2§n k— 3€n k— 4§n k— 5§n k— 6€ —k— 7ank 8€n k—97 (3.72)
forak>2andn > k+6, and

ar =br_1, br=cr1, cx=ar_1+dio1, dp=erq

e = fi-1,  fk =81 8k =M1+ -1, hp=ar. 47
Relations (3.71) and (3.73) imply
Ay = Ay—3 + Ay—y + n_s, (3.74)
for n > 9 (in fact, for n € Z), and
apy=a_1=0, a_,=1, a_j= 0,j=39 a1p=1 an=-1
By choosing k = n — 6 in (3.72), it follows that
On = 03 gy o gy o g gg ooy o gy
= (Z-2107-3)"*(Zo—1)" 0 (G 1 2) o (T am—a) o og o g8y o gl
_ ggn 6ten— 6€Cn 6t fu—6 ll_y,26+dn 6+8n— o n36;7an 6;717”16176"2617&_” 6+dn—6
= G0 G T T (3.75)
forn > —3.
Relations (3.75) and (2.27) yield
T A A e
s —o+a,_ 10700 s+ 977@27%" 817@36+an 7 (3.76)
forn > —3.
Let

Bs(t)y =88 - —t—1=(t—t-1)(t*+1).
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It is the characteristic polynomial associated to (3.74). Its roots are those of (3.10) and ¢4 =
. 7(2j+1)
el T

,j = 0,3. It is not difficult to see that they are distinct.
Lemma 2.1 shows that

8 i
m=) =—, nez, (3.77)

is the solution to (3.74) satisfying the initial conditions a_;j=0,j=39a,=1
The following theorem follows from (2.18), (3.75) and (3.76).

Theorem 3.9. If a # O, then the general solution to (2.10) is

S () () T ()™ 1
Lo (F20)" T () T (22) "
)

2 (xj+\/ﬁ)bn+j5 (x,3+\/ﬁ bu_10 H3 <y_1+\/&>b”“*9 41
g— i) Gae) Mooy
n 2 (xj+ﬁ>bri+f5 (x_3+\/ﬁ>bn—10 H3 <yil+ﬁ>bn+l,g _
j=0 \x_j—va x_3—/a 1=0\y ,—va

for n > —3, where the sequence ay, is given by (3.77) and b, = a, + a,_1.

3.10 System (2.28)

It is easy to see that the following relation holds

Cn = gn 30 6€n 8, n=5, (3.78)

which can be written as

g” = €i173521—4 ;175€Z16§511—7g g gén 107 (379)
for n > 5, where, of course, the exponents are given by
ap = 2, bl =C = 0, dl = -1, e = 0, f1 =1, g1 = hl =0. (380)
Relations (3.78) and (3.79) yield
_om b a1 Al e
g” - gn%%é’n—él 7&5&176 n77€ g 9Cn 10
_ d
:( 31—6@1 19Cn 11)a1d)11 4 Cl 1 g g 9Cn 10

b 2+d a1+
:énl4c1 . 1€ § sé 1g1gn 108011

_g CZ— g 9€n 10€n 117

forn > 8, where ay :=by, by :=c1, 2 :=2a1+dy, dyi=e1,e2:=f1, ri=—a1+ g1, =M
and hy := a3.
As in (3.53) we obtain

Cn = gn k— Zgn k— 3€n k— 4§n k—5Cn k—k— 7§ —k— 8€n k=97 (3.81)
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and

ar = br_1, br=cro1, ok =2a5_1 +dk_1,  dp = ek,
ey = fr—1, ft=—@k—1+8-1, 8§k =M1, hx=arq, (3.82)

for2 <k<n-—6.
Relations (3.80) and (3.82) yield

Ay = 20y,_3 — dy—e + An_g, (3.83)

for n > 9 (in fact, for n € Z), and

apg—=—4a_1 = 0, a_r = 1, a_]' = 0, ] = 3,9, a_10 = 1, a_11 = 0.

By choosing k = n — 6 in (3.81), we obtain

gn — Cin 6€3n 6€§n 6€1n 6g€n 6€fn—6§gn—6ghn—6
= (C-a0—3)"*(Qoy—1)"(L11p-2) - (Lamp—3) ey o gl g8 o g

g n—6t6€n— 656;’1 6+fn 6 7An—6+dn— 6+T8n— éé’ n—6,,0n—6,,bn—6_Cn6_ 0n_6+dn_¢
- -2

3 Mo M-1M-—21-3
a a a a Ap—a a a a a a a
_ C()" 2—ay— 5€ n—1"An— 4€ n—4n-3 n37;,]0n 617 n1517 '124;7 ”33 n= 6’ (384)

for n > —3. System (2.28) is symmetric implying that
17” — 17811—2—11;1 5;711711 1—ay— 477117;12 Ap— 31711113 7 an—6éfﬁl{5€’irzi4gbﬁq§3—un,6, (385)

forn > —3.
Let
Bty =8 2042 —1=( —t—1)(* —t+1).

It is the characteristic polynomial of (3.83). Let E», j = 1,8, be the roots of P. They are simple.
So, the solution to (3.83) such thata_; =0,j=3,9,anda_» =1, is

8 ’Efl+9
. o

o Pg(t)

The following theorem follows from (2.18), (3.84) and (3.85).

nez. (3.86)

Theorem 3.10. If a # O, then the general solution to (2.11) is

oo T () () i (25)™ (12) 1
[ (F238) 7 (5208) T () (52)
A = i 21 o= = M)
o () () T () () -

for n > —3, where the sequence a,, is given by (3.86) and b, = a, — a,_3.
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3.11 System (2.29)

We have (,, = 17, n € IN, and consequently

gn = Cn73gn—4/

forn > 5.
From (3.8), we obtain

gi’l — é’iﬂ1—6€§n—5€§n—4€in—7
= (§—21017-3) " (Gon—1) " (L1 —2) "*({—27—3) "7
— €8n75 21174?7“273778”76773117577212477313:3f (3.87)

for n € IN, where ¢, is given by (3.11). Thus
M = Co o0 P o R, (3.88)

for n € Ny.
The following theorem follows from (2.18), (3.87) and (3.88).

Theorem 3.11. If a # 0, then the general solution to (2.12) is

) X_i+\/a Cn+j—5 3 y_i+va Cn+j—6
() ()
=V X VAN sy eya e
M (25) o () -

forn € N, and

() I (226)

. x_j—/a y_j—a
yi’l - \/E 5 (x7j+\/a>ﬁn+j—5 H3 <y7j+\/ﬁ)Cn+/—6 ’
j=0 \x_j—Va =0 \y_j—va

for n € Ny, where c,, is given by (3.11).

3.12 System (2.30)

By interchanging letters ¢ and 7, system (2.30) is got from (2.20). Hence

an—2 = Cans 2y 2y, (3.89)
Can1 = Ly Sy, (3.90)
Gan = Cong > Ty oy, (3.91)
for n € Ny, and
T = 1" s, (3.92)

for n > —3.
The following theorem follows (2.18), (3.89)—(3.92).
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Theorem 3.12. If a # O, then the general solution to (2.13) is

Yorva\ 2 (yatva\ Tt (yatva\T (ystya\ o
—Va (VO*\/E> (%rﬁ) (y 2— f) (%s*ﬁ) +1 n>_3
Yn (L) ™ () ()T (i) o =T
Yo—va y-1—va Yy—2—Va y-3—va
Xooi/a\ [ Yorva\ P [y 4v/a\P 3y a2y e G
X —a (x—z ﬁ) (yo f) (y—l—ﬁ> (y—z—ﬁ> (y—s—ﬁ) +1
=2 = <x72+\/§) <y0+\f>53n74 (y71+\/5>53n73 (y72+\/5 c3u—2—1 (y73+\/5)c3n75 _1q
x_2—va ) \yo—va y-1—Va y-2—a y—3—a
X 4va\ (vorva\®nd [y q+va can—2—1 Y_aty/a\ Bl [y st/ Bt
X —Va (x,l—\/ﬁ) (yO*\/E> (%1*\/E> (%2*\/5> (%3*\5) 1
e (X—H—\/ﬁ) y0+\f>63"73 (yfﬁr\/a)cs"*z ! (y 2+\f)c3" ! (y 3+\f)c3" ‘L
x1—va) \yo—va ya—va y-2—/a y3—a
X(H*\/E y0+\/a CBn—Zfl y71+\/ﬁ C3p—1 y72+\/ﬁ C3pn y73+\/a C3p—3
X3, = /2 (xo—\/ﬁ) (yo—\/ﬁ> <y71—\/&> <y—2—ﬁ> (y—s—\/ﬁ> +1
3n = (Jqﬁf) (y0+\[>63n 21 <y71+\/ﬁ>c3n—1 <y_2+\/5>63n <y_3+\/;1>63n73 _1’
xo—va) \yo—a y1—va Yy o—va y-3—va
for n € IN, where ¢, is given by (3.11).
3.13 System (2.31)
It is easy to see that the following relation holds
gi’l - €n76€%—7€n78/ n 2 5/ (3‘93)
which can be written as follows
_ym b o1 oy 3.94)
C” Cn76€n77gn78cn79€ OC llgn 12§n 137 ( .
for n > 5, where, of course, the exponents are given by
a1 = 1, b1 = 2, 1 = 1, dl —=e1 = f1 =81 = h1 = 0. (395)

Relations (3.93) in (3.94) yield

Tn =06l 0o sl oli 1ol 115 12§n 13
= (Cn-1205_ 13§n 14)a1€ - ol 10€ TSI Ln
= 0T sln ol 10l uc?ﬁ%léi”%hlcn 14
:gn—7 n—8 CZ n— 10§n 1l€n 12€ 13€n 14/

for n > 11, where ay := by, by :=c1, cp :=dy, dy :=e1, €2 1= f1, o= a1+ 1, 2 :=2m + Iy
and hy 1= a;.
As in (3.2) are obtained the folowing relations

g h
C” _gn k— 5€n k— 6('11 k— 7gn k— 8€n k— 9Cn k— 10€nk—k—11€nk—k—12’ (396)

ar =br_1, br=ck1, cx=dr_1, dp=er_1,
ex = fr-1,  fe = ak—1+ k-1, Sk = 251 +hx—1, e = ax_1.
forak>2andn >k-+09.

(3.97)
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Relations (3.95) and (3.97) yield
Ag = Ak + 207 + ax_s, (3.98)

and
a1 =0, 1=0,4 as5=1 a;=0, j=612.

By choosing k = n — 9 in (3.96), we get
gn — gin 9§3n 9€Cn 9§1n 9§3n 9€fn796gn79€hn—9
= (C=28—3110)"* (o —1)"~* (1-117—2) "> (—ap—3) =g o 085 gy

é’en 9é’fn 9 an 9+8n—9 yan—9+hy—9_ano+by—9 by o9+cp9_ cyo+dy9_dn9

-3 Mo [/ -2 -3
— égn 5€ﬂn 4Cﬂn 3€”n 9+0an-10 ﬂn g+, — 977?1 7+, 31751” 6+ 7;7uy,36, (3.99)
forn > —3.
System (2.31) is symmetric implying that
7]11 — 7]0 7’] 1 17&;12317!1713 9ta,_ 10€ﬂn —gta,— 9€ﬂn 7+a,— 3:1,7 6ta,— 7€ﬂ,l 6 (3.100)
forn > —3.
Let

()=t -2 —2t—1=(F—t—1)(FF+t+1).

It is the characteristic polynomial associated to (3.98). Let t, j= 1,8, be its roots. It is not
difficult to see that they are simple. Then, the solution to (3.98) such thata_; =0, j = 6,12,
and a_s = 1, is given by

8 ‘12

€Z. (3.101)

The following theorem follows from (2.18), (3.99) and (3.100).
Theorem 3.13. If a # O, then the general solution to (2.14) is

e G () G 2
B (25) " (5 e (1) ()"

o AT ) () e () ()
o (LE00) ™ () " T ()™ ()™ 1

for n > —3, where the sequence a, is given by (3.101) and b, = a, + a,_1.

3.14 System (2.32)

By interchanging letters ¢ and 7, (2.32) is got from (2.27). Hence

_ o An—5tan—6  An—atan—5_ Apn-3+an_4_ 0n-10FtAn-11 70n—9+0n—10 7An—8+An—9 7An—7+0n—8 yan—e+an—7
gn —770 77 7] 2 ’7 3 C g g g 3 s (3-102)

= 10" ™y T g e SC“” s, (3.103)

for n > —3.
The following theorem follows from (2.18), (3.102) and (3.103).
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Theorem 3.14. If a # O, then the general solution to (2.15) is

2 ]/—'+\/E bn+j75 ]/73+\/E bn—lO 3 X +\/E bn+l—9
A ()" i ()
" 2 (y]-+\/ﬁ>bn+/5 (y_3+\/ﬁ)bn—10 H3 (x,,+\/ﬁ)b"+’—9 B 1'
=0 \y_j—va y—3—va =0 \x_—va
2 y Va2 a3 x_j+y/a ) Tnti-6
_ i (e (Bhe) me ()
yn - 2 (y7j+\/a>lln+j72 (y,3+\/ﬁ>a”’7 3 (x_l—i-\/E)a"H*ﬁ _1/
i=0\y_j—va y-3—Va =0 \x;—v/a
for n > —3, where the sequence ay, is given by (3.77) and b, = a, + a,_1.
3.15 System (2.33)
By interchanging letters ¢ and #, (2.33) is got from (2.23). Hence
CV[ — 778n—6+ﬂn—717ﬁ1175+ﬂn—6U”in£4+ﬂn—5]7?13—4"!‘071—7@‘871—94‘5!",10 Cli,,{8+ﬂn,9 é«a_,12,7+un,3, (3.104)
T S e el e ¢ S Sl e (3.105)

for n € IN.
The following theorem follows from (2.18), (3.104) and (3.105).

Theorem 3.15. If a # 0, then the general solution to (2.16) is

2 y_j+va butj—6 y_sty/a\ AT a7 o x4/ buyj—o 1
j=0 +

X, = /a =0 \y_j—va y-3—va x_j—va
" 2 y7j+\/ﬁ buij—6 y_3+va an—4+ap-7 2 x7j+\/ﬁ bpyj-g 1
=0 \y-_j—va y-3—+a j=0\x_j—va
forn € Ny,

2, (VYT (atyg) e

=0 \y_;—va y-3—va j=0 \x_;j—Va

HZ. Yo tVa\ S (y gt/ trea I—Ig x_jy/a) e 1
=0 \y_j—va y-3—va J=0 \x_j—/a

(x,ﬂr\/ﬁ) Intj—6 1

7

]/n:\/a

for n > —3, and where a, is given by (3.50) and b, = a, + a,_1.

3.16 System (2.34)

By interchanging letters { and 7, (2.34) is got from (2.19). Hence

Gn =1y 2 Y%, ne N, (3.106)
and
=1y s, > =3, (3.107)

The following theorem follows from (2.18), (3.106) and (3.107).



24 S. Stevié¢

Theorem 3.16. If a # O, then the general solution to (2.17) is

(yoJr\f)C”*z (y 1+\f)c” ! (y72+\/5>c" <y73+f>c” }
xn—\[ Yoy Ch2 = Ja y—zlg Cn y_3;§ Cho3 N/
@?QC (2 1+f)c (i_i—ﬁ)c <§_§—f>c
n—2 n—1 a n B n— 3
i) () (5RE) " (55) .-
! R FRE A TR N R AL '
(5d) () (20) (250)

where c,, is given by (3.11).

Remark 3.17. From (2.18) we see that a solution to a system in (1.2) is well defined if and only
if {, # 1 and 5, # 1 for every n belonging to the domain of the system. Using this fact, as
well as above presented expressions for the sequences (,, and #,, can be described the sets of
not well defined solutions for each of the systems. We leave it to the reader.
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