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Abstract. This article is concerned with the study of the unique solvability of a time-
nonlocal inverse boundary value problem for second-order hyperbolic equation with an
integral overdetermination condition. To study the solvability of the inverse problem,
we first reduce the considered problem to an auxiliary system with trivial data and
prove its equivalence (in a certain sense) to the original problem. Then using the Banach
fixed point principle, the existence and uniqueness of a solution to this system is shown.
Further, on the basis of the equivalency of these problems the existence and uniqueness
theorem for the classical solution of the inverse coefficient problem is proved for the
smaller value of time.
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1 Introduction

In practice, it is often required to recover the coefficients in an ordinary or partial differential
equation from the final overspecified data. Problems of these types are called inverse prob-
lems of mathematical physics and are one of the most complicated and practically important
problems. The theory of inverse problems is widely used to solve practical problems in al-
most all fields of science, in particular, in physics, medicine, ecology, and economics. Such
problems include the locating groundwater, investigating locations for landfills, acoustics, oil
and gas exploration, electromagnetic, X-ray tomography, laser tomography, elasticity, fluid
dynamics, and so on.

In the modern mathematical literature, the theory of inverse boundary-value problems for
equations of hyperbolic type of the second-order is stated rather satisfactory. In particular, the
solvability of the inverse problems in various formulations with different overdetermination
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conditions for partial differential equations is extensively studied in many monographs and
papers (see for example, [2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 20, 21, 26], and the references therein).

Recently, problems with nonlocal conditions for partial differential equations have been of
great interest to applied sciences. In the literature, the term “nonlocal boundary value prob-
lems” refers to problems that contain conditions relating the values of the solution and/or its
derivatives either at different points of the boundary or at boundary points and some inte-
rior points [19]. It is well known that direct nonlocal boundary value problems with integral
conditions (with respect to spatial variable) [3, 6, 9, 15] are widely used for thermo-elasticity,
chemical engineering, heat conduction, and plasma physics. As well as the direct nonlocal
boundary value problems for hyperbolic equations with integral conditions (with respect to
time variable) are considered in the papers [12, 22] and the references therein. Moreover, In
[23–25] the authors present a regularity result for solutions of partial differential equations in
the framework of mixed Morrey spaces.

It should also be noted that the statement of the problem and the proof technique used
in this paper differ from those of the above articles, and the conditions in the theorems are
significantly different from those in them. A distinctive feature of this article is the considera-
tion the inverse boundary value problem for a hyperbolic equation with both spatial and time
nonlocal conditions.

2 Mathematical formulation

In the region defined by D : 0 < x < 1, 0 < t < T, DT = D, we consider the problem of
determining the unknown functions u(x, t) ∈ C1(DT)∩C2(D) and a(t) ∈ C[0, T] such that the
pair {u(x, t), a(t)} satisfies a one-dimensional hyperbolic equation

utt(x, t)− uxx(x, t) = a(t)u(x, t) + f (x, t), (x, t) ∈ D, (2.1)

with the nonlocal initial conditions

u(x, 0) + δ1u(x, T) = ϕ(x), ut(x, 0) + δ2ut(x, T) = ψ(x), 0 ≤ x ≤ 1, (2.2)

the boundary conditions

ux(0, t) = u(1, t) = 0, 0 ≤ t ≤ T, (2.3)

and integral overdetermination condition of the first kind

∫ 1

0
w(x)u(x, t)dx = H(t), 0 ≤ t ≤ T, (2.4)

where δ1, δ2 ≥ 0, and 0 < T < +∞ are given numbers, and f (x, t), ϕ(x), ψ(x), w(x), H(t) are
known functions.

To study problem (2.1)–(2.4), we consider the equation

y′′(t) = γ(t)y(t), 0 < t < T, (2.5)

with the boundary conditions

y(0) + δ1y(T) = 0, y′(0) + δ2y′(T) = 0, (2.6)
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where δ1, δ2 ≥ 0 are fixed numbers, γ(t) ∈ C[0, T] is given function, and y = y(t) is desired
function.

Clearly, the problem

y′′(t) = 0, y(0) + δ1y(T) = 0, y′(0) + δ2y′(T) = 0 (2.7)

has unique trivial solution, for all nonnegative values of δ1 and δ2.
It is known [18] that boundary value problem (2.7) has a Green’s function of the form

G(t, τ) =

−
δ2t+δ1(T−τ)+δ1δ2(t−τ)

(1+δ1)(1+δ2)
, ∈ [0, τ],

− δ2t+δ1(T−τ)−(1+δ1+δ2)(t−τ)
(1+δ1)(1+δ2)

, t ∈ [τ, T].
(2.8)

Lemma 2.1. Suppose that the function γ(t) is continuous on the interval [0, T]. If δ1, δ2 ≥ 0 and

1 + 2δ1 + 3δ2 + δ1δ2

2(1 + δ1)(1 + δ2)
‖γ(t)‖C[0,T] T2 < 1, (2.9)

then problem (2.5), (2.6) has only a trivial solution.

Proof. Since problem (2.7) has a unique Green function defined by formula (2.8), then it could
be argued [18] that boundary-value problem (2.5), (2.6) is equivalent to the integral equation

y(t) =
∫ T

0
G(t, τ)γ(τ)y(τ)dτ. (2.10)

Let us introduce the notation

A(y(t)) =
∫ T

0
G(t, τ)γ(τ)y(τ)dτ. (2.11)

Then the equation (2.10) can be rewritten as

y(t) = A(y(t)). (2.12)

Obviously, the operator A is continuous in the space C[0, T].
Now we prove that A is a contraction operator in the space C[0, T]. It is easy to see that

the inequality

‖A(y1(t))− A(y2(t))‖C[0,T] ≤
1 + 2δ1 + 3δ2 + δ1δ2

2(1 + δ1)(1 + δ2)
T2 ‖γ(t)‖C[0,T] ‖y1(t)− y2(t)‖C[0,T] (2.13)

holds for any functions y1(t), y2(t) ∈ C[0, T].
In view of (2.9) and (2.13) it is clear that the operator A is contractive in C[0, T]. Therefore,

the operator A has a unique fixed point y(t) in the space C[0, T] which is a solution of equation
(2.12). Thus, the integral equation (2.10) has a unique solution in C[0, T]. Consequently,
problem (2.5), (2.6) also has a unique solution in the indicated space. Since y(t) = 0 is a
solution to problem (2.5), (2.6), it follows that this problem has a unique trivial solution.

Now, to study problem (2.1)–(2.4), we consider the following auxiliary inverse boundary
value problem: it is required to find a pair of functions u(x, t) ∈ C1(DT)∩C2(D), a(t) ∈ C[0, T]
from (2.1)–(2.3) and

H′′(t)−
∫ 1

0
w(x)uxx(x, t)dx = H(t)a(t) +

∫ 1

0
w(x) f (x, t)dx, 0 < t < T. (2.14)
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Theorem 2.2. Assume that ϕ(x), ψ(x) ∈ C[0, 1], H(t) ∈ C1[0, T] ∩ C2(0, T), H(t) 6= 0, 0 ≤ t ≤
T, f (x, t) ∈ C(DT), and that the following compatibility conditions are fulfilled∫ 1

0
w(x)ϕ(x)dx = H(0) + δ1H(T),

∫ 1

0
w(x)ψ(x)dx = H′(0) + δ2H′(T). (2.15)

Then the following statements are true:

(i) each classical solution {u(x, t), a(t)} of problem (2.1)–(2.4) is a solution of problem (2.1)–(2.3),
(2.14), as well;

(ii) each solution {u(x, t), a(t)} of problem (2.1)–(2.3), (2.14) under the circumstance

(1 + 2δ1 + 3δ2 + δ1δ2)T2

2(1 + δ1)(1 + δ2)
‖a(t)‖C[0,T] < 1 (2.16)

is a classical solution of problem (2.1)–(2.4).

Proof. Let {u(x, t), a(t)} be a classical solution of problem (2.1)–(2.4). Multiplying the both
sides of Eq.(2.1) by a special function w(x) and integrating from 0 to 1 with respect to x gives

d2

dt2

∫ 1

0
w(x)u(x, t)dx−

∫ 1

0
w(x)uxx(x, t)dx

= a(t)
∫ 1

0
w(x)u(x, t)dx +

∫ 1

0
w(x) f (x, t)dx, 0 < t < T. (2.17)

Taking into account the condition H(t) ∈ C1[0, T]∩C2(0, T), and differentiating (2.4) twice,
we have ∫ 1

0
w(x)utt(x, t)dx = H′′(t), 0 < t < T. (2.18)

From (2.17), taking into account (2.4) and (2.18) we arrive at (2.14).
Now, suppose that {u(x, t), a(t)} is a solution to problem (2.1)–(2.3), (2.14). Then from

(2.17), by allowing for (2.14), we find:

d2

dt2

(∫ 1

0
w(x)u(x, t)dx− H(t)

)
= a(t)

(∫ 1

0
w(x)u(x, t)dx− H(t)

)
, (2.19)

for 0 < t < T.
By using the initial conditions (2.2) and the compatibility conditions (2.15), we may write∫ 1

0
w(x)u(x, 0)dx− H(0) + δ1

(∫ 1

0
w(x)u(x, T)dx− H(T)

)
=
∫ 1

0
w(x)(u(x, 0) + δ1u(x, T))dx− (H(0) + δ1H(T))

=
∫ 1

0
w(x)ϕ(x)dx− (H(0) + δ1H(T)) = 0,

∫ 1

0
w(x)ut(x, 0)dx− H′(0) + δ2

(∫ 1

0
w(x)ut(x, T)dx− H′(T)

)
=
∫ 1

0
w(x)(ut(x, 0) + δ2ut(x, T))dx− (H′(0) + δ2H′(T))

=
∫ 1

0
w(x)ψ(x)dx− (H′(0) + δ2H′(T)) = 0. (2.20)

Lemma 2.1 enables us to conclude that the problem (2.19), (2.20) has only a trivial solution.
Then,

∫ 1
0 w(x)u(x, t)dx− H(t) = 0, 0 ≤ t ≤ T, i.e., the condition (2.4) is satisfied.
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3 Existence and uniqueness of the solution of the inverse problem

We impose the following conditions on the numbers δ1, δ2, and the functions ϕ, ψ, f , w, and H:

H1) δ1 ≥ 0, δ2 ≥ 0, 1 + δ1δ2 > δ1 + δ2;

H2) ϕ(x) ∈ C2[0, 1], ϕ′′′(x) ∈ L2(0, 1), ϕ′(0) = ϕ(1) = ϕ′′(1) = 0;

H3) ψ(x) ∈ C1[0, 1], ψ′′(x) ∈ L2(0, 1), ψ′(0) = ψ(1) = 0;

H4) f (x, t), fx(x, t) ∈ C(DT), fxx(x, t) ∈ L2(DT), fx(0, t) = f (1, t) = 0, 0 ≤ t ≤ T;

H5) w(x) ∈ L2(0, 1), H(t) ∈ C2[0, T], H(t) 6= 0, 0 ≤ t ≤ T.

We seek the first component of solution {u(x, t), a(t)} of the problem (2.1)–(2.3), (2.14) in
the form

u(x, t) =
∞

∑
k=1

uk(t) cos λkx, λk =
π

2
(2k− 1), (3.1)

where

uk(t) = 2
∫ 1

0
u(x, t) cos λkxdx, k = 1, 2, . . . ,

are twice-differentiable functions on an interval [0, T].
Applying formal scheme of the Fourier method and using (2.1) and (2.2), we get

u′′k (t) + λ2
kuk(t) = Fk(t; a, u), k = 1, 2, . . . ; 0 < t < T, (3.2)

uk(0) + δ1uk(T) = ϕk, u′k(0) + δ2u′k(T) = ψk, k = 1, 2, . . . , (3.3)

where

Fk(t; u, a) = fk(t) + a(t)uk(t), fk(t) = 2
∫ 1

0
f (x, t) cos λkxdx,

ϕk = 2
∫ 1

0
ϕ(x) cos λkxdx, ψk = 2

∫ 1

0
ψ(x) cos λkxdx, k = 1, 2, . . .

Solving the problem (3.2),(3.3) gives

uk(t) =
1

ρk(T)

[
ϕk(cos λkt + δ2 cos λk(T − t)) +

ψk

λk
(sin λkt− δ1 sin λk(T − t))

]
+
∫ T

0
Gk(t, τ)Fk(τ; u, a)dτ, (3.4)

where
ρk(T) = 1 + (δ1 + δ2) cos λkT + δ1δ2, (3.5)

Gk(t, τ) =



− 1
λkρk(T)

[δ1 sin λk(T − τ) cos λkt

+ δ2 cos λk(T − τ) sin λkt + δ1δ2 sin λk(t− τ)], t ∈ [0, τ],

− 1
λkρk(T)

[δ1 sin λk(T − τ) cos λkt + δ2 cos λk(T − τ) sin λkt

+ δ1δ2 sin λk(t− τ)] + 1
λk

sin λk(t− τ), t ∈ [τ, T].

(3.6)
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Substituting the expression of (3.4) into (3.1), we find the component u(x, t) of the classical
solution to problem (2.1)–(2.3), (2.14) to be

u(x, t) =
∞

∑
k=1

{
1

ρk(T)

[
ϕk(cos λkt + δ2 cos λk(T − t))

+
ψk

λk
(sin λkt− δ1 sin λk(T − t))

]
+
∫ T

0
Gk(t, τ)Fk(τ; u, a)dτ

}
cos λkx. (3.7)

Thus the problem (2.7), taking into account (2.14), yields

a(t) = [H(t)]−1

{
H′′(t)−

∫ 1

0
w(x) f (x, t)dx +

1
2

∞

∑
k=1

λ2
kuk(t)wk

}
, (3.8)

where

wk = 2
∫ 1

0
w(x) cos λkxdx, k = 1, 2, . . .

After substituting (3.4) into (3.8), we find the second component a(t) of the solution to
problem (2.1)–(2.3), (2.14) in the form

a(t) = [H(t)]−1
{

H′′(t)−
∫ 1

0
w(x) f (x, t)dx +

1
2

∞

∑
k=1

wkλ2
k

(
1

ρk(T)

[
ϕk(cos λkt + δ2 cos λk(T − t))

+
ψk

λk
(sin λkt− δ1 sin λk(T − t))

]
+
∫ T

0
Gk(t, τ)Fk(τ; u, a)dτ

)}
. (3.9)

Thus the solution of problem (2.1)–(2.3), (2.14) was reduced to the solution of systems (3.7),
(3.9) with respect to unknown functions u(x, t) and a(t).

The following lemma plays an important role in studying the uniqueness of the solution
to problem (2.1)–(2.3), (2.14):

Lemma 3.1. If {u(x, t), a(t)} is any solution to problem (2.1)–(2.3), (2.14), then the functions

uk(t) = 2
∫ 1

0
u(x, t) cos λkxdx, k = 1, 2, . . .

satisfy the system (3.4) on an interval [0, T].

Proof. Let {u(x, t), a(t)} be any solution of the problem (2.1)–(2.3), (2.14). Multiplying both
sides of the Eq. (2.1) by the special functions 2 cos λkx (k = 1, 2, . . .), integrating from 0 to 1
with respect to x, and using the relations

2
∫ 1

0
utt(x, t) cos λkxdx =

d2

dt2

(
2
∫ 1

0
u(x, t) cos λkxdx

)
= u′′k (t), k = 1, 2, . . . ,

2
∫ 1

0
uxx(x, t) cos λkxdx = −λ2

k

(
2
∫ 1

0
u(x, t) cos λkxdx

)
= −λ2

kuk(t), k = 1, 2, . . . ,

we obtain that Eq. (3.2) is satisfied.
In like manner, it follows from (2.2) that condition (3.3) is also satisfied.
Thus, the system of functions uk(t) (k = 1, 2, . . . ) is a solution of problem (3.2), (3.3). From

this fact it follows directly that the functions uk(t) (k = 1, 2, . . . ) also satisfy the system (3.4)
on [0, T].
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Obviously, if uk(t) = 2
∫ 1

0 u(x, t) cos λkxdx, k = 1, 2, . . . , is a solution to system (3.4), then
the pair {u(x, t), a(t)} of functions u(x, t) = ∑∞

k=0 uk(t) cos λkx and a(t) is also a solution to
system (3.7), (3.9).

The next statement follows from Lemma 3.1.

Corollary 3.2. Assume that the system (3.7), (3.9) has a unique solution. Then the problem (2.1)–
(2.3), (2.14) has at most one solution, i.e., if the problem (2.1)–(2.3), (2.14) has a solution, then it is
unique.

Let us consider the functional space that is introduced in [1]. Denote by B3
2,T a set of all

functions of the form

u(x, t) =
∞

∑
k=1

uk(t) cos λkx, λk =
π

2
(2k− 1), k = 1, 2, . . . ,

considered in DT with the norm ‖u(x, t)‖B3
2,T

= JT(u), where uk(t) ∈ C[0, T] and

JT(u) ≡
{

∞

∑
k=1

(λ3
k ‖uk(t)‖C[0,T])

2

} 1
2

< +∞.

Henceforth we shall denote by E3
T the topological product of B3

2,T×C[0, T], where the norm
of an element z = {u, a} is determined by the formula

‖z‖E3
T
= ‖u(x, t)‖B3

2,T
+ ‖a(t)‖C[0,T] .

It is known that the spaces B3
2,T and E3

T are Banach spaces [27].
Let us now consider the operator

Φ(u, a) = {Φ1(u, a), Φ2(u, a)},

in the space E3
T, where

Φ1(u, a) = ũ(x, t) ≡
∞

∑
k=1

ũk(t) cos λkx, Φ2(u, a) = ã(t),

and the functions ũk(t) (k = 1, 2, . . . ) and ã(t) are equal to the right-hand sides of (3.4) and
(3.9), respectively.

It is easy to see that under conditions δ1 ≥ 0, δ2 ≥ 0, 1 + δ1δ2 > δ1 + δ2, we have

1
ρk(T)

≤ 1
1− (δ1 + δ2) + δ1δ2

≡ ρ > 0.

Taking into account this relation, we obtain{
∞

∑
k=1

(λ3
k ‖ũk(t)‖C[0,T])

2

} 1
2

≤ 2ρ(1 + δ2)

(
∞

∑
k=1

(λ3
k |ϕk|)2

) 1
2

+ 2ρ(1 + δ1)

(
∞

∑
k=1

(λ2
k |ψk|)2

) 1
2

+ 2(1 + 2ρ(δ1 + δ2 + δ1δ2))
√

T

(∫ T

0

∞

∑
k=1

(
λ2

k | fk(τ)|
)2

dτ

) 1
2

+ 2(1 + 2ρ(δ1 + δ2 + δ1δ2))T ‖a(t)‖C[0,T]

(
∞

∑
k=1

(λ3
k ‖uk(t)‖C[0,T])

2

) 1
2

, (3.10)



8 Y. T. Mehraliyev and E. I. Azizbayov

‖ã(t)‖C[0,T] ≤
∥∥∥[H(t)]−1

∥∥∥
C[0,T]


∥∥∥∥H′′(t)−

∫ 1

0
w(x) f (x, t)dx

∥∥∥∥
C[0,T]

+
1
2

(
∞

∑
k=1

λ−2
k

) 1
2
ρ(1 + δ2)

(
∞

∑
k=1

(λ3
k |ϕk|)2

) 1
2

+ ρ(1 + δ1)

(
∞

∑
k=1

(λ2
k |ψk|)2

) 1
2

+ (1 + 2ρ(δ1 + δ2 + δ1δ2))
√

T

(∫ T

0

∞

∑
k=1

(λ2
k | fk(τ)|)2dτ

) 1
2

+(1 + 2ρ(δ1 + δ2 + δ1δ2))T ‖a(t)‖C[0,T]

(
∞

∑
k=1

(λ3
k ‖uk(t)‖C[0,T])

2

) 1
2
 . (3.11)

Then from (3.10) and (3.11), respectively, we find that{
∞

∑
k=1

(λ3
k ‖ũk(t)‖C[0,T])

2

} 1
2

≤ 4
√

2ρ(1 + δ2)
∥∥ϕ′′′(x)

∥∥
L2(0,1) + 4

√
2ρ(1 + δ1)

∥∥ψ′′(x)
∥∥

L2(0,1)

+ 4(1 + 2ρ(δ1 + δ2 + δ1δ2))
√

2T ‖ fxx(x, t)‖L2(DT)

+ 2(1 + 2ρ(δ1 + δ2 + δ1δ2))T ‖a(t)‖C[0,T] ‖u(x, t)‖B3
2,T

,

‖ã(t)‖C[0,T] ≤
∥∥∥[H(t)]−1

∥∥∥
C[0,T]

{∥∥∥∥H′′(t)−
∫ 1

0
w(x) f (x, t)dx

∥∥∥∥
C[0,T]

+
1
2

(
∞

∑
k=1

λ−2
k

) 1
2 [

2
√

2ρ(1 + δ2)
∥∥ϕ′′′(x)

∥∥
L2(0,1)

+ 2
√

2ρ(1 + δ1)
∥∥ψ′′(x)

∥∥
L2(0,1) + (1 + 2ρ(δ1 + δ2 + δ1δ2))2

√
2T ‖ fxx(x, t)‖L2(DT)

+ (1 + 2ρ(δ1 + δ2 + δ1δ2))T ‖a(t)‖C[0,T] ‖u(x, t)‖B3
2,T

]}
,

or {
∞

∑
k=1

(λ3
k ‖ũk(t)‖C[0,T])

2

} 1
2

≤ A1(T) + B1(T) ‖a(t)‖C[0,T] ‖u(x, t)‖B3
2,T

, (3.12)

‖ã(t)‖C[0,T] ≤ A2(T) + B2(T) ‖a(t)‖C[0,T] ‖u(x, t)‖B3
2,T

, (3.13)

where

A1(T) = 4
√

2ρ(1 + δ2)
∥∥ϕ′′′(x)

∥∥
L2(0,1) + 4

√
2ρ(1 + δ1)

∥∥ψ′′(x)
∥∥

L2(0,1)

+ 4(1 + 2ρ(δ1 + δ2 + δ1δ2))
√

2T ‖ fxx(x, t)‖L2(DT)
,

B1(T) = 2(1 + 2ρ(δ1 + δ2 + δ1δ2))T,

A2(T) =
∥∥∥[H(t)]−1

∥∥∥
C[0,T]

{∥∥∥∥H′′(t)−
∫ 1

0
w(x) f (x, t)dx

∥∥∥∥
C[0,T]

+
1
2

(
∞

∑
k=1

λ−2
k

) 1
2 [

2
√

2ρ(1 + δ2)
∥∥ϕ′′′(x)

∥∥
L2(0,1) + 2

√
2ρ(1 + δ1)

∥∥ψ′′(x)
∥∥

L2(0,1)

+ (1 + 2ρ(δ1 + δ2 + δ1δ2))2
√

2T ‖ fxx(x, t)‖L2(DT)

]}
,
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B2(T) =
1
2

∥∥∥[H(t)]−1
∥∥∥

C[0,T]

(
∞

∑
k=1

λ−2
k

) 1
2

(1 + 2ρ(δ1 + δ2 + δ1δ2))T.

Finally, from (3.12) and (3.13) we conclude:

‖ũ(x, t)‖B3
2,T

+ ‖ã(t)‖C[0,T] ≤ A(T) + B(T) ‖a(t)‖C[0,T] ‖u(x, t)‖B3
2,T

, (3.14)

where
A(T) = A1(T) + A2(T), B(T) = B1(T) + B2(T).

So, we can prove the following theorem.

Theorem 3.3. Let the assumptions H1)–H5) and the condition

(A(T) + 2)2B(T) < 1 (3.15)

be satisfied. Then problem (2.1)–(2.3), (2.14) has a unique classical solution in the ball K =

KR(‖z‖E3
T
≤ R = A(T) + 2) of the space E3

T.

Remark 3.4. Inequality (3.15) is satisfied for sufficiently small values of T.

Proof. We consider the operator equation

z = Φz (3.16)

in the space E3
T, where z = {u, a}, and the components Φi(u, a), i = 1, 2 are defined by the

right sides of equations (3.7) and (3.9), respectively.
Similar to (3.14) we obtain that for any z, z1, z2 ∈ KR the following inequalities hold

‖Φz‖E3
T
≤ A(T) + B(T) ‖a(t)‖C[0,T] ‖u(x, t)‖B3

2,T
≤ A(T) + B(T)(A(T) + 2)2, (3.17)

‖Φz1 −Φzs‖E3
T
≤ B(T)TR(‖a1(t)− a2(t)‖C[0,T] + ‖u1(x, t)− u2(x, t)‖B3

2,T
). (3.18)

Then by virtue of (3.15) from (3.17) and (3.18) it follows that the operator Φ acts in the
ball K = KR, and satisfy the conditions of the contraction mapping principle. Therefore, the
operator Φ has a unique fixed point {u, a} in the ball K = KR, which is a solution of equation
(3.16).

In this way we conclude that the function u(x, t) as an element of space B3
2,T is continuous

and has continuous derivatives u(x, t) and uxx(x, t) in DT.
From (3.2) it is easy to see that(

∞

∑
k=1

(λk
∥∥u′′k (t)

∥∥
C[0,T])

2

) 1
2

≤
√

2

(
∞

∑
k=1

λ−2
k

) 1
2
( ∞

∑
k=1

(λ3
k ‖uk(t)‖C[0,T])

2

) 1
2

+ ‖‖ fx(x, t) + a(t)ux(x, t)‖‖L2(0,1)

 .

Thus utt(x, t) is continuous in the region DT.
Further, it is possible to verify that Eq. (2.1) and conditions (2.2), (2.3), and (2.14) are

satisfied in the usual sense. Consequently, {u(x, t), a(t)} is a solution of (2.1)–(2.3), (2.14), and
by Lemma 3.1 it is unique.
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On the basis of Theorem 2.2 it is easy to prove the following theorem.

Theorem 3.5. Suppose that all assumptions of Theorem 3.3, and the conditions

(1 + 2δ1 + 3δ2 + δ1δ2)T2(A(T) + 2)
2(1 + δ1)(1 + δ2)

< 1,

∫ 1

0
w(x)ϕ(x)dx = H(0) + δ1H(T),

∫ 1

0
w(x)ψ(x)dx = H′(0) + δ2H′(T)

hold. Then problem (2.1)–(2.4) has a unique classical solution in the ball K = KR(‖z‖E3
T
≤ A(T) + 2)

of the space E3
T.

4 Conclusion

The unique solvability of a time-nonlocal inverse boundary value problem for a second-order
hyperbolic equation with an integral overdetermination condition is investigated. Considered
problem was reduced to an auxiliary problem in a certain sense and using the contraction
mappings principle a unique existence conditions for a solution of equivalent problem are
established. Further, on the basis of the equivalency of these problems, the existence and
uniqueness theorem for the classical solution of the original inverse coefficient problem is
proved for the smaller value of time.
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