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Abstract. In this paper, we study the following critical nonlocal problem−
(

a− λb
∫

Ω
|∇u|2dx

)
∆u = λ|u|p−2u + Q(x)|u|2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,

where a > 0, b ≥ 0, 2 < p < 4, λ > 0 is a parameter, Ω is a smooth bounded domain
in R4 and Q(x) ∈ C(Ω) is a nonnegative function. By virtue of variational methods
and delicate estimates, we prove that problem admits k positive solutions for λ > 0
sufficiently small, provided that the maximum of Q(x) is achieved at k interior points
in Ω.

Keywords: nonlocal problem, variational methods, critical nonlinearity, multiple posi-
tive solutions.
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1 Introduction

In this paper, we concern with the multiplicity of positive solutions to the nonlocal problem
−
(

a− λb
∫

Ω
|∇u|2dx

)
∆u = λ|u|p−2u + Q(x)|u|2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.1)

where a > 0, b ≥ 0, 2 < p < 4, λ > 0 is a parameter, Ω is a smooth bounded domain in R4

(2∗ = 4 is the critical exponent in dimension four) and Q(x) ∈ C(Ω) is a nonnegative function
satisfying:

(Q1) There exist k different points x1, x2, . . . , xk ∈ Ω such that Q(xj) are strict local maximums
and satisfy

Q(xj) = QM = max {Q(x) : x ∈ Ω} > 0, j = 1, 2, . . . , k;
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(Q2) QM −Q(x) = O
(
|x− xj|2

)
for x near xj, j = 1, 2, . . . , k.

In the past decade, the following Kirchhoff type problem involving critical growth on a
bounded domain Ω ⊂ RN

−
(

a + b
∫

Ω
|∇u|2dx

)
∆u = g(x, u) + K(x)|u|2∗−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.2)

has attracted considerable attention, where a, b > 0 are constants, 2∗ = 2N/(N − 2) with
N ≥ 3 and K(x) is a nonnegative continuous function. Kirchhoff type problem is often
viewed as nonlocal due to the presence of the term b

∫
Ω |∇u|2dx which implies that such

problem is no longer pointwise identity. It is commonly known that Kirchhoff type problem
has a mechanical and biological motivation, see [1, 8]. Under different hypotheses on g(x, u)
and K(x), there are many interesting results of positive solutions to (1.2) by using variational
methods, see e.g. [6,7,15]. In particular, Fan [6] showed how the topology of the maximum set
of K(x) affects the number of positive solutions to (1.2) via Ljusternik–Schnirelmann category

theory when N = 3 and f (x, u) = f (x)uq with f (x) ∈ L
6

6−q (Ω) and 3 < q < 5. There are
also several existence results for (1.2) in the whole space RN , see [5, 11, 12] and the references
therein.

In (1.2), if we replace a + b
∫

Ω |∇u|2dx by a − b
∫

Ω |∇u|2dx, it turns to be a new nonlo-
cal one. This kind of nonlocal problem presents some interesting difficulties different from
Kirchhoff type problem. Such nonlocal problem with subcritical growth

−
(

a− b
∫

Ω
|∇u|2dx

)
∆u = fλ(x)|u|p−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.3)

has been studied by some researchers, where fλ(x) ∈ L
2∗

2∗−p (Ω) and Ω ⊂ RN is a bounded do-
main. If fλ(x) ≡ 1 and 2 < p < 2∗, Yin and Liu [23] obtained two nontrivial solutions to (1.3);
Qian [18] proved the existence and asymptotic behavior of ground state sign-changing solu-
tions for (1.3); Wang et al. [22] proved that (1.3) has infinitely many sign-changing solutions.
For 1 ≤ p < 2∗, Duan et al. [4] established the existence of multiple positive solutions to (1.3).
In [10], the multiplicity result of positive solutions to (1.3) was obtained for 0 < p < 1. When
fλ(x) has indefinite sign, Lei et al. [9] and Qian and Chao [16] proved the existence of positive
solution to (1.3) for 1 < p < 2 and 3 < p < 6, respectively. For more results about (1.3) with
general nonlinearities and its variants on unbounded domain, we refer the interested readers
to [19,20,24]. To the best of our knowledge, there is little result for (1.3) when f (x, u) exhibits
a critical exponent. Only Wang et al. [21] investigated the existence of two positive solutions
for the following problem involving critical exponent

−
(

a− b
∫

R4
|∇u|2dx

)
∆u = λg(x) + |u|2u, x ∈ R4,

u ∈ D1,2(R4),

under the assumptions λ > 0 is sufficiently small and g(x) ∈ L4/3(R4) is a nonnegative
function.
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When a = 1, b = 0, R4 and Q(x)|u|2u are replaced by RN and Q(x)|u|2∗−2u, respectively,
(1.1) is reduced to the following local one{

− ∆u = λ|u|p−2u + Q(x)|u|2∗−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.4)

which does not depend on the nonlocal term
∫

Ω |∇u|2dx any more. The study by Cao and
Noussair [3] is the first to investigate the effect of the shape of the graph of Q(x) on the
number of positive solutions to (1.4) with p = 2. More precisely, they proved that for small
enough λ > 0, (1.4) has k positive solutions if the maximum of Q(x) is achieved at exactly
k different points of Ω, by applying Nehari manifold method. Liao et al. [13] extended the
result of [3] in the sense that a more wider range of p is covered. In [17], Qian and Chen got
a similar but more complicated result for (1.4) with an additional fast increasing weight.

Motivated by the idea of [3, 6, 21], it is natural and interesting to ask: can we apply the
shape of the graph of Q(x) to prove the multiplicity of positive solutions for the critical
nonlocal problem (1.1) as in Kirchhoff problem (1.2)? In the present paper, we will give a
positive answer to this question.

Our main results can be stated as follows.

Theorem 1.1. Assume that a > 0, b ≥ 0, 2 < p < 4 and Ω is a smooth bounded domain in R4. If
the conditions (Q1) and (Q2) hold, then there exists Λ0 > 0, such that for each λ ∈ (0, Λ0), (1.1) has
at least k positive solutions.

Since the result of Theorem 1.1 still holds for b = 0, then we obtain the following corollary
related to the multiplicity result of positive solutions for a semilinear problem with critical
exponent.

Corollary 1.2. Assume that a > 0, 2 < p < 4 and Ω is a smooth bounded domain in R4. If the
conditions (Q1) and (Q2) hold, then there exists Λ1 > 0, such that for each λ ∈ (0, Λ1), the problem{

− a∆u = λ|u|p−2u + Q(x)|u|2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.5)

has at least k positive solutions.

Associated with (1.1), we define the functional Iλ on H1
0(Ω) by

Iλ(u) =
a
2
‖u‖2 − λb

4
‖u‖4 − λ

p

∫
Ω
|u|pdx− 1

4

∫
Ω

Q(x)|u|4dx,

where ‖u‖2 =
∫

Ω |∇u|2dx. Then Iλ ∈ C1 (H1
0(Ω), R

)
. Moreover, there exists a one to one

correspondence between the critical points of Iλ on H1
0(Ω) and the weak solutions of (1.1).

Here, we say that u is a weak solution of (1.1), if u ∈ H1
0(Ω) and for all v ∈ H1

0(Ω), there holds

(a− λb‖u‖2)
∫

Ω
∇u∇vdx− λ

∫
Ω
|u|p−2uvdx−

∫
Ω

Q(x)|u|2uvdx = 0.

The proof of Theorem 1.1 is based on variational methods. Since (1.1) has a negative
nonlocal term, the approaches used in [6] to deal with Kirchhoff problem do not work here.
Indeed, we shall apply the ideas introduced by Cao and Noussair [3]. However, in the present
paper, there are some new difficulties caused by the competing effect of the nonlocal term
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with the nonlinear terms and the non-compactness due to the critical exponent. To overcome
these difficulties, we need to add the factor λ of |u|p−2u to the nonlocal term −b

∫
Ω |∇u|2dx

in problem (1.1). This modification will play an important role in our arguments (see Lemma
2.2 below). Moreover, inspired by [21], we consider our problem in dimension 4 and make
some delicate estimates in order to get the compactness condition. We also point out that it is
not clear whether the multiplicity result in Theorem 1.1 still holds for critical problem (1.1) in
other dimension, from which it follows that the critical exponent 2∗ is no longer equal to 4.

In Section 2, we present some lemmas which will be used to prove Theorem 1.1. Section 3
is devoted to the proof of Theorem 1.1.

2 Notations and preliminaries

Throughout the paper, for simplicity we write
∫

u instead of
∫

Ω u(x)dx. H1
0(Ω) and Lr(Ω)

are the usual Sobolev spaces equipped with the standard norms ‖u‖ and |u|r, respectively.
D1,2(R4) = {u ∈ L4(R4) : ∇u ∈ L2(R4)}. Denote by Br(x) the ball centered at x with
radius r > 0. Let Br(x) and ∂Br(x) denote the closure and the boundary of Br(x), respectively.
We use → (⇀) to denote the strong (weak) convergence. O(εt) denotes |O(εt)|/εt ≤ C as
ε → 0, and o(εt) denotes |o(εt)|/εt → 0 as ε → 0. C and Ci denote various positive constants
whose exact values are not essential. Let S be the best constant of the Sobolev embedding
H1

0(Ω) ↪→ L4(Ω), that is,

S = inf
u∈H1

0 (Ω)\{0}

∫
|∇u|2( ∫
|u|4

)1/2 .

The Nehari manifold corresponding to Iλ is defined by

Mλ = {u ∈ H1
0(Ω) \ {0} : 〈I′λ(u), u〉 = 0}.

By the condition (Q1), we can take η > 0 sufficiently small such that B2η(xj) ⊂ Ω are
disjoint and Q(x) < Q(xj) for x ∈ B2η(xj) \ {xj}, j = 1, 2, . . . , k. Following the argument of
[3], we define a barycenter map β : H1

0(Ω) \ {0} → R4 by setting

β(u) =

∫
x|u|4∫
|u|4

.

With the help of the map above, we will first separate the Nehari manifold Mλ, then study
minimization problems of Iλ on its proper subset. We point out that, a key role of β is to
insure that the minimizers of the considered minimization problems are distinct.

For j = 1, 2, . . . , k, we consider the following subsets ofMλ,

Mj
λ = {u ∈ Mλ : β(u) ∈ Bη(xj)} and O j

λ = {u ∈ Mλ : β(u) ∈ ∂Bη(xj)}.

Correspondingly, study the following minimization problems

mj
λ = inf

u∈Mj
λ

Iλ(u) and m̃j
λ = inf

u∈O j
λ

Iλ(u).
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For all ε > 0 and x0 ∈ R4, we define

Uε,x0 =
(8)1/2ε

(ε2 + |x− x0|2)
,

which solves −∆u = |u|2u in R4. For j = 1, 2, . . . , k fixed, define a cut off function ϕj ∈ C∞
0 (R4)

such that 0 ≤ ϕj ≤ 1, ϕj(x) = 1 for |x − xj| < ρ and ϕj(x) = 0 for |x − xj| ≥ 2ρ with
0 < ρ < η/2. Let uε,j = ϕj(x− xj)Uε,xj(x). By [2], we have for 2 < p < 4,

‖uε,j‖2 = S2 + O(ε2),

|uε,j|44 = S2 + O(ε4),

|uε,j|
p
p = O(ε4−p).

Lemma 2.1. For j = 1, 2, . . . , k and λ > 0, we have

mj
λ <

a2S2

4(λbS2 + QM)
. (2.1)

Proof. It is easy to see that there exists a unique tε > 0 such that tεuε,j ∈ Mλ and Iλ(tεuε,j) =

supt>0 Iλ(tuε,j). By the symmetry of uε,j about xj, we further obtain tεuε,j ∈ M
j
λ. Thus, to

complete the proof of lemma, it suffices to prove that

sup
t>0

Iλ(tuε,j) <
a2S2

4(λbS2 + QM)
. (2.2)

At this point, we can suppose that tε ≥ C1 > 0 for any ε > 0 small. Otherwise, there is a
sequence εn → 0+ such that tεn → 0. By the continuity of Iλ and the boundedness of {uεn,j},

sup
t>0

Iλ(tuεn,j) = Iλ(tεn uεn,j)→ 0 <
a2S2

4(λbS2 + QM)
,

that is, the proof is complete. Similarly, we also suppose that tε ≤ C2 for some positive
constant C2 and any ε > 0 small.

To proceed, set

h(t) =
at2

2
‖uε,j‖2 − λbt4

4
‖uε,j‖4 − t4

4

∫
QM|uε,j|4.

We easily see that h(t) achieves its maximum at

tmax =

(
a‖uε,j‖2

λb‖uε,j‖4 + QM|uε,j|44

)1/2

=

(
aS2 + O(ε2)

λbS4 + QMS2 + O(ε2)

)1/2

=

(
aS2

λbS4 + QMS2

)1/2

+ O(ε2),

with

h(tmax) =
a2S2

4(λbS2 + QM)
+ O(ε2). (2.3)
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Using condition (Q2), we also have∫
(QM −Q(x)) |uε,j|4 = O(ε2). (2.4)

By (2.3) and (2.4),

sup
t>0

Iλ(tuε,j) = Iλ(tεuε,j)

= h(tε) +
t4
ε

4

∫
(QM −Q(x)) |uε,j|4 −

λ

p
tp
ε

∫
|uε,j|p

≤ h(tmax) +
C4

2
4

∫
(QM −Q(x)) |uε,j|4 −

λ

p
Cp

1

∫
|uε,j|p

=
a2S2

4(λbS2 + QM)
+ O(ε2)−O(ε4−p).

Since 2 < p < 4, (2.2) holds for ε > 0 small enough. This ends the proof.

Lemma 2.2. Assume that condition (Q1) holds. Then there exists Λ0 > 0 such that

m̃j
λ >

a2S2

4QM

for j = 1, 2, . . . , k, and λ ∈ (0, Λ0).

Proof. Let us argue by contradiction and suppose that there exist sequences λn → 0, and
{un} ⊂ O j

λn
satisfying

Iλn(un)→ c ≤ a2S2

4QM
,

and

a
∫
|∇un|2 − λnb

( ∫
|∇un|2

)2

= λn

∫
|un|p +

∫
Q(x)|un|4. (2.5)

By {un} ⊂ O j
λn

, one has for n large,

c + 1 ≥ Iλn(un)−
1
p
〈I′λn

(un), un〉

= a
(

1
2
− 1

p

)
‖un‖2 + λnb

(
1
p
− 1

4

)
‖un‖4 +

(
1
p
− 1

4

) ∫
Q(x)|un|4

≥ a
(

1
2
− 1

p

)
‖un‖2

which implies that {un} is bounded in H1
0(Ω). Using (2.5) and Sobolev embedding, we also

have

a‖un‖2 = λnb‖un‖4 + λn|un|pp +
∫

Q(x)|un|4 ≤ λnb‖un‖4 + λnC‖un‖p + QMS−2‖un‖4

from which we infer that
‖un‖ ≥ C3 > 0.
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Noting that λn → 0, we then deduce from (2.5) that there is a constant C4 > 0 such that∫
Q(x)|un|4 ≥ C4 > 0,

for all n ∈N. Thus, we are able to choose tn > 0 such that vn = tnun satisfies

a
∫
|∇vn|2 =

∫
QM|vn|4. (2.6)

This and Sobolev inequality give that aS2

QM
≤ ‖vn‖2. Moreover,

tn =


∫

Q(x)|un|4 + λnb
( ∫
|∇un|2

)2

+ λn

∫
|un|p∫

QM|un|4


1/2

.

It follows that {tn} is uniformly bounded. Then, we can assume limn→∞ tn = t0. By Q(x) ≤
QM, λn → 0 and the boundedness of {un}, we see that t0 ≤ 1. We show next that the case
t0 ≤ 1 leads to a contradiction. Since for t0 ≤ 1, we have

a2S2

4QM
≤ lim

n→∞

1
4

a
∫
|∇vn|2 = lim

n→∞

1
4

at2
n

∫
|∇un|2

= lim
n→∞

t2
n

[(
1
2
− 1

4

)(
a
∫
|∇un|2 − λnb

( ∫
|∇un|2

)2

− λn

∫
|un|p

)

+ λnb
(

1
2
− 1

4

)( ∫
|∇un|2

)2

+ λn

(
1
2
− 1

p

) ∫
|un|p

]

= lim
n→∞

t2
n Iλn(un) = t2

0c ≤ c ≤ a2S2

4QM
,

then it follows that

c =
a2S2

4QM
and lim

n→∞

∫
|∇vn|2 =

aS2

QM
. (2.7)

Let wn = vn/|vn|4, then |wn|4 = 1. Moreover, by (2.6) and (2.7),

lim
n→∞

∫
|∇wn|2 = lim

n→∞

‖vn‖2

|vn|24
= lim

n→∞

‖vn‖2

(a‖vn‖2/QM)1/2 = S,

namely, {wn} is a minimizing sequence for S. According to [14], we can find a point y0 ∈ Ω
such that

|∇wn|2 ⇀ dµ = Sδy0 and |wn|4 ⇀ dν = δy0 (2.8)

with the above convergence holding weakly in the sense of measure, where δy0 is a Dirac mass
at y0. Then

β(un) =

∫
x|un|4∫
|un|4

=

∫
x|vn|4∫
|vn|4

=

∫
x|wn|4∫
|wn|4

→ y0, as n→ ∞.
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This together with β(un) ∈ ∂Bη(xj) imply that y0 ∈ ∂Bη(xj). Thus, from (2.6) and (2.8), we
conclude that

lim
n→∞

Iλn(un) = lim
n→∞

t2
n

[(
1
2
− 1

4

)(
a
∫
|∇un|2 − λnb

( ∫
|∇un|2

)2

− λn

∫
|un|p

)

+ λnb
(

1
2
− 1

4

)( ∫
|∇un|2

)2

+ λn

(
1
2
− 1

p

) ∫
|un|p

]

≤ lim
n→∞

1
4

∫
Q(x)|un|4

= lim
n→∞

1
4

∫
Q(x)|vn|4

=
Q(y0)

4QM
lim
n→∞

∫
QM|vn|4

=
Q(y0)

4QM
lim
n→∞

a
∫
|∇vn|2

=
Q(y0)

4QM

a2S2

QM
<

a2S2

4QM
,

which contradicts with (2.7). This completes the proof.

Lemma 2.3. For any u ∈ Mj
λ, there exist ρ > 0 and a differential function g = g(w) defined for

w ∈ H1
0(Ω), w ∈ Bρ(0) satisfying that

g(0) = 1, g(w)(u− w) ∈ Mj
λ

and

〈g′(0), φ〉 =
(2a− 4λb‖u‖2)

∫
∇u∇φ− λp

∫
|u|p−2uφ− 4

∫
Q(x)|u|2uφ

a‖u‖2 − 3λb‖u‖4 − λ(p− 1)
∫
|u|p − 3

∫
Q(x)|u|4

.

Proof. Define F : R+ × H1
0(Ω)→ R by

F(t, w) = at‖u− w‖2 − λbt3‖u− w‖4 − λtp−1
∫
|u− w|p − t3

∫
Q(x)|u− w|4.

By u ∈ Mj
λ, we get F(1, 0) = 0 and

Ft(1, 0) = a‖u‖2 − 3λb‖u‖4 − λ(p− 1)
∫
|u|p − 3

∫
Q(x)|u|4

= a(2− p)‖u‖2 − λb(4− p)‖u‖4 − (4− p)
∫

Q(x)|u|4

< 0.

Thus, we can use the implicit function theorem for F at the point (1, 0) and obtain ρ > 0 and
a functional g = g(w) > 0 defined for w ∈ H1

0(Ω), ‖w‖ < ρ satisfying that

g(0) = 1, g(w)(u− w) ∈ Mλ, ∀w ∈ H1
0(Ω), ‖w‖ < ρ.
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By the continuity of the maps g and β, we can further take ρ > 0 possibly smaller (ρ < ρ) such
that

β (g(w)(u− w)) ∈ Bη(xj), ∀w ∈ H1
0(Ω), ‖w‖ < ρ,

which means that g(w)(u− w) ∈ Mj
λ.

Moreover, we also have for all φ ∈ H1
0(Ω), r > 0,

F(1, 0 + rφ)− F(1, 0)

= a‖u− rφ‖2 − λb‖u− rφ‖4 − λ
∫
|u− rφ|p −

∫
Q(x)|u− rφ|4

− a‖u‖2 + λb‖u‖4 + λ
∫
|u|p +

∫
Q(x)|u|4

= − a
∫ (

2r∇u∇φ− r2|∇φ|2
)

+ λb

[
2
∫
|∇u|2

∫ (
2r∇u∇φ− r2|∇φ|2

)
−
( ∫ (

2r∇u∇φ− r2|∇φ|2
))2

]
− λ

∫ (
|u− rφ|p − |u|p

)
−
∫

Q(x)
(
|u− rφ|4 − |u|4

)
.

It follows that

〈Fw, φ〉|t=1,w=0 = lim
r→0

F(1, 0 + rφ)− F(1, 0)
r

= − (2a− 4λb‖u‖2)
∫
∇u∇φ + pλ

∫
|u|p−2uφ + 4

∫
Q(x)|u|2uφ.

Therefore,

〈g′(0), φ〉 = −〈Fw, φ〉
Ft

∣∣∣∣
t=1,w=0

=
(2a− 4λb‖u‖2)

∫
∇u∇φ− λp

∫
|u|p−2uφ− 4

∫
Q(x)|u|2uφ

a‖u‖2 − 3λb‖u‖4 − λ(p− 1)
∫
|u|p − 3

∫
Q(x)|u|4

.

The proof is completed.

Lemma 2.4. There exist Λ0 > 0 and a sequence {un} ⊂ Mj
λ such that

un ≥ 0, Iλ(un)→ mj
λ, I′λ(un)→ 0,

for j = 1, 2, . . . , k, and λ ∈ (0, Λ0).

Proof. Note thatMj
λ =Mj

λ ∪O
j
λ and O j

λ is the boundary ofMj
λ. In view of Lemmas 2.1 and

2.2, we know that there exists Λ0 > 0 such that

mj
λ < m̃j

λ

for λ ∈ (0, Λ0), j = 1, 2, . . . , k,. This implies that

mj
λ = inf{Iλ(u) : u ∈ Mj

λ}.

Then, for each j = 1, 2, . . . , k, we can apply Ekeland’s variational principle to construct a
minimizing sequence {un} ⊂ Mj

λ satisfying the following properties :
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(i) lim
n→∞

Iλ(un) = mj
λ,

(ii) Iλ(un) ≤ Iλ(w) +
1
n
‖w− un‖, for each w ∈ Mj

λ.

Since Iλ(|u|) = Iλ(u), we may assume un ≥ 0. Using Lemma 2.3 with u = un, we get ρn > 0, a
differential function gn(w) defined for w ∈ H1

0(Ω), w ∈ Bρn(0) such that gn(w)(un−w) ∈ Mj
λ.

Let 0 < δ < ρn and let wδ = δu with ‖u‖ = 1. Fix n and set zδ = gn(wδ)(un−wδ). By zδ ∈ M
j
λ

and the property (ii), one has

Iλ(zδ)− Iλ(un) ≥ −
1
n
‖zδ − un‖.

Then, by mean value theorem

〈I′λ(un), zδ − un〉+ o(‖zδ − un‖) ≥ −
1
n
‖zδ − un‖.

Thus,

〈I′λ(un), (un − wδ) +
(

gn(wδ)− 1
)
(un − wδ)− un〉 ≥ −

1
n
‖zδ − un‖+ o(‖zδ − un‖)

which yields that

−δ〈I′λ(un), u〉+
(

gn(wδ)− 1
)
〈I′λ(un), un − wδ〉 ≥ −

1
n
‖zδ − un‖+ o(‖zδ − un‖).

Combining this with 〈I′λ(zδ), gn(wδ)(un − wδ)〉 = 0, we obtain

〈I′λ(un), u〉 ≤ 1
n
‖zδ − un‖

δ
+

o(‖zδ − un‖)
δ

+
gn(wδ)− 1

δ
〈I′λ(un), un − wδ〉. (2.9)

By Lemma 2.3 and the boundedness of {un}, we easily see that

‖zδ − uj
n‖ = ‖ (gn(wδ)− 1) (uj

n − wδ)− wδ‖ ≤ |gn(wδ)− 1|C5 + δ

and

lim
δ→0

|gn(wδ)− 1|
δ

= 〈g′n(0), u〉 ≤ ‖g′n(0)‖ ≤ C6.

Therefore, for fixed n, we can conclude by passing δ→ 0 in (2.9) that

〈I′λ(un), u〉 ≤ C
n

,

which implies that I′λ(un)→ 0 as n→ ∞, and Lemma 2.4 is proved.

Lemma 2.5. For all λ > 0, if {un} ⊂ Mλ is a sequence satisfying

Iλ(un)→ c <
a2S2

4(λbS2 + QM)
and I ′λ(un)→ 0,

as n→ ∞, then {un} has a convergent subsequence.
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Proof. As in the proof of Lemma 2.2, it is easy to verify that {un} is bounded in H1
0(Ω). Hence,

we may assume that for some u∗ ∈ H1
0(Ω),

un ⇀ u∗ in H1
0(Ω),

un → u∗ in Lr(Ω), 1 ≤ r < 4,

un → u∗ a.e. in Ω.

Denote vn = un − u∗ and we claim that ‖vn‖ → 0. If not, there is a subsequence (still denoted
by {vn}) such that ‖vn‖ → L with L > 0. By 〈I′λ(un), u∗〉 = o(1) and the weak convergence of
un, we see that

0 = a‖u∗‖2 − λb(L2 + ‖u∗‖2)‖u∗‖2 − λ
∫
|u∗|p −

∫
Q(x)|u∗|4. (2.10)

Moreover, by 〈I′λ(un), un〉 = 0, we can apply the Brézis–Lieb Lemma to get

0 = a(‖vn‖2 + ‖u∗‖2)− λb(‖vn‖4 + 2‖vn‖2‖u∗‖2 + ‖u∗‖4)

− λ
∫
|u∗|p −

∫
Q(x)|vn|4 −

∫
Q(x)|u∗|4 + o(1).

(2.11)

Combining (2.10) and (2.11), we have

o(1) = a‖vn‖2 − λb‖vn‖4 − λb‖vn‖2‖u∗‖2 −
∫

Q(x)|vn|4 (2.12)

and consequently,

a‖vn‖2 − λb‖vn‖4 − λb‖vn‖2‖u∗‖2 =
∫

Q(x)|vn|4 + o(1) ≤ QMS−2‖vn‖4 + o(1).

Passing the limit as n→ ∞, we obtain that

L2 ≥ S2(a− λb‖u∗‖2)

λbS2 + QM
≥ 0. (2.13)

By (2.10) and (2.13), we have

Iλ(u∗) =
a
2
‖u∗‖2 − λb

4
‖u∗‖4 − λ

p

∫
|u∗|p −

1
4

∫
Q(x)|u∗|4

=
λb
4
‖u∗‖4 +

λb
2

L2‖u∗‖2 + λ

(
1
2
− 1

p

) ∫
|u∗|p +

1
4

∫
Q(x)|u∗|4

≥ λb
4
‖u∗‖4 +

λb
2

S2(a− λb‖u∗‖2)

λbS2 + QM
‖u∗‖2

=
λb(λbS2 + QM)‖u∗‖4

4(λbS2 + QM)
+

λabS2‖u∗‖2

2(λbS2 + QM)
− λ2b2S2‖u∗‖4

2(λbS2 + QM)

≥ λabS2‖u∗‖2

2(λbS2 + QM)
− λ2b2S2‖u∗‖4

4(λbS2 + QM)
.

(2.14)
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Furthermore, using (2.12)–(2.14), we deduce that

c + o(1) = Iλ(un)

=
a
2
‖un‖2 − λb

4
‖un‖4 − λ

p

∫
|un|p −

1
4

∫
Q(x)|un|4

=
a
2
‖u∗‖2 − λb

4
‖u∗‖4 − λ

p

∫
|u∗|p −

1
4

∫
Q(x)|u∗|4

+
a
2
‖vn‖2 − λb

4
‖vn‖4 − λb

2
‖vn‖2‖u∗‖2 − 1

4

∫
Q(x)|vn|4 + o(1)

= I(u∗) +
a
4
‖vn‖2 − λb

4
‖vn‖2‖u∗‖2 + o(1)

= I(u∗) +
a− λb‖u∗‖2

4
L2 + o(1)

≥ I(u∗) +
a2S2

4(λbS2 + QM)
− λabS2‖u∗‖2

2(λbS2 + QM)
+

λ2b2S2‖u∗‖4

4(λbS2 + QM)
+ o(1)

≥ a2S2

4(λbS2 + QM)
+ o(1)

a contradiction to the assumption c < a2S2

4(λbS2+QM)
. Therefore, the claim holds, namely, un → u∗

in H1
0(Ω). This completes the proof of Lemma 2.5.

3 Proof of Theorem 1.1

Proof of Theorem 1.1. By Lemma 2.4, we know that there exists Λ0 such that for each λ ∈
(0, Λ0) and j = 1, 2, . . . , k, there is a minimizing sequence {uj

n} ⊂ M
j
λ satisfying uj

n ≥ 0,
Iλ(u

j
n) → mj

λ and I′λ(u
j
n) → 0. From Lemmas 2.1 and 2.5, it follows that uj

n → uj and uj ≥ 0
is a weak solution of (1.1). Furthermore, standard elliptic regularity argument and strong
maximum principle imply that uj is a positive solution. Finally, uj, j = 1, 2, . . . , k, are different
positive solutions since β(uj) ∈ Bη(xj) and Bη(xj) are disjoint. The proof is completed.
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