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Abstract. It is well known that biological pattern formation is the Turing mechanism, in
which a homogeneous steady state is destabilized by the addition of diffusion, though
it is stable in the kinetic ODEs. However, steady states that are unstable in the kinetic
ODEs are rarely mentioned. This paper concerns a reaction diffusion advection system
under Neumann boundary conditions, where steady states that are unstable in the ki-
netic ODEs. Our results provide a stabilization strategy for the same steady state, the
combination of large advection rate and small diffusion rate can stabilize the homoge-
neous equilibrium. Moreover, we investigate the existence and stability of nonconstant
positive steady states to the system through rigorous bifurcation analysis.
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1 Introduction

The central player in mathematical biology models is the stability of steady states. It is well
known that biological pattern formation is the Turing mechanism, in which a homogeneous
steady state that is stable in the kinetic ODEs is destabilised by the addition of diffusion terms.
However, steady states that are unstable in the kinetic ODEs are almost never mentioned. As
a result, there is a widespread assumption that unstable steady states are not biologically
significant as PDE solutions.

The objective of this paper is to explain how diffusion and advection can turn an unstable
steady state of kinetic ODEs to a stable one, to illustrate their implications for PDE models
of biological systems. For that purpose, we investigate the spatially extended Rosenzweig–
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MacArthur model for predator–prey interaction in river, which was proposed in [3]:



Pt = d1(Pxx − αPx) + P
(

1− P− mN
a + P

)
, (0, L)× (0,+∞),

Nt = Nxx − αNx − dN +
mPN
a + P

, (0, L)× (0,+∞),

Px(0, t) = Px(L, t) = Nx(0, t) = N(L, t) = 0, t > 0,

P(x, 0) = P0(x) ≥ 0, N(x, 0) = N0(x) ≥ 0, x ∈ (0, L),

(1.1)

where P(x, t) and N(x, t) denote predator and prey densities, which depend on space x and
time t. Here, and throughout this paper, we restrict attention to one space dimension (0, L),
though our analysis carries over to multi-dimensions. Most predator–prey studies do not
include advection terms, advection of this type arises naturally in river-based predator–prey
systems [3] and α is the convective rate of unidirectional flow. The parameter d1 is the random
diffusion rate of the prey and the random diffusion rate of the predator is rescaled to 1. The
prey consumption rate per predator is an increasing saturating function of the prey density
with Holling type II form: m reflects how quickly the consumption rate saturates as prey
density increases, a is the density of prey necessary to achieve one half the rate. d is the death
rate of the predator, also see [9].

Here the zero Neumann boundary conditions correspond to a long river in which the
downstream boundary has little influence, see e.g., [3, 7]. For the same parameter values as
used ODEs, the stability of constant steady states does not change in diffusive systems under
zero Neumann boundary conditions, see e.g., [12]. We will find a distinguished result for the
reaction-diffusion-advection system (1.1): the coexistence steady state of (1.1) becomes stable
for large advection rates though it is unstable for the corresponding diffusive system.

Over the past few decades, reaction-diffusion systems have been widely applied and ex-
tensively studied to model the spatial-temporal predator–prey dynamics, which can greatly
explain the invasion of a prey by predators (e.g., [8]). For the spatial model with advection,
there are some recent related works to understand how the diffusion and advection jointly
effect population persist over large temporal scales and resist washout in such environment
[5, 6, 13]. Our purpose is to investigate the stabilization effect of advection.

In Section 2, we perform linear stability of the unique equilibrium (P∗, N∗) with respect to
(1.1). Our results in Theorem 2.4 indicate that advection and diffusion stabilize the homoge-
neous equilibrium when the advection is large and diffusion is small, while it still destabilizes
predator–prey interactions when the advection is small. This extends the work of [9]. Section
3 is devoted to the steady state bifurcation analysis of (1.1) which establishes the existence
of its nonconstant steady states, with advection rate α being the bifurcation parameter, see
Theorem 3.2.

2 Linearized stability driven by advection

The system (1.1) has three non-negative constant equilibrium solution (0, 0), (1, 0), (P∗, N∗),
where

(P∗, N∗) =
(

ad
m− d

,
(a + P∗)(1− P∗)

m

)
.
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The coexistence equilibrium (P∗, N∗) is in the first quadrant if and only if 0 < ad
m−d < 1. First

we recall some well known results on the ODE dynamics of (1.1), see for example [4, 11]:
Pt = P

(
1− P− mN

a + P

)
,

Nt = −dN +
mPN
a + P

.
(2.1)

Lemma 2.1. The following statements hold for system (2.1):

1. when P∗ ≥ 1, (1, 0) is globally asymptotically stable, see [4];

2. when 1− a < P∗ < 1, (P∗, N∗) is globally asymptotically stable, see [4];

3. P∗ = 1−a
2 is the unique bifurcation point where a Hopf bifurcation occurs, and the Hopf bifurca-

tion is supercritical and backward;

4. when 0 < P∗ < 1−a
2 , (P∗, N∗) is unstable and there is a globally asymptotically stable periodic

orbit, see [11];

5. when 1−a
2 < P∗ < 1, then (2.1) has no closed orbits in the first quadrant and the positive

equilibrium (P∗, N∗) is globally asymptotically stable in the first quadrant, see [11].

Based on this, we always assume that the constants satisfy 0 < a < 1, P∗ > 0 and N∗ > 0
throughout the paper. Following the same process of Theorem 2.1 in [12], we have the exis-
tence of solution and a priori bound of the solution to the dynamical equation (1.1).

Lemma 2.2. The following statements hold:

(a) If P0(x) ≥ 0( 6≡ 0), N0(x) ≥ 0( 6≡ 0), then (1.1) has a unique solution (P(x, t), N(x, t)) such
that P(x, t) > 0, N(x, t) > 0 for t ∈ (0, ∞) and x ∈ [0, L];

(b) For any solution (P(x, t), N(x, t)) of (1.1),

lim sup
t→∞

P(x, t) ≤ 1,
∫ L

0
N(x, t)dx ≤

(
1 +

(a + 1)L
4d

)
.

Moreover, there exists C > 0 such that

lim sup
t→+∞

N(x, t) ≤ C,

where C is independent of P0, N0, d1, α. If d1 = 1, then N(x, t) ≤
(
1 + (a+1)L

4d

)
for all t > 0,

x ∈ [0, L].

In the following, we investigate the effect of diffusion and advection on the stability of
(P∗, N∗). For the convenience, we denote

f (P, N) = P
(

1− P− mN
a + P

)
,

g (P, N) = −dN +
mPN
a + P

.

Then the linearization of (1.1) at (P∗, N∗) can be expressed by:(
φt

ψt

)
= L(α)

(
φ

ψ

)
:= D

(
φxx − αφx

ψxx − αψx

)
+ J(P,N)

(
φ

ψ

)
(2.2)
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with domain X =
{
(φ, ψ) ∈ H2((0, L))× H2((0, L)) : φx = ψx = 0, x = 0, L

}
, where

D =

(
d1 0
0 1

)
, J(P,N) =

(
fP fN

gP gN

)
,

and

fP =
P∗(1− a− 2P∗)

(a + P∗)
, fN = − mP∗

(a + P∗)
,

gP =
a(1− P∗)
(a + P∗)

, gN = 0.

From Theorem 5.1.1 of [2], it is known that if all the eigenvalues of the operator L have
negative real parts, then (P∗, N∗) is asymptotically stable, otherwise, (P∗, N∗) is unstable.

Thus λ is an eigenvalue of L if and only if λ is an eigenvalue of the matrix Jk = −µkD +

J(P,N) for some k ≥ 0, where µk(k = 0, 1, 2, . . . ) is the kth eigenvalue of the following eigenvalue
problem: {

φxx − αφx = −µkφ, x ∈ (0, L),

φx(0) = φx(L) = 0.
(2.3)

Since x ∈ (0, L), we can directly calculate the eigenvalue µk and eigenfunction φk(x) as fol-
lowing: 

µk =

(
kπ

L

)2

+
α2

4
, k = 0, 1, 2, . . . ,

φk(x) = αe
αx
2 cos

(
kπx

L

)
+

2kπ

L
e

αx
2 sin

(
kπx

L

)
, k = 0, 1, 2, . . .

(2.4)

So the stability is reduced to consider the characteristic equation

λ2 − Trace(Jk)λ + Det(Jk) = 0, k = 0, 1, 2, . . . (2.5)

with

Trace(Jk) = −(d1 + 1)µk + fP + gN := −(d1 + 1)µk + Trace(J),

Det(Jk) = d1µk
2 − (d1gN + fP)µk + fPgN − fN gP := d1µk

2 − (d1gN + fP)µk + Det(J).
(2.6)

We take α as the main bifurcation parameter to observe its effect on the local stability (P∗, N∗).
First of all, we list four conditions for the sake of following discussion.

(A1) f 2
P + 4d1 fN gP < 0,

(A2) f 2
P + 4d1 fN gP > 0,

(A3) d1µ2
0 − fPµ0 − fN gP ≤ 0,

(A4) d1µ2
0 − fPµ0 − fN gP > 0.

Theorem 2.3. Suppose P∗ ≥ 1−a
2 . Then (P∗, N∗) is always locally asymptotically stable for any

advection rate α > 0.

Proof. It can find that fP ≤ 0 when P∗ ≥ 1−a
2 . Thus Trace(Jk) < 0 and Det(Jk) > 0 for all

k = 0, 1, 2, . . . , which implies the desired results.
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Theorem 2.4. Suppose P∗ <
1− a

2
.

1. If −(d1 + 1)µ0 + fP > 0, then (P∗, N∗) is unstable.

2. If there is some k ≥ 0 such that −(d1 + 1)µk + fP = 0, then system (1.1) generates a hetero-
geneous Hopf bifurcation at (P∗, N∗) provided either (A1) holds or (A2), (A4) and µ0 > fP

2
holds.

3. If −(d1 + 1)µ0 + fP < 0, then (P∗, N∗) is locally asymptotically stable provided either (A1)
holds or (A2), (A4) and µ0 > fP

2 holds; and (P∗, N∗) is unstable provided (A3) holds,

Proof. It just notices that Det(Jk) > 0 for all k = 0, 1, 2, . . . if either (A1) or (A2) holds; and
Det(J0) < 0 if (A3) holds.

Remark 2.5. Theorem 2.3 and Theorem 2.4 imply that the advection rate α makes (P∗, N∗)
more stable compared with that for the corresponding ODE system in Lemma 2.1. The pe-
riodic solution bifurcating from (P∗, N∗) will disappear when introducing the advection and
diffusion; Moreover under the same condition that (P∗, N∗) is unstable for (2.1), there is new-
born homogeneous/heterogeneous Hopf bifurcation solutions at (P∗, N∗) or (P∗, N∗) even
becomes stable for small diffusion rate d1 or large advection rate α.

3 Existence of non-constant positive steady state

In this section we show that when (P∗, N∗) is unstable, there exist positive non-constant steady
state solutions of (1.1). In order to show that we use bifurcation theory to prove the existence
of positive non-constant steady state solutions. The bifurcations can be shown with parameter
αk(or µk) as shown in Theorem 2.4. From the relation given in (2.6), we define the potential
bifurcation points:

α2
k,± =

2 fP ± 2
√

fP
2 + 4d1 fN gP

d1
− 4
(

kπ

L

)2

, k = 0, 1, 2, . . . (3.1)

We have the following properties of αk,±:

Lemma 3.1. Assume that (A2) holds. Then

1. limk→∞ αk,± = −∞;

2. Both αk,+ and αk,− are monotonically decreasing with respect to k, there exists m, n such that
α0,+ > α1,+ > · · · > αm,+ ≥ 0 and α0,− > α1,− > · · · > αm,− ≥ 0.

Theorem 3.2. Assume that (A2) holds. Let αk,± be defined as in (3.1) such that αi,+ 6= αj,− for any
0 ≤ i ≤ m and 0 ≤ j ≤ n. Then

1. Near (αi,±, P∗, N∗), the set of positive non-constant steady state solutions of (1.1) is a smooth
curve Σi = {αi(s), Pi(s), Ni(s) : s ∈ (−ε, ε)}, where where Pi(s) = P∗+ saiφi(x)+ s2ψ1,i(s)+
O(s3), Ni(s) = N∗+ sbiφi(x)+ s2ψ2,i(s)+O(s3) for some smooth functions ψ1,i, ψ2,i such that
αi(s) = αi,± + O(s) and ψ1,i(0) = ψ2,i(0) = 0; Here (ai, bi) satisfies

L(αi)[(ai, bi)
Tφi(x)] = (0, 0)T.
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2. The smooth curve Σi in part (1) is contained in a connected component Ci of Γ, which is the clo-
sure of the set of positive non-constant steady state solutions of (1.1), and either Ci is unbounded
or Ci contains another (αj,±, P∗, N∗) with αi,± 6= αj,±.

Proof. The existence and uniqueness of αi,± follows from discussions above. Then the local
bifurcation result follows the bifurcation theorem in [1], and it is an application of a more
general result Theorem 4.3 in [10].

Define a nonlinear mapping

F(α, P, N) =

(
d1(Pxx − αPx) + f (P, N)

Nxx− αNx + g(P, N)

)
with domain V = {(α, P, N) : 0 < α < α0,+, (P, N) ∈ X × X}, where X = {ω ∈ H2((0, L)) :
ω′(0) = ω′(L) = 0}. Then F(α, P, N) = 0 is equivalent to the steady state system of (1.1):

d1(Pxx − αPx) + P
(

1− P− mN
a + P

)
= 0, x ∈ (0, L),

Nxx − αNx − dN +
mPN
a + P

= 0, x ∈ (0, L),

Px(0) = Px(L) = Nx(0) = Nx(L) = 0.

(3.2)

It is observed that F(α, P, N) = 0 for all α > 0. For any (α, P∗, N∗) ∈ V, the The Fréchet
derivative of F is given by

D(P,N)F(α, P∗, N∗)(P, N) =

(
d1(Pxx − αPx) + fPP + fN N

Nxx − αNx + gPP + gN N

)
.

Then D(P,N)F(αi,±, P∗, N∗)(P, N) is a Fredholm operator with index zero by Corollary 2.11 in
[10].

We show that the conditions for Theorem 4.3 in [10] are satisfied in several steps.

Step 1. dim N(D(P,N)F(αi,±, P∗, N∗)) = 1.
From the definition of αi,±, it is easy to verify that Det(Ji) = 0, hence zero is an eigenvalue

of Ji with an eigenvector (ai, bi) = (gP, d1µi). Then Vi = (gP, d1µi)φi(x) is an eigenfunction of
L(αi,±) defined in (2.2) and evaluated at (P∗, N∗) with eigenvalue zero. Since µi (i = 0, 1, 2 . . . )
is a simple eigenvalue from (2.4), then the eigenvector is unique up to a constant multiple.
Thus one has N(D(P,N)F(αi,±, P∗, N∗)) = span{Vi} which is one-dimensional. Note that we
also have that codim R(D(P,N)F(αi,±, P∗, N∗)) = 1 as D(P,N)F(αi,±, P∗, N∗) is Fredholm with
index zero.

Step 2. D(P,N)αF(αi,±, P∗, N∗)(Vi) 6∈ R(D(P,N)F(αi,±, P∗, N∗)).
It is easy to see that an eigenvector of L∗(αi,±) corresponding to zero eigenvalue is V∗i =

(a∗i , b∗i ) = (−µi + fP, gP)φ(x), here L∗(αi,±) is the adjoint matrix of −L(αi,±). If (h1, h2) ∈
R(D(P,N)F(αi,±, P∗, N∗)), then there exists (ϕ1, ϕ2) such that D(P,N)αF(αi,±, P∗, N∗)(ϕ1, ϕ2)T =

−L(αi,±)(ϕ1, ϕ2)T = (h1, h2)T. Thus∫ L

0
(a∗i h1 + b∗i h2)φi(x)dx = 0.

It is noticed that D(P,N)αF(αi,±, P∗, N∗)(Vi) = (0,−µibiφi(x))T, and∫ L

0
a∗i · 0 + b∗i · (−µibiφi(x))dx =

∫ L

0
d1µ2

i gPφ2
i (x)dx > 0.
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Thus D(P,N)αF(αi,±, P∗, N∗)(Vi) 6∈ R(D(P,N)F(αi,±, P∗, N∗)).

Step 3. It is noticed that {(α, P∗, N∗) : 0 < α < α0,+} is a line of trivial solutions for F = 0, thus
Theorem 4.3 in [10] can be applied to each continuum Ci bifurcated from (αi,±, P∗, N∗). The
solutions of (3.2) on Ci near the bifurcation point are apparently positive. For each continuum
Ci, either C̄i contains another (αj,±, P∗, N∗) or Ci is not compact. (Here we do not make an
extinction between the solutions of (3.2) and F = 0 as they are essentially same, hence we
use Ci for solution continuum for both equations.) Therefore, either Ci is unbounded or Ci
contains another (αj,±, P∗, N∗) with αi,± 6= αj,±.

4 Conclusions and numerical simulations

It is a general result that a steady state that is unstable as a solution of the kinetic ODEs is
also unstable as a PDE solution on a finite domain under zero Neumann conditions [12]. Our
results in Theorem 2.4 indicate that the combination of advection and diffusion can stabilize
the homogeneous equilibrium. For the constant steady state that are unstable in the kinetic
ODEs, it becomes stable when the advection is large and diffusion is small, while it keeps
instability when the advection is small. Moreover, we obtain non-constant steady states by
bifurcation theory when the constant steady state is unstable. These results extend the work
of [9]. Our analysis and methods are also suitable for higher dimensional systems, we can
obtain the concrete bifurcation value in one dimensional interval. From a theoretical point of
view, this paper introduces a new class of reaction-diffusion models with advection, which
may be of independent interest.

Consider system (3.2) and fix d = 0.5, m = 1, a = 0.6. Then P∗ > 1−a
2 . Lemma 2.1 says

that (P∗, N∗) = (0.6, 0.48) is locally asymptotically stable for any d1 > 0 and α = 0, and
Theorem 2.3 shows that (P∗, N∗) = (0.6, 0.48) keeps stable for α > 0, see Figure 4.1.

Figure 4.1: (Left): d1 = 1, α = 0, and (P∗, N∗) is locally asymptotically stable;
(Right): d1 = 1, α = 10, and (P∗, N∗) is still locally asymptotically stable, the
same initial value (P0, N0) = (0.56, 0.4).

Fix d = 0.5, m = 1, a = 0.33. Then P∗ = 1−a
2 . Lemma 2.1 says that (3.2) has a homogeneous

Hopf bifurcation solution at (P∗, N∗) = (0.33, 0.44) for any d1 > 0 and α = 0, while Theo-
rem 2.3 shows that the homogeneous periodic solutions disappears for α > 0, see Figure 4.2.

Fix d = 0.5, m = 1, a = 0.32. Then P∗ < 1−a
2 . Lemma 2.1 says that (P∗, N∗) = (0.32, 0.44)

is unstable for any d1 > 0 and α = 0, while Theorem 2.3 shows that (P∗, N∗) = (0.32, 0.44)
becomes stable for large d1 > 0 and large α > 0, see Figure 4.3.
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Figure 4.2: (Left): d1 = 1, α = 0, and (3.2) has a homogeneous Hopf bifurca-
tion solution at (P∗, N∗); (Right): d1 = 0.3, α = 1, and the periodic solution
disappears, the same initial value (P0, N0) = (0.33, 0.4).

Figure 4.3: (Left): d1 = 1, α = 0, and and (P∗, N∗) is unstable; (Right): d1 = 1500,
α = 1, and (P∗, N∗) becomes locally asymptotically stable, the same initial value
(P0, N0) = (0.3, 0.4).
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