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Abstract. In this paper we consider the following Schrödinger–Kirchhoff–Poisson-type
system 

−
(

a + b
∫

Ω
|∇u|2dx

)
∆u + λφu = Q(x)|u|p−2u in Ω,

−∆φ = u2 in Ω,

u = φ = 0 on ∂Ω,

where Ω is a bounded smooth domain of R3, a > 0, b ≥ 0 are constants and λ is a
positive parameter. Under suitable conditions on Q(x) and combining the method of
invariant sets of descending flow, we establish the existence and multiplicity of sign-
changing solutions to this problem for the case that 2 < p < 4 as λ sufficiently small.
Furthermore, for λ = 1 and the above assumptions on Q(x), we obtain the same con-
clusions with 2 < p < 12

5 .

Keywords: Schrödinger–Kirchhoff–Poisson type system, invariant sets of descending
flow, sign-changing solutions.
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1 Introduction

In this paper we are concerned with the existence of sign-changing solutions to the following
Schrödinger–Kirchhoff–Poisson-type system

−
(

a + b
∫

Ω
|∇u|2dx

)
∆u + λφu = Q(x)|u|p−2u in Ω,

−∆φ = u2 in Ω,

u = φ = 0 on ∂Ω,

(1.1)
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where Ω is a bounded smooth domain of R3, a > 0, b ≥ 0 are constants and λ is a positive
parameter.

When a = 1 and b = 0, problem (1.1) reduces to the classical Schrödinger–Poisson system
on bounded domain. We rewrite it in the following more general form

−∆u + λφu = f (x, u) in Ω,

−∆φ = u2 in Ω,

u = φ = 0 on ∂Ω.

(1.2)

It is well known that system (1.2) has a great importance in the study of stationary solu-
tion ψ(x, t) = e−itu(x) of time-dependent Schrödinger–Poisson equations, which describes
quantum (nonrelativistic) particles interacting with the electromagnetic field generated by
the motion. For more details about the physical background of system (1.2), we refer to
[3, 4, 31]. Compared with the researches about system (1.2) on the whole space R3, there are
few works concerning the Schrödinger–Poisson system on bounded domain, see for instance
[2, 8, 12, 33, 37]. In [33], the authors considered the existence, nonexistence and multiplicity
results by using variational methods when f (x, u) = |u|p−1u with p ∈ (1, 5). Siciliano [37]
studied the same nonlinearity as in [33], and, by means of Lusternik–Schnirelmann theory,
proved that system (1.2) has at least catΩ(Ω) + 1 solutions for p near the critical Sobolev ex-
ponent 6, where cat(·) denotes the Lusternik–Schnirelmann category. Alves and Souto [2]
studied system (1.2) when f has a subcritical growth and obtained the existence of least en-
ergy sign-changing solution by means of variational methods. Using a new sign-changing
version of the symmetric mountain pass theorem, Batkam [12] proved the existence of in-
finitely many sign changing solutions for system (1.2) with critical growth. Bai and He [8]
considered system (1.2) with a general 4-superlinear nonlinearity f and proved the existence
of ground state solution by the aid of the Nehari manifold; moreover, they also obtained the
existence of infinitely many solutions.

On the other hand, if setting φ = 0 and considering the first equation of problem (1.1), we
get the Kirchhoff–Dirichlet problem

−
(

a + b
∫

Ω
|∇u|2dx

)
∆u = f (x, u) in Ω

u = 0 on ∂Ω.
(1.3)

When b 6= 0, problem (1.3) is nonlocal due to the emergence of b
∫

Ω |∇u|2dx∆u and is related
to the stationary analogue of the following problemutt −

(
a + b

∫
Ω
|∇u|2dx

)
∆u = f (x, u) in Ω

u = 0 on ∂Ω,

which was introduced by Kirchhoff [22] as a generalization of the classical d’Alembert wave
equation

ρ
∂2u
∂t2 −

(
P0

h
+

E
2L

∫ L

0

∣∣∣∣∂u
∂x

∣∣∣∣2 dx

)
∂2u
∂x2 = 0

for free vibration of elastic string, where L is the length of the string, h is the area of cross-
section, E is the Young modulus of the material and P0 is the initial tension. The Kirchhoff’s
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model takes into account the length variation of the string produced by the transverse vibra-
tion, which gives rise to the appearance of nonlocal term. For more mathematical and physical
relevance on problem (1.3), we refer the reader to [6, 16] and the references therein. Recently,
different methods and techniques are used to deal with the existence of sign-changing so-
lutions to problem (1.3) or similar Kirchhoff-type equations, and indeed, some interesting
results were obtained. For example, the method of invariant sets of descent flow was used in
[21, 30, 44] to obtain the existence of a sign-changing solution for problem (1.3). The authors
in [20, 36, 40] considered problem (1.3) or more general Kirchhoff-type equations respectively,
combining constraint variational methods and quantitative deformation lemma. Later, under
some more weak assumptions on f (especially, Nehari-type monotonicity condition has been
removed), with the aid of some new analytical skills and non-Nehari manifold method, Tang
and Cheng [39] improved and generalized some results obtained in [36].

Now we turn our attention to problem (1.1). As far as we know, for the first time Batkam
and Santos Júnior [13] introduced this type problem with bi-nonlocal terms and proved that
problem (1.1) with λ = 1 has at least three solutions: one positive, one negative, and one
changing its sign by imposing the conditions on the nonlinear term f (more general form
than Q(x)|u|p−2u) as follows

( f1) f ∈ C(Ω×R, R) and there exists a constant c > 0 such that

| f (x, t)| ≤ c(1 + |t|p−1), where 4 < p < 6;

( f2) f (x, t) = o(|t|) uniformly in x ∈ Ω as t→ 0;

( f3) there exists µ > 4 such that 0 < µF(x, t) ≤ t f (x, t) for all t 6= 0, x ∈ Ω, where F(x, t) =∫ t
0 f (x, s)ds.

Furthermore, in such case, if f is odd with respect to t, the authors obtained an unbounded
sequence of sign-changing solutions. After this pioneer work, several interesting results have
been obtained about the existence of positive solutions, multiple solutions, ground state solu-
tions and sign-changing solutions, we refer the reader to [5,14,25,27,28,34,35,41,43,45,46,48]
and their references. Here, we must point out that, to obtain their results in the above ref-
erences, various 4-superlinear growth conditions or asymptotical 4-linear assumptions or the
Nehari-type monotonicity condition on f are needed, especially for the discussion of sign-
changing solutions. So, a natural question is that, for the case that f (x, u) is 4-sublinear, here
special form f (x, u) = Q(x)|u|p−2u being considered, does problem (1.1) admit the existence
of sign-changing solutions? Meanwhile, due to the oddness of Q(x)|u|p−2u on u, does there
exist infinitely many sign-changing solutions as usual?

Motivated by the above discussion, the purpose of this paper is to deal with the existence
and multiplicity of sign-changing solutions to problem (1.1) for the case that 2 < p < 4. For
this case, to our best knowledge, during the existing literatures there is no result concerned
with sign-changing solutions for problem (1.1). To state our main results, Q(x) is supposed to
be satisfied the following condition

(Q) Q(x) > 0 and Q ∈ L∞(Ω).

Now we are in the position to state our first result.

Theorem 1.1. If 2 < p < 4 and (Q) holds true, there exists λ∗ > 0 such that for all 0 < λ ≤ λ∗,
problem (1.1) admits one sign-changing solution. Moreover, problem (1.1) has infinitely many sign-
changing solutions.
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In what follows, we list some difficulties during the process of dealing with sign-changing
solutions of nonlocal elliptic problems as usual. Problem (1.1) is a bi-nonlocal problem as
the appearance of the two terms b

∫
Ω |∇u|2dx∆u and φuu implies that problem (1.1) is not a

pointwise identity, where φu is defined in Lemma 2.1. This causes some mathematical diffi-
culties in finding sign-changing solutions. In fact, since the nonlocal terms b

4

(∫
Ω |∇u|2dx

)2

and 1
4

∫
Ω φuu2dx in the associated variational functional are homogeneous of order 4, it seems

difficult to get the boundedness and compactness for any (PS) sequence or Cerami sequence.
Inspired by [21], we overcome this difficulty by adding a reasonable potential Q(x). On the
other hand, we observe that∫

Ω
|∇u|2dx =

∫
Ω
|∇u+|2dx +

∫
Ω
|∇u−|2dx,

but the following decomposition relationship∫
Ω

φuu2dx =
∫

Ω
φu+u+2dx +

∫
Ω

φu−u−2dx

does not hold in H1
0(Ω). In order to overcome these difficulties, we adopt the idea from [21,

24,26] to introduce an auxiliary operator A, which will be used to construct a pseudo-gradient
vector field to ensure existence of the desired invariant sets of the flow. However, since A is
merely continuous (see Lemma 3.1 below), it may not be used to define the descending flow.
Fortunately, one can construct a suitable locally Lipschitz continuous operator B inheriting the
properties of A in a similar way as [11] to define the flow. Finally, by restricting the parameter
λ small enough during the minimax arguments in the presence of invariant sets, we complete
the proof of Theorem 1.1.

Remark 1.2. As we discussed above, the necessary restriction must be added to the parameter
λ to obtain the existence and multiplicity of sign-changing solutions. Indeed, similar require-
ments have emerged in the literatures to discuss the nonexistence of nontrivial solutions or the
existence of positive solutions of Schrödinger–Poisson systems. Explicitly, we observe that, in
[31], system {

−∆u + V(x)u + λφu = |u|p−2u in R3,

−∆φ = u2 in R3,
(1.4)

admits only one trivial solution with p ∈ (2, 3) if λ ≥ 1
4 . Moreover, the authors in [4] consid-

ered the bounded states of system (1.4), and showed that for any n ∈N there exists λn ∈ (0, 1
4 )

such that for all λ ∈ (0, λn) system (1.4) with p ∈ (2, 3) has at least n pairs of radially sym-
metric solutions with positive energies.

However, it will be noted that, different from the whole space R3 discussed in [4, 31], we
can also obtain the existence and multiplicity of sign-changing solutions for our problem (1.1)
considered on bounded domain without any restriction on the parameter λ. To discuss this
case simply, we set λ = 1. Nevertheless, the range of p will be limited to a small range as
follows.

Theorem 1.3. If 2 < p < 12
5 and (Q) is satisfied, then for λ = 1, the results of Theorem 1.1 still hold

true.

Remark 1.4. Here, two recent papers [21, 38] must be mentioned. In fact, as particular cases,
the existence of sign-changing solutions for problems (1.2) and (1.3) are considered, when
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the nonlinearity is the form of Q(x)|u|p−2u or general form covering the pure power type
Q(x)|u|p−2u with 2 < p < 4 for the case Ω = R3. Certainly, different hypotheses on Q(x) are
presented to obtain their conclusions. To this point, it should be pointed out that Q(x) can be
equal to constants in our Theorems 1.1 and 1.3, which is different from the assumptions on
Q(x) in [21, 38]. In addition, compared with the situations investigated in [21, 38], it is worth
pointing out that the technique of constructing nonempty nodal set used in [38] is invalid
for our problem. To finish the proof of our Theorems 1.1 and 1.3, as in [21] we apply the
method of invariant sets of descending flow. In fact, we make use of an abstract critical point
theory developed in [24] that is very useful to deal with elliptic equations, see for instance
[9–11, 21, 26] and the references therein. Meanwhile, it is must be mentioned that, although
similar conditions on Q(x) have been given, we could not make the estimation for the energy
functional as in [21], and some new difficulties need to be addressed due to the combination
of two nonlocal terms b

∫
Ω |∇u|2dx∆u and φuu, which is also the reason that we restrict the

parameter λ small enough in Theorem 1.1. The difference between the proof of Theorem 1.1
and Theorem 1.3 is just that the functions satisfying particular properties in Properties 3.7 and
3.11 are needed to make necessary changes.

Remark 1.5. Note that, our Theorem 1.3 is valid for the case that b = 0, this observa-
tion and Remark 1.2 indicate that Schrödinger–Poisson system has differently dynamical
behavior on bounded domain Ω and the whole space R3. Meanwhile, the results of sign-
changing solutions in [38] are also based on the fundamental assumption that λ is sufficiently
small. Compared this fact with our Theorem 1.3, it is natural to ask whether one can show
that Schrödinger–Poisson system defined on the whole space R3 possesses nontrivial sign-
changing solutions such as the case dealt with in [38] without any parameter. In addition,
Theorem 1.3 is actually an extension of Theorem 1.1 in the sense that there is not any restric-
tion on the parameter λ in Theorem 1.3. Here, we point out that, using the invariant sets of
descending flow, 2 < p < 12

5 is the optimal range (in fact, it is the optimal range to guaran-
tee that (4.2) holds). For 12

5 ≤ p < 4, it remains an open question about the existence and
multiplicity of sign-changing solutions when λ = 1 in problem (1.1).

This paper is organized as follows. In Section 2, we present some useful preliminary
results. Theorems 1.1 and 1.3 are proved in Sections 3 and 4, respectively.

2 Preliminaries

In this section, we first introduce the variational framework associated with problem (1.1).
Before that, we define E to be the usual Sobolev space H1

0(Ω) with the inner product

(u, v) =
∫

Ω
∇u · ∇vdx

and endowed with the norm ‖u‖ = (u, u)
1
2 for u, v ∈ E. From [42, Theorem 1.9], the embed-

ding E ↪→ Lq(Ω) is compact for any 1 ≤ q < 6. The usual norm in the Lebesgue space Lq(Ω)

is denoted by ‖u‖q and C is the positive constant whose precise value can change from line to
line. The following result is well known and is a collection of results in [17] and [31].

Lemma 2.1. For each u ∈ H1
0(Ω), there exists a unique element φu ∈ H1

0(Ω) such that −∆φu = u2.
Moreover,

φu =
∫

Ω

u2(y)
4π|x− y|dy
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has following properties:

(1) φu ≥ 0 and φtu = t2φu, ∀t > 0;

(2) there exists C > 0 independent of u such that ‖φu‖ ≤ C‖u‖2 and∫
Ω

φuu2dx ≤ C‖u‖4;

(3) if un ⇀ u in H1
0(Ω), then φun ⇀ φu in H1

0(Ω) and

lim
n→∞

∫
Ω

φun u2
ndx =

∫
Ω

φuu2dx.

In view of Lemma 2.1, we can substitute φ = φu into problem (1.1) and rewrite it as a
single equation

−
(

a + b
∫

Ω
|∇u|2dx

)
∆u + λφuu = Q(x)|u|p−2u, u ∈ E. (2.1)

For the equivalent problem (2.1), the corresponding functional I : E 7→ R

I(u) =
a
2

∫
Ω
|∇u|2dx +

b
4

(∫
Ω
|∇u|2dx

)2

+
λ

4

∫
Ω

φuu2dx− 1
p

∫
Ω

Q(x)|u|pdx

is well defined. In addition, standard discussion shows that I ∈ C1(E, R) and

〈I′(u), ϕ〉 =
(

a + b
∫

Ω
|∇u|2dx

) ∫
Ω
∇u · ∇ϕdx + λ

∫
Ω

φuuϕdx−
∫

Ω
Q(x)|u|p−2uϕdx (2.2)

for any u, ϕ ∈ E. Clearly, critical points of I are weak solutions of problem (2.1).
To estimate the second nonlocal term in (2.2) conveniently, we define

D(g, h) =
∫

Ω

∫
Ω

g(x)h(y)
4π|x− y|dxdy.

Obviously, for each u ∈ H1
0(Ω), D(u2, u2) =

∫
Ω φuu2. Moreover, the following properties can

be reached. For the proof, we refer to [32] and [23, p. 250].

Lemma 2.2.

(1) D(g, h)2 ≤ D(g, g)D(h, h) for any g, h ∈ L
6
5 (Ω);

(2) D(uv, uv)2 ≤ D(u2, u2)D(v2, v2) for any u, v ∈ L
12
5 (Ω).

Next we prove a compactness condition for the functional I which will be used later.

Lemma 2.3. Assume that (Q) holds, then the functional I satisfies the Cerami condition.

Proof. Let {un}⊂E be a Cerami sequence of I, that is, |I(un)| ≤ C and (1+ ‖un‖)‖I′(un)‖E−1→
0 in the dual space E−1. Firstly, we show that {un} is bounded in E. In fact, for µ > 4, we
have

C + on(1) ≥ I(un)−
1
µ
〈I′(un), un〉

=

(
1
2
− 1

µ

)
a
∫

Ω
|∇un|2dx +

(
1
4
− 1

µ

)
b
(∫

Ω
|∇un|2dx

)2

+

(
1
4
− 1

µ

)
λ
∫

Ω
φun u2

ndx +

(
1
µ
− 1

p

) ∫
Ω

Q(x)|un|pdx.
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Due to the fact that L∞(Ω) ⊂ L
6

6−p (Ω), by means of Hölder’s inequality and the Sobolev
embedding theorem, we obtain that

(
1
µ
− 1

p

) ∫
Ω

Q(x)|un|pdx ≥
(

1
µ
− 1

p

)
‖Q‖ 6

6−p
‖un‖p

6 ≥
(

1
µ
− 1

p

)
C
(∫

Ω
|∇un|2dx

) p
2

, (2.3)

which yields that

(
1
2
− 1

µ

)
a
∫

Ω
|∇un|2dx +

(
1
4
− 1

µ

)
b
(∫

Ω
|∇un|2dx

)2

+

(
1
4
− 1

µ

)
λ
∫

Ω
φun u2

ndx

+

(
1
µ
− 1

p

)
C
(∫

Ω
|∇un|2dx

) p
2

≤ C + 1.

Since 2 < p < 4 < µ, the above inequality indicates that {un} is bounded in E. Then, there
exists a subsequence of {un} (still denoted by {un}) such that

un ⇀ u in E; un → u in Lq(Ω), 1 ≤ q < 6; un → u a.e. in Ω. (2.4)

Since un → u in L
12
5 (Ω) (q = 12

5 in (2.4)), using Hölder’s inequality, we have∣∣∣∫
Ω
(φun un − φuu) (un − u) dx

∣∣∣
≤ ‖φun‖6‖un − u‖2

12
5
+ ‖φun − φu‖6‖u‖ 12

5
‖un − u‖ 12

5

= on(1).

From (Q) and (2.4), using Hölder’s inequality again gives that∣∣∣∫
Ω

Q(x)(|un|p−2un − |u|p−2u)(un − u)dx
∣∣∣

≤ C(‖un‖p−1
p ‖un − u‖p + ‖u‖p−1

p ‖un − u‖p)

= on(1).

Hence, the above two facts and the weak convergence of un ⇀ u in E bring that

on(1) = 〈I′(un)− I′(u), un − u〉

=

(
a + b

∫
Ω
|∇un|2dx

) ∫
Ω
|∇(un − u)|2dx

+ b
(∫

Ω
|∇un|2dx−

∫
Ω
|∇u|2dx

) ∫
Ω
∇u · ∇(un − u)dx

+ λ
∫

Ω
(φun un − φuu) (un − u) dx

−
∫

Ω
Q(x)(|un|p−2un − |u|p−2u)(un − u)dx

≥ a‖un − u‖2 + on(1),

which implies that un → u in E.
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3 Proof of Theorem 1.1

In this section, we use the method of invariant sets of descending flow to study the existence
of sign-changing solutions for problem (1.1). To do this, we introduce an auxiliary operator
A : E → E. Explicitly, for any u ∈ E, we define v = Au to be the unique solution for the
equation

−
(

a + b
∫

Ω
|∇u|2dx

)
∆v + λφuv = Q(x)|u|p−2u, v ∈ E. (3.1)

Clearly, u is a fixed point of A if and only if u is a solution of (2.1).

Lemma 3.1. The operator A is well defined, maps bounded sets to bounded sets and is continuous.

Proof. For any u ∈ E, define

J(v) =
1
2

(
a + b

∫
Ω
|∇u|2dx

) ∫
Ω
|∇v|2dx +

λ

2

∫
Ω

φuv2dx−
∫

Ω
Q(x)|u|p−2uvdx. (3.2)

Then, J ∈ C1(E, R) and

〈J′(v), ω〉 =
(

a + b
∫

Ω
|∇u|2dx

) ∫
Ω
∇v · ∇ωdx + λ

∫
Ω

φuvωdx−
∫

Ω
Q(x)|u|p−2uωdx (3.3)

for any ω ∈ E. From (Q) and the Sobolev embedding theorem, it is easy to verify that
J is coercive, bounded below and weakly lower semicontinuous. Thus, J admits a unique
minimizer v = Au ∈ E, which is the unique solution to (3.1), that is to say, A is well defined.

Taking v = ω = Au in (3.3) leads to(
a + b

∫
Ω
|∇u|2dx

) ∫
Ω
|∇Au|2dx + λ

∫
Ω

φu(Au)2dx =
∫

Ω
Q(x)Au|u|p−2udx,

which implies, using (Q) and the Sobolev embedding theorem, that

a‖Au‖ ≤ C‖u‖p−1.

Therefore, Au is bounded whenever u is bounded.
In the following, we prove that A is continuous. Assuming {un} ⊂ E with un → u in

E and taking v = Au, vn = Aun, we need to prove that ‖vn − v‖ → 0 in E. Based on the
observation that 〈J′(vn)− J′(v), vn − v〉 = 0, that is,(

a + b
∫

Ω
|∇un|2dx

) ∫
Ω
|∇(vn − v)|2dx

= b
(∫

Ω
|∇u|2dx−

∫
Ω
|∇un|2dx

) ∫
Ω
∇v · ∇(vn − v)dx

+ λ
∫

Ω
(φun vn − φuv) (v− vn) dx

+
∫

Ω
Q(x)(|un|p−2un − |u|p−2u)(vn − v)dx,

(3.4)

and un → u in E, it is sufficient to estimate the second and third terms in the right side of
(3.4). Indeed, using Hölder’s inequality, one has∫

Ω
(φun vn − φuv) (v− vn) dx ≤

∫
Ω
(φun v− φuv) (v− vn) dx

≤ ‖φun − φu‖3‖v‖3‖v− vn‖3

≤ C‖φun − φu‖3‖v‖‖v− vn‖,

(3.5)
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where ‖φun − φu‖3 → 0 due to Lemma 2.1. In addition, according to (Q) and Theorem A.2 in
[42], we have

Q(x)(|un|p−2un − |u|p−2u)→ 0 in L
p

p−1 (Ω),

which, combining with Hölder’s inequality, states that∣∣∣∫
Ω

Q(x)(|un|p−2un − |u|p−2u)(vn − v)dx
∣∣∣ ≤ C‖Q(x)(|un|p−2un − |u|p−2u)‖ p

p−1
‖vn − v‖. (3.6)

Thus, (3.4), (3.5) and (3.6) imply that

a‖vn − v‖2 ≤ b
∣∣∣∣∫Ω
|∇u|2dx−

∫
Ω
|∇un|2dx

∣∣∣∣ ‖v‖‖vn − v‖

+ Cλ‖φun − φu‖3‖v‖‖v− vn‖
+ C‖Q(x)(|un|p−2un − |u|p−2u)‖ p

p−1
‖vn − v‖

= on(1)‖vn − v‖,

which means that A is continuous.

Lemma 3.2.

(1) 〈I′(u), u− Au〉 ≥ a‖u− Au‖2 for any u ∈ E;

(2) ‖I′(u)‖E−1 ≤ [a + (Cλ + b)‖u‖2]‖u− Au‖ for some C > 0 and all u ∈ E.

Proof. Since Au is the solution of (3.1), we see that

〈I′(u), u− Au〉 =
(

a + b
∫

Ω
|∇u|2dx

) ∫
Ω
∇u · ∇(u− Au)dx

+ λ
∫

Ω
φuu(u− Au)dx−

∫
Ω

Q(x)|u|p−2u(u− Au)dx

=

(
a + b

∫
Ω
|∇u|2dx

) ∫
Ω
|∇(u− Au)|2dx + λ

∫
Ω

φu(u− Au)2dx,

which implies that 〈I′(u), u− Au〉 ≥ a‖u− Au‖2 for any u ∈ E.
By Hölder’s inequality, Lemmas 2.1 and 2.2, for any ϕ ∈ E, we have

〈I′(u), ϕ〉 =
(

a + b
∫

Ω
|∇u|2dx

) ∫
Ω
∇(u− Au) · ∇ϕdx + λ

∫
Ω

φu(u− Au)ϕdx

= (a + b‖u‖2)(u− Au, ϕ) + λD(u2, (u− Au)ϕ)

≤ (a + b‖u‖2)‖u− Au‖‖ϕ‖+ Cλ‖u‖2‖u− Au‖‖ϕ‖
≤ [a + (Cλ + b)‖u‖2]‖u− Au‖‖ϕ‖.

Thus, ‖I′(u)‖E−1 ≤ [a + (Cλ + b)‖u‖2]‖u− Au‖ for any u ∈ E.

Lemma 3.3. Let δ1 < δ2 and α > 0, there exists β > 0 such that ‖u − Au‖ ≥ β if u ∈ E,
I(u) ∈ [δ1, δ2] and ‖I′(u)‖E−1 ≥ α.
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Proof. Let µ > 4, for u ∈ E, using 〈J′(Au), u〉 = 0, we have

I(u)− 1
µ

(
a + b

∫
Ω
|∇u|2dx

) ∫
Ω
∇u · ∇(u− Au)dx− λ

µ

∫
Ω

φuu(u− Au)dx

=

(
1
2
− 1

µ

)
a
∫

Ω
|∇u|2dx +

(
1
4
− 1

µ

)
b
(∫

Ω
|∇u|2dx

)2

+

(
1
4
− 1

µ

)
λ
∫

Ω
φuu2dx +

(
1
µ
− 1

p

) ∫
Ω

Q(x)|u|pdx.

Using (2.3), Hölder’s inequality, Lemmas 2.1 and 2.2, we obtain(
1
2
− 1

µ

)
a‖u‖2 +

(
1
4
− 1

µ

)
b‖u‖4 +

(
1
4
− 1

µ

)
λ
∫

Ω
φuu2dx +

(
1
µ
− 1

p

)
C‖u‖p

≤ |I(u)|+ 1
µ

(
a + b

∫
Ω
|∇u|2dx

) ∣∣∣∣∫Ω
∇u · ∇(u− Au)dx

∣∣∣∣+ ∣∣∣∣λµ
∫

Ω
φuu(u− Au)dx

∣∣∣∣
≤ |I(u)|+ 1

µ

(
a + b‖u‖2) ‖u‖‖u− Au‖+ λ

µ

(∫
Ω

φu(u− Au)2dx
) 1

2
(∫

Ω
φuu2dx

) 1
2

≤ |I(u)|+ 1
µ

(
a + b‖u‖2) ‖u‖‖u− Au‖+ C‖u‖‖u− Au‖

(∫
Ω

φuu2dx
) 1

2

≤ |I(u)|+ 1
µ

(
a + b‖u‖2) ‖u‖‖u− Au‖+ C

2

(
‖u‖2 +

∫
Ω

φuu2dx
)
‖u− Au‖.

If there exists {un} ⊂ E with I(un) ∈ [δ1, δ2] and ‖I′(un)‖E−1 ≥ α such that ‖un − Aun‖ → 0
as n→ ∞, since 2 < p < 4, from the above inequality, we deduce that {un} is bounded. Then,
from Lemma 3.2-(2), we see that ‖I′(un)‖E−1 → 0 as n → ∞, which is a contradiction. Thus,
the proof is completed.

In the sequel, we introduce the positive and negative cones in E defined as follows

P+ := {u ∈ E : u ≥ 0} and P− := {u ∈ E : u ≤ 0}.

For given ε > 0, two open convex subsets of E are chosen in the following forms

P+
ε := {u ∈ E : dist(u, P+) < ε} and P−ε := {u ∈ E : dist(u, P−) < ε},

where dist(u, P±) = infν∈P± ‖u − ν‖. Obviously, P−ε = −P+
ε . Let W = P+

ε ∪ P−ε , then W is
an open and symmetric subset of E, and E \W contains only sign-changing functions. To
find solutions for problem (1.1) in E \W, we establish the following result which provides
invariance properties for the convex sets P±ε .

Lemma 3.4. There exists ε0 > 0 such that for all 0 < ε ≤ ε0, there hold

A(∂P+
ε ) ⊂ P+

ε and A(∂P−ε ) ⊂ P−ε .

Proof. Let u ∈ E and v = Au satisfying (3.1). Notice that for any 2 ≤ q ≤ 6, there exists Cq > 0
such that

‖u+‖q = inf
ν∈P−
‖u− ν‖q ≤ Cq inf

ν∈P−
‖u− ν‖ = Cqdist(u, P−). (3.7)
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Then, due to the fact that dist(v, P−) ≤ ‖v+‖, we have

a dist(v, P−)‖v+‖ ≤ a‖v+‖2

≤
(

a + b
∫

Ω
|∇u|2dx

) ∫
Ω
|∇v+|2dx + λ

∫
Ω

φuvv+dx

=
∫

Ω
Q(x)|u|p−2uv+dx ≤

∫
Ω

Q(x)|u+|p−2u+v+dx

=
∫

Ω
Q(x)|u+|p−1v+dx ≤ ‖Q‖ 6

6−p
‖u+‖p−1

6 ‖v+‖6

≤ C(dist(u, P−))p−1‖v+‖,

which means that

dist(v, P−) ≤ C
a
(dist(u, P−))p−1.

Therefore, for ε0 ∈
(

0,
( a

2C

) 1
p−2
)

with 0 < ε ≤ ε0, it holds that

dist(v, P−) ≤ 1
2

ε < ε for any u ∈ P−ε .

That is to say, A(∂P−ε ) ⊂ P−ε . In a similar way, one also has A(∂P+
ε ) ⊂ P+

ε .

Let K = {u ∈ E : I′(u) = 0}. Since A is merely continuous, it may by itself not be the
right operator to construct a descending flow for the functional I, and we need an improved
operator B : E\K → E which is locally Lipschitz continuous and inherits the main properties
of A.

Lemma 3.5. For 0 < ε ≤ ε0, there exists a locally Lipschitz continuous odd operator B : E \ K → E
such that

(1) 1
2‖u− Au‖ ≤ ‖u− Bu‖ ≤ 2‖u− Au‖;

(2) 〈I′(u), u− Bu〉 ≥ 1
2 a‖u− Au‖2;

(3) B(∂P+
ε ) ⊂ P+

ε , B(∂P−ε ) ⊂ P−ε .

Proof. The proof is similar to that of [9, Lemma 4.1] and [11, Lemma 2.1], so we omit the
details.

By means of the invariant set of descending flow, we are intended to establish the existence
of sign-changing solutions for problem (1.1). Here, we use the known abstract critical theorem
given by [24, Theorem 2.4], and include its statement for the sake of completeness in the form
of a proposition.

Let X be a complete metric space with the metric d, h ∈ C1(X, R), P1, P2 ⊂ X be open
subsets, M = P1 ∩ P2, Σ = ∂P1 ∩ ∂P2 and W = P1 ∪ P2. For c ∈ R, hc = {x ∈ X : h(x) ≤ c} and
Kc = {x ∈ X : h(x) = c, h′(x) = 0}.

Definition 3.6 ([24]). {P1, P2} is called an admissible family of invariant sets with respect to h
at level c, provided that the following deformation property holds: if Kc \W = ∅ there exists
ε0 > 0 such that for 0 < ε < ε0, there exists a continuous map η : X → X satisfying

(1) η(Pi) ⊂ Pi, i = 1, 2;
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(2) η|hc−2ε = Id;

(3) η(hc+ε \W) ⊂ hc−ε.

Proposition 3.7 ([24]). Assume {P1, P2} is an admissible family of invariant sets with respect to h at
level c for c ≥ c∗ := infu∈Σ h(u) and there exists a map ψ0 : 4 → X satisfying

(1) ψ0(∂i4) ⊂ Pi, i = 1, 2;

(2) ψ0(∂04) ∩M = ∅;

(3) c0 = supu∈ψ0(∂04) h(u) < c∗,

where 4 = {(t1, t2) ∈ R2 : t1, t2 ≥ 0, t1 + t2 ≤ 1}, ∂04 = 4 ∩ {t1 + t2 = 1} and ∂i4 =

4∩ {ti = 0}, i = 1, 2. Define
c = inf

ψ∈Γ
sup

u∈ψ(4)\W
h(u),

where Γ := {ψ ∈ C(4, X) : ψ(∂i4) ⊂ Pi, i = 1, 2, ψ|∂04 = ψ0}. Then c is a critical value of h and
Kc \W 6= ∅.

Now we use Proposition 3.7 to obtain the existence of one sign-changing solution for
problem (1.1). Here, we choose X = E, h = I, P1 = P+

ε and P2 = P−ε , then, M = P+
ε ∩ P−ε , Σ =

∂P+
ε ∩ ∂P−ε and W = P+

ε ∪ P−ε . The following lemma implies that {P+
ε , P−ε } is an admissible

family of invariant sets for the functional I at any level c ∈ R.

Lemma 3.8. Assume (Q) holds. If Kc \W = ∅, then there exists ε0 > 0 such that for 0 < ε < ε′ < ε0,
there exists a continuous map σ : [0, 1]× E→ E satisfying

(1) σ(0, u) = u for all u ∈ E;

(2) σ(t, u) = u for t ∈ [0, 1], u /∈ I−1([c− ε′, c + ε′]);

(3) σ(1, Ic+ε \W) ⊂ Ic−ε;

(4) σ(t, P+
ε ) ⊂ P+

ε , σ(t, P−ε ) ⊂ P−ε , t ∈ [0, 1].

Proof. The proof is similar to that of many existing literatures (see [21,26]). We include its proof
for the sake of completeness. If Kc \W = ∅, then Kc ⊂W. Thus, 2δ := dist(Kc, ∂W) > 0 on ac-
count of Kc is compact by Lemma 2.3. For this δ, we have Nδ(Kc) := {u ∈ E : dist(u, Kc) < δ} ⊂
W. Since I satisfies the Cerami condition, there exist ε0, α > 0 such that

‖I′(u)‖E−1 ≥ α for u ∈ I−1([c− ε0, c + ε0]) \ N δ
2
(Kc).

By Lemmas 3.3 and 3.5-(1), there exists β > 0 such that

‖u− Bu‖ ≥ β

2
for u ∈ I−1([c− ε0, c + ε0]) \ N δ

2
(Kc).

Furthermore, owing to Lemma 3.5-(2), we obtain〈
I′(u),

u− Bu
‖u− Bu‖

〉
≥ 1

8
a‖u− Bu‖ ≥ θ :=

aβ

16
. (3.8)
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Decreasing ε0 if necessary, we assume ε0 ≤ θδ
4 . Take two even Lipschitz continuous functions

p, q : E→ [0, 1] such that

p(u) =

0, u ∈ N δ
4
(Kc),

1, u /∈ N δ
2
(Kc),

and q(u) =

{
0, u /∈ I−1([c− ε′, c + ε′]),

1, u ∈ I−1([c− ε, c + ε]),

and consider the following initial value problem{
dτ(t,u)

dt = −Φ(τ(t, u)),

τ(0, u) = u,
(3.9)

where Φ(u) = p(u)q(u) u−Bu
‖u−Bu‖ . Obviously, Φ(u) is locally Lipschitz continuous, so the ex-

istence and uniqueness theory of ODE in Banach space implies that (3.9) admits a unique
solution τ(·, u) ∈ C(R, E). Define σ on [0, 1]× E by σ(t, u) := τ( 2ε

θ t, u), it is sufficient to check
(3), because (1)–(2) are obvious, and (4) is a consequence of Lemma 3.5-(3).

To do this, choose u ∈ Ic+ε \W. By (3.9), it easy to see dI(τ(t,u))
dt ≤ 0, namely, I(τ(t, u)) is

nonincreasing for t ≥ 0. Then, if there exists t0 ∈ [0, 2ε
θ ] such that I(τ(t0, u)) < c− ε, we have

I(σ(1, u)) = I
(

τ

(
2ε

θ
, u
))

< c− ε.

Otherwise, for any t ∈ [0, 2ε
θ ], I(τ(t, u)) ≥ c− ε, then τ(t, u) ∈ I−1([c− ε, c + ε]). We claim that

for any t ∈ [0, 2ε
θ ], τ(t, u) /∈ N δ

2
(Kc). If not, there exists t0 ∈ [0, 2ε

θ ] such that τ(t0, u) ∈ N δ
2
(Kc),

then, since Nδ(Kc) ⊂W, we obtain

δ

2
≤ ‖τ(t0, u)− u‖ ≤

∫ t0

0
‖τ′(s, u)‖ds ≤ t0 <

2ε0

θ
≤ δ

2
,

which is a contradiction. Therefore, p(τ(t, u))q(τ(t, u)) ≡ 1 for t ∈ [0, 2ε
θ ]. Hence, by (3.8) and

(3.9),

I(σ(1, u)) = I
(

τ

(
2ε

θ
, u
))

= I(u)−
∫ 2ε

θ

0
〈I′(τ(s, u)), Φ(τ(s, u))〉ds

≤ c + ε− 2ε

θ
θ

= c− ε.

Thus, the proof is completed.

Lemma 3.9. If ε > 0 small enough, then I(u) ≥ aε2 for any u ∈ Σ = ∂P+
ε ∩ ∂P−ε .

Proof. For any u ∈ Σ, it has ‖u±‖ = ‖u− u∓‖ ≥ dist(u, P∓) = ε. Then, using (Q) and (3.7),
we have

I(u) =
a
2

∫
Ω
|∇u|2dx +

b
4

(∫
Ω
|∇u|2dx

)2

+
λ

4

∫
Ω

φuu2dx− 1
p

∫
Ω

Q(x)|u|pdx

≥ a
2
‖u‖2 − C

p
‖u‖p

p ≥ 2aε2 − C
p

εp ≥ aε2

for ε > 0 small enough.
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Proof of Theorem 1.1 (Existence part). We construct a suitable map ψ0 satisfying the proper-
ties in Proposition 3.7. Choose v1 ∈ P−ε , v2 ∈ P+

ε such that supp(v1) ∩ supp(v2) = ∅ and
infsupp(v1)∪supp(v2) Q(x) > 0. For

ρ = (ρ1, ρ2) ∈ ∆ = {t ∈ R2 : t = (t1, t2), t1, t2 ≥ 0, t1 + t2 ≤ 1},

define
ψ0(ρ)(x) = R

(
ρ1v1(R−2x) + ρ2v2(R−2x)

)
,

where R is a positive constant to be determined later. It is obvious that, for any ρ = (0, ρ2) ∈
∂1∆ and ρ = (ρ1, 0) ∈ ∂2∆, we have

ψ0(ρ)(x) = R
(
ρ2v2(R−2x)

)
∈ P+

ε and ψ0(ρ)(x) = R
(
ρ1v1(R−2x)

)
∈ P−ε ,

respectively. Thus, ψ0(∂1∆) ⊂ P+
ε and ψ0(∂2∆) ⊂ P−ε .

From Lemma 3.9, we have c∗λ := infu∈Σ I(u) ≥ aε2. Next, we verify that

c0 = sup
u∈ψ0(∂0∆)

I(u) < c∗λ.

Set us = ψ0(s, 1− s) for s ∈ [0, 1], a direct computation shows that∫
Ω
|∇us|2dx = R4

∫
Ω
(s2|∇v1|2 + (1− s)2|∇v2|2)dx,∫

Ω
φus u

2
s dx = R14

∫
Ω

φûs û
2
s dx, where ûs = sv1 + (1− s)v2,∫

Ω
|us|pdx = Rp+6

∫
Ω
(sp|v1|p + (1− s)p|v2|p)dx.

Based on the equalities above, we have

I(us) =
a
2

∫
Ω
|∇us|2dx +

b
4

(∫
Ω
|∇us|2dx

)2

+
λ

4

∫
Ω

φus u
2
s dx

− 1
p

∫
supp(v1)∪supp(v2)

Q(x)|us|pdx

≤ a
2

∫
Ω
|∇us|2dx +

b
4

(∫
Ω
|∇us|2dx

)2

+
λ

4

∫
Ω

φus u
2
s dx

− min
supp(v1)∪supp(v2)

Q(x)
∫

Ω
|us|pdx

=
a
2

R4
∫

Ω
(s2|∇v1|2 + (1− s)2|∇v2|2)dx

+
b
4

R8
(∫

Ω
(s2|∇v1|2 + (1− s)2|∇v2|2)dx

)2

+
λ

4
R14

∫
Ω

φûs û
2
s dx− CRp+6

∫
Ω
(sp|v1|p + (1− s)p|v2|p)dx.

(3.10)

Then, taking 0 < λ ≤ λR = R−6 =: λ∗ in (3.10) (which means that λ is sufficiently small for R
large enough), we obtain

I(us) ≤
a
2

R4
∫

Ω
(s2|∇v1|2 + (1− s)2|∇v2|2)dx

+
b
4

R8
(∫

Ω
(s2|∇v1|2 + (1− s)2|∇v2|2)dx

)2

+
1
4

R8
∫

Ω
φûs û

2
s dx− CRp+6

∫
Ω
(sp|v1|p + (1− s)p|v2|p)dx.

(3.11)
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Since 2 < p < 4, by (3.11), it is evident that I(us) → −∞ as R → ∞ uniformly for s ∈ [0, 1].
Consequently, choosing R large enough and independent of s, we have

c0 = sup
u∈ψ0(∂0∆)

I(u) < c∗λ := inf
u∈Σ

I(u). (3.12)

Moreover, we observe that∫
Ω
|us|2dx = R4

∫
Ω
(s2|v1|2 + (1− s)2|v2|2)dx → ∞ as R→ ∞ (3.13)

uniformly with respect to s ∈ [0, 1], which, combining with (3.7), indicates that ψ0(∂0∆)∩M =

∅. Define
c = inf

ψ∈Γ
sup

u∈ψ(∆)\W
I(u),

where Γ := {ψ ∈ C(4, E) : ψ(∂14) ⊂ P+
ε , ψ(∂24) ⊂ P−ε , ψ|∂04 = ψ0}, and apply Proposition

3.7, there is a critical point u ∈ Kc \W which is a sign-changing solution of problem (1.1).

Next we turn to the existence of infinitely many sign-changing solutions for problem (1.1).
To do this, we make use of Theorem 2.5 in [24] recalled below. Explicitly, let X be a complete
metric space with the metric d and h ∈ C1(X, R), then we say G : X → X is an isometric
involution if G satisfies G2 = Id and d(Gx, Gy) = d(x, y) for x, y ∈ X. A subset O ⊂ X is
said to be symmetric if Gx ∈ O for any x ∈ O. The genus of a closed symmetric subset O of
X \ {0} is denoted by γ(O).

Definition 3.10 ([24]). Assume G is an isometric involution of X and h is a G-invariant con-
tinuous functional on X that is h(Gx) = h(x) for any x ∈ X. We say P is a G-admissible
invariant set with respect to h at level c if the following deformation property holds: there
exist a symmetric open neighbourhood N of Kc \ (P ∪Q) with γ(N) < ∞ and ε0 such that for
0 < ε < ε0 there exists a continuous map η : X → X satisfying

(1) η(P) ⊂ P, η(Q) ⊂ Q, here Q = GP;

(2) η ◦ G = G ◦ η;

(3) η|hc−2ε = Id;

(4) η(hc+ε \ (N ∪ (P ∪Q))) ⊂ hc−ε.

Proposition 3.11 ([24]). Assume that P is a G-admissible invariant set with respect to h at level c for
c ≥ c∗ := infu∈∂P∩∂Q h(u) and for any n ∈N there exists a continuous map ψn : Bn → X satisfying

(1) ψn(0) ∈ P ∩Q;

(2) ψn(∂Bn) ∩ (P ∩Q) = ∅;

(3) supu∈FixG ∪ψn(∂Bn)
h(u) < c∗,

where Bn := {x ∈ Rn : |x| ≤ 1} and FixG := {u ∈ X : Gu = u}. Define

cj = inf
B∈Γj

sup
u∈B\(P∪Q)

h(u),

where Γj := {B : B = ψ(Bn \ Y), ψ ∈ Gn, n ≥ j, and open subset Y = −Y ⊂ Bn, γ(Y) ≤ n− j}
and Gn := {ψ : ψ ∈ C(Bn, X), ψ(−t) = Gψ(t), t ∈ Bn, ψ(0) ∈ P ∩ Q and ψ|∂Bn = ψn}. Then
cj, j ≥ 2, are critical values of h with cj → ∞ and Kcj \ (P ∪Q) 6= ∅.
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To apply Proposition 3.11, we set X = E, h = I, G = −Id, P = P+
ε . In addition, thanks

to the nonlinearity in problem (1.1) is odd, as a sequence, G is an isometric involution on
E, Q = −P+

ε = P−ε , and the functional I is G-invariant continuous functional. Since Kc is
compact, there exists a symmetric open neighborhood N of Kc \ (P+

ε ∪ P−ε ) with γ(N) < ∞.

Lemma 3.12. Assume (Q) holds true, then there exists ε0 > 0 such that for 0 < ε < ε′ < ε0, there
exists a continuous map σ : [0, 1]× E→ E satisfying

(1) σ(0, u) = u for u ∈ E;

(2) σ(t, u) = u for t ∈ [0, 1], u /∈ I−1([c− ε′, c + ε′]);

(3) σ(t,−u) = −σ(t, u) for (t, u) ∈ [0, 1]× E;

(4) σ(1, Ic+ε \ (N ∪ (P+
ε ∪ P−ε ))) ⊂ Ic−ε;

(5) σ(t, P+
ε ) ⊂ P+

ε , σ(t, P−ε ) ⊂ P−ε , t ∈ [0, 1].

Proof. The proof is similar to Lemma 3.8. Since I is even, thus σ is odd in u. Here, we omit
the details.

Combining Definition 3.10 with Lemma 3.12, we conclude that P+
ε is a G-admissible set

for the function I at any level c ∈ R.

Proof of Theorem 1.1 (Multiplicity part). According to the above discussion, we need to con-
struct an appropriate continuous map ψn : Bn → E to apply Proposition 3.11. In order
to achieve this point, for any n ∈ N, we choose {vi}n

1 ∈ E with disjoint supports and
infsupp(vi) Q(x) > 0, and define

ψn(t)(x) = Rn(t1v1(R−2
n x) + · · ·+ tnvn(R−2

n x)),

where t = (t1, t2, . . . , tn) ∈ Bn, Rn is a large number such that ψn(∂Bn) ∩ (P+
ε ∩ P−ε ) = ∅ and

sup
u∈ψn(∂Bn)

I(u) < 0 < inf
u∈∂P+

ε ∩∂P−ε
I(u)

as in (3.12) and (3.13). Obviously, ψn(0) = 0 ∈ P+
ε ∩ P−ε and ψn(−t) = −ψn(t) for t ∈ Bn.

Define
cj = inf

B∈Γj

sup
u∈B\(P+

ε ∪P−ε )

I(u),

where Γj is given in Proposition 3.11, then it follows that cj (j ≥ 2) are critical values of I with
cj → ∞ as j→ ∞, and the corresponding critical points uj ∈ Kcj \ (P+

ε ∪ P−ε ) are sign-changing
solutions of problem (1.1).

4 Proof of Theorem 1.3

Under the assumptions of Theorem 1.3, we establish the existence and multiplicity of sign-
changing solutions for problem (1.1) in this section. Before proceeding, we point out that
the energy functional is still denoted by I, and obviously the conclusions of Lemma 2.3 and
Lemmas 3.1–3.9 are effective for λ = 1. However, due to the fact that p ∈ (2, 12

5 ), we need to
construct ψ0 different from ψ0 in Theorem 1.1 to establish the proof of Theorem 1.3.
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Proof of Theorem 1.3. Define

ψ0 = ψ0(ρ)(x) = R−1 (ρ1v1(R−mx) + ρ2v2(R−mx)
)

,

where v1, v2, ρ = (ρ1, ρ2) are the same as in the proof of Theorem 1.1 and m ∈
( p

3 , 4−p
2

)
is a

constant dependent on p. Next, we check that ψ0 satisfies the properties in Proposition 3.11.
Similar to the proof of Theorem 1.1, we obtain ψ0(∂1∆) ⊂ P+

ε and ψ0(∂2∆) ⊂ P−ε . Therefore, it
suffices to verify (2) and (3) of Proposition 3.11. Indeed, set ūs = ψ0(s, 1− s) for s ∈ [0, 1], the
direct computations show that∫

Ω
|∇ūs|2dx = R−2+m

∫
Ω
(s2|∇v1|2 + (1− s)2|∇v2|2)dx,∫

Ω
φūs ū

2
s dx = R−4+5m

∫
Ω

φûs û
2
s dx, where ûs = sv1 + (1− s)v2,∫

Ω
|ūs|pdx = R−p+3m

∫
Ω
(sp|v1|p + (1− s)p|v2|p)dx,

which signify that

I(ūs) ≤
a
2

R−2+m
∫

Ω
(s2|∇v1|2 + (1− s)2|∇v2|2)dx

+
b
4

R−4+2m
(∫

Ω
(s2|∇v1|2 + (1− s)2|∇v2|2)dx

)2

+
1
4

R−4+5m
∫

Ω
φûs û

2
s dx

− CR−p+3m
∫

Ω
(sp|v1|p + (1− s)2|v2|p)dx.

(4.1)

Since 2 < p < 12
5 and m ∈

( p
3 , 4−p

2

)
, we get

max{−2 + m,−4 + 2m,−4 + 5m,−p + 3m} = −p + 3m > 0. (4.2)

Considering the above relationship in (4.1), we are led to I(ūs) → −∞ as R → ∞ uniformly
for s ∈ [0, 1]. In addition, from Lemma 3.9, we have known that c∗1 := infu∈Σ I(u) ≥ aε2.
Therefore, choosing R large enough and independent of s can guarantee that

c̄0 = sup
u∈ψ0(∂0∆)

I(u) < c∗1 .

Meanwhile, it is obvious that∫
Ω
|ūs|2dx = R−2+3m

∫
Ω
(s2|v1|2 + (1− s)2|v2|2)dx → ∞ as R→ ∞

uniformly for s ∈ [0, 1], which, combining with (3.7), indicates that that ψ0(∂0∆) ∩ M = ∅.
Based on the above facts, define

c̄ = inf
ψ∈Γ

sup
u∈ψ(∆)\W

I(u),

where Γ := {ψ ∈ C(4, E) : ψ(∂14) ⊂ P+
ε , ψ(∂24) ⊂ P−ε , ψ|∂04 = ψ0} and apply Proposi-

tion 3.7, we obtain the existence of sign-changing solution. The rest of proof with respect to
multiplicity is very similar to that of Theorem 1.1. Actually, it is just necessary to use

ψn(t)(x) = R−1
n (t1v1(R−m

n x) + · · ·+ tnvn(R−m
n x))

instead of ψn(t)(x) in the process of the proof of Theorem 1.1. Once ψn(t)(x) is determined
as above, the remainder is just to repeat the proof of Theorem 1.1, so we omit the details.
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