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Abstract. In this paper, we study the shape of bifurcation curve SL of positive solutions
for the Minkowski-curvature problem

−

 u′(x)√
1− (u′(x))2

′ = λ
(
−εu3 + u2 + u + 1

)
, −L < x < L,

u(−L) = u(L) = 0,

where λ, ε > 0 are bifurcation parameters and L > 0 is an evolution parameter. We
prove that there exists ε0 > 0 such that the bifurcation curve SL is monotone increasing
for all L > 0 if ε ≥ ε0, and the bifurcation curve SL is from monotone increasing to
S-shaped for varying L > 0 if 0 < ε < ε0.
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1 Introduction and main result

In this paper, we study the shapes of bifurcation curves of positive solutions u ∈ C2(−L, L) ∩
C[−L, L] for the one-dimensional Minkowski-curvature problem

−

 u′(x)√
1− (u′(x))2

′ = λ f (u), −L < x < L,

u(−L) = u(L) = 0,

(1.1)

where λ > 0 is a bifurcation parameter, L > 0 is an evolution parameter and the nonlinearity

f (u) ≡ −εu3 + u2 + u + 1, ε > 0. (1.2)
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It is well-known that studying the multiplicity of positive solutions of problem (1.1) is equiv-
alent to studying the shape of bifurcation curve SL of (1.1) where

SL ≡ {(λ, ‖uλ‖∞) : λ > 0 and uλ is a positive solution of (1.1)} for L > 0. (1.3)

Thus this investigation is essential.
Before going into further discussions on problems (1.1), we give some terminologies in this

paper for the shape of bifurcation curve SL on the (λ, ‖u‖∞)-plane.

Definition 1.1. Let SL be the bifurcation curve of (1.1) on the (λ, ‖u‖∞)-plane.

(i) S-like shaped: The curve SL is said to be S-like shaped if SL has at least two turning
points at some points

(
λ1, ‖uλ1‖∞

)
and

(
λ2, ‖uλ2‖∞

)
where λ1 < λ2 are two positive

numbers such that:

(a) at
(
λ1, ‖uλ1‖∞

)
the bifurcation curve SL turns to the right,

(b) ‖uλ2‖∞ < ‖uλ1‖∞ ,

(c) at
(
λ2, ‖uλ2‖∞

)
the bifurcation curve SL turns to the left.

(ii) S-shaped: The curve SL is said to be S-shaped if SL is S-like shaped, has exactly two
turning points, and has at most three intersection points with any vertical line on the
(λ, ‖u‖∞)-plane.

(iii) Monotone increasing: The curve SL is said to be monotone increasing if λ1 < λ2 for any
two points

(
λi, ‖uλi‖∞

)
, i = 1, 2, lying in SL with ‖uλ1‖∞ ≤ ‖uλ2‖∞ .

Crandall and Rabinowitz [2, p. 177] first considered shape of bifurcation curve of positive
solutions for the n-dimensional semilinear problem{

−∆u(x) = λ
(
−εu3 + u2 + u + 1

)
in Ω,

u(x) = 0 on ∂Ω,
(1.4)

where Ω is a general bounded domain in Rn (n ≥ 1) with smooth boundary ∂Ω. They applied
the implicit function theorem and perturbation arguments to prove that the bifurcation curve
of positive solutions of (1.4) is S-like shaped on the (λ, ‖uλ‖∞)-plane when ε > 0 is sufficiently
small. Shi [17, Theorem 4.1] proved that the bifurcation curve of positive solutions of (1.4) is
S-shaped when ε > 0 is small and Ω is a ball in Rn with 1 ≤ n ≤ 6. Hung and Wang [6]
consider the one-dimensional case{

−u′′(x) = λ
(
−εu3 + u2 + u + 1

)
, −1 < x < 1,

u(−1) = u(1) = 0.
(1.5)

Then they provided the complete variational process of shape of bifurcation curve S̄ of (1.5)
with varying ε > 0 where

S̄ ≡ {(λ, ‖uλ‖∞) : λ > 0 and uλ is a positive solution of (1.5)} , (1.6)

see Theorem 1.2.
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Figure 1.1: Graphs of bifurcation curves S̄ of (1.4). (i) ε ≥ ε0 and (ii) 0 < ε < ε0.

Theorem 1.2 ([6, Theorem 3.1]). Consider (1.5). Then the bifurcation curve S̄ is continuous on the
(λ, ‖uλ‖∞)-plane, starts from (0, 0) and goes to infinity. Furthermore, there exists a critical bifurcation
value ε0 ∈ (0, 1/

√
27) such that the bifurcation curve S̄ is monotone increasing if ε ≥ ε0, and S̄ is

S-shaped if 0 < ε < ε0, see Figure 1.1.

To the best of my knowledge, there are no manuscripts to describe the variational pro-
cess for SL of (1.5) with varying ε, L > 0. Hence we start to concern this issue. In addition,
references [7, 8, 16] provided some sufficient conditions to determine the shape of bifurcation
curve or multiplicity of positive solutions of problem (1.1) with general f (u) ∈ C[0, ∞). How-
ever, these results can not be applied in our problem (1.1) because the cubic nonlinearity f (u)
defined by (1.2) is not always positive in [0, ∞). So studying the problem (1.1) is worth and
interesting.

By elementary analysis, we find that f (u) has unique zero βε in [0, ∞). Then the main
result is as follows:

Theorem 1.3 (See Figure 1.2). Consider (1.1). Let ε0 be defined in Theorem 1.2. Then the following
statements (i)–(iii) hold:

(i) For L > 0, the bifurcation curve SL is continuous on the (λ, ‖uλ‖∞)-plane, starts from (0, 0)
and goes to infinity along the horizontal line ‖u‖∞ = ρL,ε where ρL,ε ≡ min{L, βε}.

(ii) If ε ≥ ε0, then the bifurcation curve SL is monotone increasing for all L > 0.

(iii) If 0 < ε < ε0, then there exist two positive numbers Lε < L̃ε such that

(a) the bifurcation curve SL is monotone increasing for 0 < L ≤ Lε.

(b) the bifurcation curve SL is S-like shaped for Lε < L ≤ L̃ε.

(c) the bifurcation curve SL is S-shaped for L > L̃ε.

Furthermore, Lε is a continuous function of ε ∈ (0, ε0), limε→0+ Lε ∈ (0, ∞) and limε→ε−0
Lε =

∞.

Remark 1.4. By numerical simulations to bifurcation curves SL of (1.1), we conjecture that the
bifurcation curve SL is also S-shaped on the (λ, ‖uλ‖∞)-plane for Lε < L ≤ L̃ε and 0 < ε < ε0.
Further investigations are needed. In addition, by Theorems 1.2 and 1.3, we make a list which
shows the different properties for Minkowski-curvature problem (1.1) and semilinear problem
(1.4), see Table 1.
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Figure 1.2: Graphs of bifurcation curve SL of (1.1) for ε > 0.

Bifurcation curve SL of (1.1) S̄ of (1.4)

1. Shapes (0 < ε < ε0)
from monotone increasing
to S-shaped with varying ε

S-shaped

2. Shapes (ε ≥ ε0) monotone increasing monotone increasing

3.
Numbers of
turning points

(1). from 0 to 2 varying L > 0 if 0 < ε < ε0

(2). 0 if ε ≥ ε0

(1). 2 if 0 < ε < ε0

(2). 0 if ε ≥ ε0

4. Continuity continuous continuous

5.
Evolution
parameter(s)

ε and L ε

6. Starting point (0, 0) (0, 0)
7. "End point" (∞,ρL,ε) (∞, ∞)

Table 1.1: Comparison of properties of SL and S̄.

The paper is organized as follows: Section 2 contains the lemmas used for proving the
main result. Section 3 contains the proof of main result (Theorem 1.3). Section 4 contains the
proof of assertion (2.31).
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2 Lemmas

To prove Theorem 1.3, we first introduce the time-map method used in Corsato [4, p. 127]. We
define the time-map formula for (1.1) by

Tλ(α) ≡
∫ α

0

λ [F(α)− F(u)] + 1√
{λ [F(α)− F(u)] + 1}2 − 1

du for 0 < α < βε and λ > 0, (2.1)

where F(u) ≡
∫ u

0 f (t)dt. Observe that positive solutions uλ ∈ C2(−L, L) ∩ C[−L, L] for (1.1)
correspond to

‖uλ‖∞ = α and Tλ(α) = L.

So by definition of SL in (1.3), we have that

SL = {(λ, α) : Tλ(α) = L for some 0 < α < βε and λ > 0} . (2.2)

Thus, it is important to understand fundamental properties of the time-map Tλ(α) on (0, βε)
in order to study the shape of the bifurcation curve SL of (1.1) for any fixed L > 0. Note that
it can be proved that Tλ(α) is a triple differentiable function of ε ∈ (0, βε) for ε, λ > 0, and
Tλ(α), T′λ(α) are differentiable function of λ > 0 for 0 < α < βε and a > 0. The proofs are easy
but tedious and hence we omit them. Similarly, we define the time-map formula for (1.5) by

T̄(α) ≡ 1√
2

∫ α

0

1√
F(α)− F(u)

du for α > 0, (2.3)

see [12, p. 779]. Then we have that ‖uλ‖∞ = α and T̄(α) =
√

λ. So by the definition of S̄ in
(1.6), we see that

S̄ =
{
(λ, α) :

√
λ = T̄(α) for some α > 0

}
. (2.4)

For the sake of convenience, we let

A = A(α, u) ≡ α f (α)− u f (u), B = B(α, u) ≡ F(α)− F(u),

C = C(α, u) ≡ α2 f ′(α)− u2 f ′(u) and D = D(α, u) ≡ α3 f ′′(α)− u3 f ′′(u).

Obviously, we have

B(α, u) =
∫ α

u
f (t)dt > 0 for 0 < u < α < βε (2.5)

because f (u) > 0 for 0 < u < βε.

Lemma 2.1. Consider (1.1) with ε > 0. Then the following statements (i)–(iii) hold:

(i) limα→0+ Tλ(α) = 0 and limα→β−ε
Tλ(α) = ∞ for λ > 0.

(ii) limλ→0+
√

λT(i)
λ (α) = T̄(i)(α) and limλ→∞ T′λ(α) = 1 for 0 < α < βε and i = 1, 2, 3.

(iii) ∂Tλ(α)/∂λ < 0 for 0 < α < βε and λ > 0.

Proof. Since

lim
u→0+

F(u)
u2 = ∞,
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and by [7, Lemma 3.1], we obtain that limα→0+ Tλ(α) = 0. Since f (βε) = 0, there exist b, c ∈ R

such that f (u) = (βε − u)(εu2 + bu + c). Since f (u) > 0 on (0, βε), there exists M > 0 such
that 0 < εu2 + bu + c < M for 0 < u < βε. For 0 < t < 1, by the mean-value theorem, there
exists ηt ∈ (βεt, βε) such that

B(βε, βεt) =
∫ βε

βεt
f (t)dt = f (ηt)βε (1− t) = (βε − ηt)

(
εη2

t + bηt + c
)

βε (1− t)

< (βε − βεt) Mβε (1− t) = Mβ2
ε (1− t)2 . (2.6)

Then there exists t∗ ∈ (0, 1) such that B(βε, βεt) < 1 for t∗ < t < 1. So by (2.5) and (2.6), we
see that

lim
α→β−ε

Tλ(α) = lim
α→β−ε

α
∫ 1

0

λB(α, αt) + 1√
λ2B2(α, αt) + 2λB(α, αt)

dt

≥ lim
α→β−ε

α
∫ 1

t∗

1√
λ2B2(α, αt) + 2λB(α, αt)

dt

≥ βε

∫ 1

t∗

1√
(λ2 + 2λ) B(βε, βεt)

dt ≥ 1√
(λ2 + 2λ) M

∫ 1

t∗

1
1− t

dt = ∞,

which implies that statement (i) holds. In addition, we compute that, for 0 < α < βε and
λ > 0,

T′λ(α) =
1
α

∫ α

0

λ3B3 + 3λ2B2 + λ (2B− A)

(λ2B2 + 2λB)3/2 du, (2.7)

T′′λ (α) =
1
α2

∫ α

0

(
3A2B− B2C− 2AB2) λ3 +

(
3A2 − 4AB− 2BC

)
λ2

(λ2B2 + 2λB)5/2 du, (2.8)

T′′′λ (α) =
1
α3

∫ α

0

λ3

[λ2B2 + 2λB]7/2

[
B2 (9A2B− 3B2C− B2D− 12A3 + 9ABC

)
λ2

+ B(27A2B− 12B2C− 4B2D− 24A3 + 27ABC)λ + 18A2B− 12B2C

− 4B2D− 15A3 + 18ABC
]
du. (2.9)

So we observe that, for 0 < α < βε,

lim
λ→0+

√
λT′λ(α) =

1
α

∫ α

0

2B− A

(2B)3/2 du = T̄′(α),

lim
λ→0+

√
λT′′λ (α) =

1
α2

∫ α

0

3A2 − 4AB− 2BC

(2B)5/2 du = T̄′′(α),

lim
λ→0+

√
λT′′′λ (α) =

1
α3

∫ α

0

18A2B− 12B2C− 4B2D− 15A3 + 18ABC

(2B)5/2 du = T̄′′′(α).

Furthermore, limλ→∞ T′λ(α) = 1. So statement (ii) holds. The statement (iii) follows immedi-
ately by [7, Lemma 4.2(ii)]. The proof is complete.

Lemma 2.2. Consider (1.1) with ε > 0. Then the following statements (i) and (ii) hold:

(i) T′λ(α) > 0 for 0 < α ≤ 1 and λ > 0.

(ii) Tλ(α) has at most one critical point, a local minimum, on [ 5
12ε , βε).
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Proof. We can see that 2B(α, u)− A(α, u) > 0 for 0 < u < α ≤ 1 because 2B(α, α)− A(α, α) = 0
and

∂

∂u
[2B(α, u)− A(α, u)] = −2εu3 +

(
u2 − 1

)
< 0 for 0 < u < α < 1.

So by (2.5) and (2.7), we obtain that T′λ(α) > 0 for 0 < α ≤ 1 and λ > 0. Then statement (i)
holds. By (2.5), (2.7) and (2.8), we observe that, for 0 < α < βε and λ > 0,

αT′′λ (α) + 2T′λ(α)

=
1
α

∫ α

0

B5λ3 + 5B4λ2 + λB
(
3A2 + 16B2 − 4AB− BC

)
+ 3A2 + 8B2 − 8AB− 2BC

√
λ (λB2 + 2B)5/2 du

>
1
α

∫ α

0

λB
(
3A2 + 16B2 − 4AB− BC

)
+ 3A2 + 8B2 − 8AB− 2BC

√
λ (λB2 + 2B)5/2 du

=
1
α

∫ α

0

λB
[
3 (A− B)2 + 5B2 + B (2A− 2B− C)

]
+ 3 (A− 2B)2 + 2B (2A− 2B− C)

√
λ (λB2 + 2B)5/2 du

>
1
α

∫ α

0

λB2 (2A− 2B− C) + 2B (2A− 2B− C)
√

λ (λB2 + 2B)5/2 du

=
1
α

∫ α

0

(
λB2 + 2B

)
(2A− 2B− C)

√
λ (λB2 + 2B)5/2 du =

1
α

∫ α

0

2A− 2B− C
√

λ (λB2 + 2B)3/2 du

=
1

6α

∫ α

0

φ(α)− φ(u)
√

λ (λB2 + 2B)3/2 du, (2.10)

where φ(u) ≡ u3 (9εu− 4). Clearly, φ′(u) = 12u2 (3εu− 1). Since

f
(

4
9ε

)
= 1 +

324ε + 80
729ε2 > 0,

we see that
1
3ε

<
4
9ε

< βε. (2.11)

So we observe that

φ(u)


< 0 for 0 < u < 4

9ε ,

= 0 for u = 4
9ε ,

> 0 for 4
9ε < u < βε,

and φ′(u)


< 0 for 0 < u < 1

3ε ,

= 0 for u = 1
3ε ,

> 0 for 1
3ε < u < βε.

(2.12)

Let α ∈
[ 5

12ε , βε

)
be given. Then we consider two cases.

Case 1. Assume that 4
9ε ≤ α < βε. Since φ(0) = 0, and by (2.12), we see that φ(α)− φ(u) > 0

for 0 < u < α. So by (2.10), we obtain αT′′λ (α) + 2T′λ(α) > 0 for λ > 0.

Case 2. Assume that 5
12ε ≤ α < 4

9ε . Since φ(0) = 0, and by (2.12), there exists α̃ ∈
(
0, 1

3ε

)
such

that

φ(α)− φ(u)


< 0 for 0 < u < α̃,

= 0 for u = α̃,

> 0 for α̃ < u < α.



8 S.-Y. Huang and M.-S. Hwang

So by (2.10), we observe that, for λ > 0,

αT′′λ (α) + 2T′λ(α)

>
1

6α
√

λ

[∫ α̃

0

φ(α)− φ(u)

[λB2 + 2B]3/2 du +
∫ α

α̃

φ(α)− φ(u)

[λB2 + 2B]3/2 du

]

>
1

6α
√

λ [λB2(α, α̃) + 2B(α, α̃)]3/2

{∫ α̃

0
[φ(α)− φ(u)] du +

∫ α

α̃
[φ(α)− φ(u)] du

}
=

1

6α
√

λ [λB2(α, α̃) + 2B(α, α̃)]3/2

∫ α

0
[φ(α)− φ(u)] du

=
6εα3

5
√

λ [λB2(α, α̃) + 2B(α, α̃)]3/2

(
α− 5

12ε

)
≥ 0.

Thus by Cases 1–2, we have

αT′′λ (α) + 2T′λ(α) > 0 for
5

12ε
≤ α < βε and λ > 0. (2.13)

Fixed λ > 0. If Tλ(α) has a critical point ᾰ in [ 5
12ε , βε), by (2.13), then ᾰT′′λ (ᾰ) = ᾰT′′λ (ᾰ) +

2T′λ(ᾰ) > 0. It implies that Tλ(α) has at most one critical point, a local minimum, on
[ 5

12ε , βε

)
for λ > 0. Then the statement (ii) holds. The proof is complete.

Lemma 2.3. Consider (1.1) with ε > 0. Then

∂

∂λ

[√
λT′λ(α)

]
> 0 for 0 < α ≤ 5

12ε
and λ > 0. (2.14)

Proof. By (2.5) and (2.7), we compute and find that

∂

∂λ

[√
λT′λ(α)

]
=

1
2α

∫ α

0

B2 (B3λ2 + 5B2λ + 3A + 6B
)

(λB2 + 2B)5/2 du >
1

2α

∫ α

0

3B2 (A + 2B)

(λB2 + 2B)5/2 du. (2.15)

In addition, we compute that

∂

∂u
[A(α, u) + 2B(α, u)] = R(u),

where R(u) ≡ 3εu3− 3 (1− ε) u2− 6u− 4. Clearly, R′(u) = 9εu2− 6 (1− ε) u− 6 is a quadratic
polynomial of u with positive leading coefficient. Furthermore,

R′(0) = −6 < 0 and R′
(

5
12ε

)
≡ −56ε + 15

16ε
< 0.

Thus we observe that R′(u) < 0 for 0 ≤ u ≤ 5
12ε . It follows that

∂

∂u
[A(α, u) + 2B(α, u)] = R(u) ≤ R(0) = −4 < 0 for 0 ≤ u ≤ 5

12ε
.

Then we have

A(α, u) + 2B(α, u) > A(α, α) + 2B(α, α) = 0 for 0 < u < α ≤ 5
12ε

.

So by (2.15), we obtain (2.14). The proof is complete.
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Lemma 2.4. Consider (1.1) with ε > 0. Let I be a closed interval in (0, βε). Then the following
statements (i)–(iii) hold:

(i) If T̄′(α) < 0 for α ∈ I, then there exists λ̌ > 0 such that T′λ(α) < 0 for α ∈ I and 0 < λ < λ̌.

(ii) If αT̄′′(α) + kT̄′(α) < 0 for α ∈ I and some k > 0, then there exists λ̂ > 0 such that αT′′λ (α) +
kT′λ(α) < 0 for α ∈ I and 0 < λ < λ̂.

(iii) If [2αT̄′′(α) + 3T̄′(α)]′ > 0 for α ∈ I, then there exists λ̄ > 0 such that [2αT′′λ (α) + 3T′λ(α)]
′ >

0 for α ∈ I and 0 < λ < λ̄.

Proof. (I) Assume that T̄′(α) < 0 for α ∈ I. By Lemma 2.1(ii), we have

lim
λ→0+

√
λT′λ(α) = T̄′(α) < 0 for α ∈ I. (2.16)

For α ∈ I, by (2.16), we define λα by

λα ≡

1 if T′λ(α) < 0 for all λ > 0,

sup{λ1 : T′λ(α) < 0 for 0 < λ < λ1} if T′λ(α) ≥ 0 for some λ > 0.
(2.17)

Clearly, T′λ(α) < 0 for α ∈ I and 0 < λ < λα. Let λ̌ ≡ inf{λα : α ∈ I}. Assume that λ̌ = 0. By
(2.17), there exists a sequence {αk}k∈N ⊂ I such that

lim
k→∞

λαk = 0 and T′λαk
(αk) ≥ 0 for k ∈N. (2.18)

Without loss of generality, we assume that limk→∞ αk = α̌ ∈ I. So by (2.16) and (2.18), we
observe that

0 ≤ lim
k→∞

√
λαk T′λαk

(αk) = lim
k→∞

√
λαk T′λαk

(α̌) = T̄′(α̌) < 0,

which is a contradiction. It implies that λ̌ > 0. So statement (i) holds.
(II) Assume that αT̄′′(α) + kT̄′(α) < 0 for α ∈ I and some k > 0. Let G1(α, λ) ≡ αT′′λ (α) +

kT′λ(α). By Lemma 2.1(ii), we see that

lim
λ→0+

√
λG1(α, λ) = αT̄′′(α) + kT̄′(α) < 0 for α ∈ I. (2.19)

For α ∈ I, by (2.19), we define λα by

λα ≡

1 if G1(α, λ) < 0 for all λ > 0,

sup{λ2 : G1(α, λ) < 0 for 0 < λ < λ2} if G1(α, λ) ≥ 0 for some λ > 0.

Clearly, G1(α, λ) < 0 for α ∈ I and 0 < λ < λα. Let λ̂ ≡ inf{λα : α ∈ I}. We use the similar
argument in (I) to obtain that λ̂ > 0. So statement (ii) holds.

(III) Assume that [2αT̄′′(α) + 3T̄′(α)]′ > 0 for α ∈ I. Let G2(α, λ) ≡ [2αT′′(α) + 3T′(α)]′. By
Lemma 2.1(ii), we see that

lim
λ→0+

√
λG2(α, λ) = lim

λ→0+

[
2α
√

λT′′′λ (α) + 5
√

λT′′λ (α)
]
= 2αT̄′′′(α) + 5T̄′′(α)

= [2αT̄′′(α) + 3T̄′(α)]′ > 0 for α ∈ I. (2.20)
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For α ∈ I, by (2.20), we define λα by

λα ≡

1 if G2(α, λ) < 0 for all λ > 0,

sup{λ3 : G2(α, λ) < 0 for 0 < λ < λ3} if G2(α, λ) ≥ 0 for some λ > 0.

Clearly, G2(α, λ) < 0 for α ∈ I and 0 < λ < λα. Let λ̄ ≡ inf{λα : α ∈ I}. We use the similar
argument in (I) to obtain that λ̄ > 0. So statement (iii) holds. The proof is complete.

Lemma 2.5. Consider (1.5) with ε > 0. Let ε0 be defined in Theorem 1.2. Then the following
statements (i)–(iii) hold:

(i) T̄′(α) ≥ 0 for 0 < α < βε and ε ≥ ε0.

(ii) [2αT̄′′(α) + 3T̄′(α)]′ > 0 for 1
3ε ≤ α ≤ 5

12ε and ε ≤ ε0.

(iii) There exists ε̂ ∈ (0, ε0) such that T̄′(α) ≥ 0 for 0 < α ≤ 1
3ε and ε̂ ≤ ε < ε0. Furthermore,

ε̂ <
√

31/1000.

Proof. The statement (i) follows immediately by Theorem 1.2 and (2.4). The statement (ii)
follows immediately by [6, Lemma 3.5]. By [11, Theorem 2.1], there exists ε̂ > 0 satisfying

ε̂ <

√
31

1000
< ε0

such that

T̄′
(

1
3ε

)
< 0 for 0 < ε < ε̂,

= 0 for ε = ε̂,

> 0 for ε̂ < ε < ε0.

(2.21)

By Theorem 1.2, (2.4) and [6, Lemma 3.3], we see that, for 0 < ε < ε0, there exist two positive
numbers α∗ < α∗ < βε such that

T̄′(α)


> 0 on (0, α∗) ∪ (α∗, βε) ,

= 0 when α = α∗ or α = α∗,

< 0 for (α∗, α∗) .

(2.22)

Since f is a convex function on
[
0, 1

3ε

]
, and by [15, Lemma 3.2], we see that T̄(α) is either

strictly increasing on
(
0, 1

3ε

)
, or strictly increasing and then strictly decreasing on

(
0, 1

3ε

)
. So

by (2.21) and (2.22), we observe that 1
3ε ≤ α∗ for ε̂ ≤ ε < ε0. It follows that T̄′(α) ≥ 0 for

0 < α ≤ 1
3ε and ε̂ ≤ ε < ε0. So the statement (iii) holds. The proof is complete.

Lemma 2.6. Consider (1.5) with 0 < ε ≤ ε̂ where ε̂ is defined in Lemma 2.5. Then αT̄′′ (α)+ T̄′ (α) <
0 for 1 ≤ α ≤ 1.7.

Proof. Let Ā ≡ ε
(
α4 − u4), B̄ ≡ α3 − u3, C̄ ≡ α2 − u2 and D̄ ≡ α− u. We compute that

αT̄′′(α) + T̄′(α) =
1

4
√

2α

∫ α

0

N1(α, u)
[F(α)− F(u)]5/2 du, (2.23)

where

N1 (α, u) ≡ 1
72

(
9Ā2 + 4B̄2 + 36D̄2 − 6ĀB̄ + 198ĀD̄− 120B̄D̄ + 36ĀC̄− 12B̄C̄− 36C̄D̄

)
.
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Let α ∈ [1, 1.7], u ∈ (0, α) and ε ∈ (0, ε̃] be given. By Lemma [11, Lemma 3.6], we have

Ā <
4εα

3
B̄ and D̄ >

1
3α2 B̄ >

1
3α2

(
3

4εα
Ā
)
=

Ā
4α3ε

.

Then

1 < α2 <

(
α2 + αu + u2) D̄

D̄
=

B̄
D̄

< 3α2 ≤ 3 (1.7)2 = 8.67, (2.24)

Ā <
4εα

3
B̄ <

4ε̂

3
(1.7) B̄ =

34ε̂

15
B̄ and D̄ >

Ā
4α3ε

>
Ā

4 (1.7)3 ε̂
=

250
4913ε̂

Ā. (2.25)

In addition, by Lemma 2.5(iii), we compute and find that

34
15

ε̂− 2
3
<

34
15

√
31

1000
− 2

3
(≈ −0.26) < 0, (2.26)

198
(

34
15

ε̂− 20
33

)
< 198

(
34
15

√
31

1000
− 20

33

)
(≈ −40.98) < −0.40, (2.27)

1− 5
34ε̂
− 250

4913ε̂
< 1− 5

34
√

31
1000

− 250

4913
√

31
1000

(≈ −0.88) < 0. (2.28)

By (2.24)–(2.28), we observe that

N1 (α, u) =
1
72
(
9Ā2 + 4B̄2 + 36D̄2 − 6ĀB̄ + 198ĀD̄− 120B̄D̄ + 36ĀC̄− 12B̄C̄− 36C̄D̄

)
=

1
72

[
9Ā
(

Ā− 2
3

B̄
)
+ 198D̄

(
Ā− 20

33
B̄
)
+ 36C̄

(
Ā− 1

3
B̄− D̄

)
+ 4B̄2 + 36D̄2

]
<

1
72

[
9ĀB̄

(
34
15

ε̂− 2
3

)
+ 198B̄D̄

(
34
15

ε̂− 20
33

)
+ 36ĀC̄

(
1− 5

34ε̂
− 250

4913ε̂

)
+ 4B̄2 + 36D̄2

]
<

1
72

(
− 40B̄D̄ + 4B̄2 + 36D̄2

)
=

D̄2

18

[(
B̄
D̄
− 5
)2

− 16

]

<
D̄2

18

[
(1− 5)2 − 16

]
= 0.

So by (2.23), we obtain that αT̄′′ (α) + T̄′ (α) < 0 for 1 ≤ α ≤ 1.7 and 0 < ε ≤ ε̂. The proof is
complete.

Lemma 2.7. Consider (1.5) with 0.07 ≤ ε ≤ ε̂. Then αT̄′′ (α) + 5
2 T̄′ (α) < 0 for 1.7 ≤ α ≤ 1

3ε .

Proof. We compute that

αT̄′′(α) +
5
2

T̄′(α) =
1

4
√

2α

∫ α

0

N2(α, u)
[F(α)− F(u)]5/2 du, (2.29)

where

N2 (α, u) ≡ 1
144

(
− 9Ā2 + 42ĀB̄ + 450ĀD̄ + 126ĀC̄− 16B̄2 − 240B̄D̄

− 60B̄C̄ + 288D̄2 + 36C̄D̄
)

. (2.30)
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Then we assert that

N2 (α, u) < 0 for 0 < u < α, 1.7 ≤ α ≤ 1
3ε

and 0.07 ≤ ε ≤ ε̂. (2.31)

The proof of assertion (2.31) is easy but tedious. Thus, we put it in Appendix. So by (2.29)–
(2.31), we see that αT̄′′ (α) + 5

2 T̄′ (α) < 0 for 1.7 ≤ α ≤ 1
3ε and 0.07 ≤ ε ≤ ε̂.

Lemma 2.8. Consider (1.5) with 0 < ε < 0.07. Then T̄′ (α) < 0 for 1.7 ≤ α ≤ 1
3ε .

Proof. We compute that

T̄′ (α) =
1

2
√

2α

∫ α

0

2B(α, u)− A(α, u)
B3/2(α, u)

du =
1

2
√

2α

∫ α

0

θ(α)− θ(u)
B3/2(α, u)

du, (2.32)

where θ(u) ≡ 2F(u)− u f (u) for 0 ≤ u < βε. Since 0 < ε < 0.07, and by [11, Lemma 3.1], there
exists p ∈

(
0, 1

3ε

)
such that θ′(u) > 0 for (0, p) and θ′(u) < 0 for

(
p, 1

3ε

)
. Let α ∈

[
1.7, 1

3ε

]
be

given. Assume that θ(α) ≤ 0, see Figure 2.1(i). Since θ(0) = 0, we see that θ(α)− θ(u) < 0
for 0 < u < α. So by (2.32), we obtain that T̄′ (α) < 0. Assume that θ(α) > 0, see Figure 2.1(ii).
We compute and find that

θ′(1.7) = 2εu3 − u2 + 1
∣∣
u=1.7 =

4913
500

ε− 189
100

< 0 for 0 < ε < 0.07.

Since 1.7 ≤ α ≤ 1
3ε , there exists ᾱ ∈ (0, p) such that

θ(α)− θ(u)


> 0 for 0 < u < ᾱ,

= 0 for u = ᾱ,

< 0 for ᾱ < u < α.

Figure 2.1: Graphs of θ(u) on [0, α] where 1.7 ≤ α ≤ 1
3ε and 0 < ε < 0.07.

So by (2.32) and similar argument of [14, (3.11)], we observe that

T̄′ (α) <
1

2
√

2αB3/2(α, ᾱ)

∫ α

0
uθ′(u)du =

α
(
8εα3 − 5α2 + 10

)
40
√

2B3/2(α, ᾱ)
. (2.33)

Since
∂

∂u
(
8εu3 − 5u2 + 10

)
= 2u (12εu− 5) < 0 for 1.7 ≤ u ≤ 1

3ε
,
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we see that, for 1.7 ≤ u ≤ 1
3ε and 0 < ε < 0.07,

8εu3 − 5u2 + 10 < 8εu3 − 5u2 + 10
∣∣
u=1.7 =

4913
125

ε− 89
20

< 0.

So by (2.33), we obtain that T̄′ (α) < 0. The proof is complete.

Lemma 2.9. Consider (1.1) with 0 < ε < ε0. Then there exists ξε > 0 such that

Γε ≡ {λ > 0 : T′λ(α) < 0 for some α ∈ (0, βε)} = (0, ξε).

Proof. Let ε ∈ (0, ε0) be given. By (2.22), there exist two positive numbers α∗ < α∗ < βε such
that

lim
λ→0+

√
λT′λ(α) = T̄′(α)


> 0 on (0, α∗) ∪ (α∗, βε),

= 0 when α = α∗ or α∗,

< 0 on (α∗, α∗) .

(2.34)

Then we divide this proof into the next four steps.

Step 1. We prove that α∗ <
5

12ε . Assume that α∗ ≥ 5
12ε . By (2.34) and Lemma 2.3, we see that

0 ≤ T̄′(α) = lim
λ→0+

√
λT′λ(α) <

√
λT′λ(α) for 0 < α ≤ 5

12ε
and λ > 0. (2.35)

By Lemma 2.2(ii) and (2.35), we further see that T′λ(α) > 0 for 0 < α < βε for λ > 0. So by
(2.34), we obtain that

0 ≤ lim
λ→0+

√
λT′λ

(
α∗ + α∗

2

)
= T̄′

(
α∗ + α∗

2

)
< 0,

which is a contradiction. It implies that α∗ <
5

12ε .

Step 2. We prove that, for α ∈ (α∗, α∗) ∩
(
0, 5

12ε

]
, there exists a continuously differential

function λ̃α > 0 of α such that

√
λT′λ(α)


< 0 if 0 < λ < λ̃α,

= 0 if λ = λ̃α,

> 0 if λ > λ̃α.

(2.36)

By Lemma 2.1(ii), we see that

lim
λ→∞

√
λT′λ(α) = ∞ · 1 = ∞ for α ∈ (0, βε). (2.37)

By (2.34), (2.37), Lemma 2.3 and implicit function theorem, we observe that, for α ∈ (α∗, α∗) ∩(
0, 5

12ε

]
, there exists a continuously differential function λ̃α > 0 of α such that (2.36) holds.

Step 3. We prove that

ξε ≡ sup
{

λ̃α : α ∈ (α∗, α∗) ∩
(

0,
5

12ε

]}
∈ (0, ∞) .

Clearly, ξε > 0. By (2.34) and Lemma 2.3, we see that

0 = lim
λ→0+

√
λT′λ(α∗) < T′λ=1(α∗).
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So by Lemma 2.3 and continuity of T′λ=1(α) with respect to α, there exists δ > 0 such that

0 < T′λ=1(α) ≤
√

λT′λ(α) for α∗ < α < α∗ + δ <
5

12ε
and λ ≥ 1,

from which it follows that λ̃α < 1 for α∗ < α < α∗ + δ. Thus limα→α+∗
λ̃α ≤ 1 < ∞. By similar

argument, we obtain that

lim
α→(α∗)−

λ̃α < ∞ if α∗ <
5

12ε
.

So by Step 2, we observe that ξε ∈ (0, ∞).

Step 4. We prove that Γε = (0, ξε). Let λ1 ∈ (0, ξε). There exists α1 ∈ (α∗, α∗) ∩
(
0, 5

12ε

]
such

that λ1 < λ̃α1 . Then by (2.36), we see that T′λ1
(α1) < 0, which implies that λ1 ∈ Γε. Thus

(0, ξε) ⊆ Γε. Let λ2 ∈ Γε. There exists α2 ∈ (0, βε) such that T′λ2
(α2) < 0. Next, we consider

two cases.

Case 1. Assume that 5
12ε < α∗. By (2.34) and Lemma 2.3, we see that

0 ≤ lim
λ→0+

√
λT′λ(α) <

√
λT′λ(α) for α ∈ (0, α∗] and λ > 0. (2.38)

By Steps 2 and 3, we see that

√
λT′λ(α) ≥ 0 for α ∈

(
α∗,

5
12ε

]
if λ ≥ ξε. (2.39)

By (2.39) and Lemma 2.2, we see that

T′λ(α) > 0 for
5

12ε
≤ α < βε and λ ≥ ξε. (2.40)

So by (2.38)–(2.40), we obtain that T′λ(α) ≥ 0 for α ∈ (0, βε) if λ ≥ ξε. It implies that λ2 < ξε.
Thus Γε ⊆ (0, ξε).

Case 2. Assume that α∗ < 5
12ε . By (2.34) and Lemma 2.3, we see that

0 ≤ lim
λ→0+

√
λT′λ(α) <

√
λT′λ(α) for α ∈ (0, α∗] ∪

[
α∗,

5
12ε

]
and λ > 0. (2.41)

By Steps 2 and 3, we see that
√

λT′λ(α) ≥ 0 for α ∈ (α∗, α∗) if λ ≥ ξε. (2.42)

By (2.41) and Lemma 2.2(ii), we see that

T′λ(α) > 0 for
5

12ε
≤ α < βε and λ > 0. (2.43)

So by (2.41)–(2.43), we obtain that T′λ(α) ≥ 0 for α ∈ (0, βε) if λ ≥ ξε. It implies that λ2 < ξε.
Thus Γε ⊆ (0, ξε).

By the above discussions, we obtain that Γε = (0, ξε). The proof is complete.

Lemma 2.10. Consider (1.1) with 0 < ε < ε0. Then there exists κε ∈ (0, ξε) such that Tλ(α) has
exactly two critical points, a local maximum at αM(λ) and a local minimum at αm(λ) (> αM(λ)), on
(0, βε) if 0 < λ < κε.
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Proof. Let ε ∈ (0, ε0) be given. By (2.34) and Lemma 2.1(ii), there exists λ1 > 0 such that

T′λ

(
α∗ + α∗

2

)
< 0 for 0 < λ < λ1. (2.44)

We divide this proof into the next four steps.

Step 1. We prove that there exists λ2 ∈ (0, λ1) such that, for 0 < λ < λ2, either T′λ(α) > 0 on(
0, 1

3ε

]
, or Tλ(α) has exactly one critical point, a local maximum, on

(
0, 1

3ε

]
, see Figure 2.2. By

Lemma 2.2(i), we have
T′λ(α) > 0 for 0 < α ≤ 1 and λ > 0. (2.45)

0 α 0 α

Tλ(α) Tλ(α)

(i) (ii)
1 11

3ε 1
3ε

Figure 2.2: Graphs of Tλ(α) on (0, 1
3ε ] for 0 < λ < λ2.

Then we consider the following three cases.

Case 1. Assume that ε̂ ≤ ε < ε0. By Lemmas 2.1(ii), 2.3 and 2.5(iii), we see that

0 ≤ T̄′(α) = lim
λ→0+

√
λT′λ(α) <

√
λT′λ(α) for 1 < α ≤ 1

3ε
and λ > 0.

So by (2.45), T′λ(α) > 0 on
(
0, 1

3ε

]
for λ > 0, see Figure 2.2(i).

Case 2. Assume that 0.07 ≤ ε < ε̂. By (2.21), Lemmas 2.1(ii), 2.4(ii), 2.6 and 2.7, there exists
λ2 ∈ (0, λ1) such that

T′λ

(
1
3ε

)
< 0 and αT′′λ (α) + K(α)T′λ(α) < 0 for 1 ≤ α ≤ 1

3ε
and 0 < λ < λ2, (2.46)

where K(α) ≡ 1 if 1 ≤ α ≤ 1.7, and K(α) ≡ 5/2 if 1.7 < α ≤ 1
3ε . By (2.45) and (2.46), there

exists αλ ∈
(
1, 1

3ε

)
such that T′λ(αλ) = 0 for 0 < λ < λ2. Furthermore,

αλT′′λ (αλ) = αλT′′λ (αλ) + K(αλ)T′λ(αλ) < 0 for 0 < λ < λ2.

Thus Tλ(α) has exactly one local maximum at αλ on
(
0, 1

3ε

]
for 0 < λ < λ2, see Figure 2.2(ii).

Case 3. Assume that 0 < ε < 0.07. By Lemmas 2.4, 2.6 and 2.8, there exists λ2 ∈ (0, λ1) such
that

αT′′λ (α) + T′λ(α) < 0 for 1 ≤ α ≤ 1.7 and 0 < λ < λ2, (2.47)

T′λ(α) < 0 for 1.7 ≤ α ≤ 1
3ε

and 0 < λ < λ2. (2.48)
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So by (2.45), (2.47) and (2.48), there exists αλ ∈ (1, 1.7) such that T′λ(αλ) = 0 for 0 < λ < λ2.
Furthermore,

αλT′′λ (αλ) = αλT′′λ (αλ) + T′λ(αλ) < 0 for 0 < λ < λ2.

Thus Tλ(α) has exactly one local maximum at αλ on
(
0, 1

3ε

]
for 0 < λ < λ2, see Figure 2.2(ii).

Step 2. We prove that there exists λ3 ∈ (0, λ2) such that, for λ ∈ (0, λ3), one of the following
cases holds:

(ci) T′λ(α) > 0 on
( 1

3ε , 5
12ε

)
.

(cii) T′λ(α) < 0 on
( 1

3ε , 5
12ε

)
.

(ciii) T′λ(α) < 0 on
( 1

3ε , α̌
)

and T′λ(α) > 0 on
(
α̌, 5

12ε

)
for some α̌ ∈

( 1
3ε , 5

12ε

)
.

(civ) T′λ(α) > 0 on
( 1

3ε , α̌
)

and T′λ(α) < 0 on
(
α̌, 5

12ε

)
for some α̌ ∈

( 1
3ε , 5

12ε

)
.

(cv) T′λ(α) > 0 on
( 1

3ε , α̌
)
∪
(
α̂, 5

12ε

)
and T′λ(α) < 0 on (α̌, α̂) for some α̌, α̂ ∈

( 1
3ε , 5

12ε

)
.

See Figure 2.3.

Figure 2.3: Graphs of Tλ(α) on ( 1
3ε , 5

12ε ) for 0 < λ < λ3.

Let H(α, λ) ≡ 2αT′′λ (α) + 3T′λ(α). By Lemmas 2.4(iii) and 2.5(ii), there exists λ3 ∈ (0, λ2)
such that

∂

∂α
H(α, λ) > 0 for

1
3ε
≤ α ≤ 5

12ε
and 0 < λ ≤ λ3. (2.49)

Fixed λ ∈ (0, λ3). Then we consider three cases.

Case 1. Assume that H(α, λ) < 0 for 1
3ε ≤ α < 5

12ε . If Tλ(α) has a critical point α1 in
( 1

3ε , 5
12ε

)
,

then
2α1T′′λ (α1) = H(α1, λ) < 0.
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It implies that Tλ(α) has at most one critical point, a local maximum, on
( 1

3ε , 5
12ε

)
. Thus one of

(ci), (cii) and (civ) holds.

Case 2. Assume that H(α, λ) > 0 for 1
3ε < α ≤ 5

12ε . If Tλ(α) has a critical point α2 in
( 1

3ε , 5
12ε

)
,

then
2α2T′′λ (α2) = H(α2, λ) > 0.

It implies that Tλ(α) has at most one critical point, a local minimum, on
( 1

3ε , 5
12ε

)
. Thus one of

(ci), (cii) and (ciii) holds.

Case 3. Assume that there exists α∗ ∈
( 1

3ε , 5
12ε

)
such that H(α, λ) < 0 for 1

3ε < α < α∗
and H(α, λ) > 0 for α∗ < α < 5

12ε . If Tλ(α) has a critical point in
( 1

3ε , α∗
)
, by above similar

argument, Tλ(α) has at most one critical point, a local maximum, on
( 1

3ε , α∗
)
. If Tλ(α) has a

critical point in
(
α∗, 5

12ε

)
, by above similar argument, Tλ(α) has at most one critical point, a

local minimum, on
(
α∗, 5

12ε

)
. Thus one of (ci)–(cv) holds.

Step 3. We prove Lemma 2.10. By Lemmas 2.1(i) and 2.2(ii), we see that, for λ > 0, either
T′λ(α) > 0 on

[ 5
12ε , βε

)
, or there exists α̊ ∈

( 5
12ε , βε

)
such that T′λ(α) < 0 on

[ 5
12ε , α̊

)
and

T′λ(α) > 0 on (α̊, βε), see Figure 2.4.

0 α 0 α
(i) (ii)

5
12ε

5
12εβε βε

Tλ(α) Tλ(α)

Figure 2.4: Graphs of Tλ(α) on [5/(12ε), βε) for λ > 0.

Then by (2.44) and Steps 1–2, we observe that Tλ(α) has exactly two critical points, a local
maximum at αM(λ) and a local minimum at αm(λ) (> αM(λ)), on (0, βε) if 0 < λ < κε = λ3.

The proof is complete.

Lemma 2.11. Consider (1.1) with 0 < ε < ε0. Let αM(λ) and αm(λ) be defined in Lemma 2.10. Then
αM(λ) is a strictly increasing function of λ ∈ (0, κε) and

lim
λ→0+

αM(λ) < αM(λ) < lim
λ→κ−ε

αM(λ) ≤ αm(λ) for λ ∈ (0, κε). (2.50)

Proof. By Lemma 2.10, we have that

T′λ(α)


> 0 for α ∈ (0, αM(λ)) ∪ (αm(λ), ∞) ,

= 0 for α = αM(λ) or α = αm(λ),

< 0 for α ∈ (αM(λ), αm(λ)) ,

if 0 < λ < κε. (2.51)

By Lemma 2.2, we see that 0 < αM(λ) < 5
12ε for 0 < λ < κε. Let 0 < λ1 < λ2 < κε. By

Lemma 2.3, we obtain that√
λ1T′λ1

(αM(λ2)) <
√

λ2T′λ2
(αM(λ2)) = 0,



18 S.-Y. Huang and M.-S. Hwang

which implies that αM(λ1) < αM(λ2) by (2.51). So αM(λ) is a strictly increasing function of
λ ∈ (0, κε). It follows that

lim
λ→0+

αM(λ) < αM(λ) < lim
λ→κ−ε

αM(λ) for λ ∈ (0, κε).

Assume that there exists λ3 ∈ (0, κε) such that limλ→0+ αM(λ) < αm(λ3) < limλ→κ−ε
αM(λ).

Then there exists λ4 ∈ (λ3, κε) such that

αM(λ3) < αm(λ3) < αM(λ4) <
5

12ε
. (2.52)

By (2.51), there exists α1 ∈
(
αM(λ4), 5

12ε

)
such that T′λ4

(α1) < 0. Then by (2.51), (2.52) and
Lemma 2.3, we observe that

0 <
√

λ3T′λ3
(α1) <

√
λ4T′λ4

(α1) < 0,

which is a contradiction. So (2.50) holds. The proof is complete.

Lemma 2.12 ([9, Lemma 4.6]). Consider (1.1) with fixed L > 0. Let ρL,ε ≡ min{L, βε} and sgn(u)
be the signum function. Then the following statements (i)–(iii) hold:

(i) There exists a positive function λL(α) ∈ C1(0, ρL,ε) such that TλL(α)(α) = L. Moreover, the
bifurcation curve SL = {(λL(α), α) : α ∈ (0, ρL,ε)} is continuous on the (λ, ‖u‖∞)-plane.

(ii) limα→0+ λL(α) = 0 and limα→ρ−L,ε
λL(α) = ∞.

(iii) sgn(λ′L(α)) = sgn(T′λL(α)
(α)) for α ∈ (0, ρL,ε).

Lemma 2.13 ([10, Lemma 3.5]). Consider (1.1). Let L > 0. Then the following statements (i) and
(ii) hold:

(i) If λL(α) has a local maximum at αM, then TλL(αM)(α) has a local maximum at αM. Conversely,
if Tλ(α) has a local maximum at αM and Tλ(αM) = L, then λL(α) has a local maximum at αM.

(ii) If λL(α) has a local minimum at αm, then TλL(αm)(α) has a local minimum at αm. Conversely, if
Tλ(α) has a local minimum at αm and Tλ(αm) = L, then λL(α) has a local minimum at αm.

Lemma 2.14. Consider (1.1) with 0 < ε < ε0. Then there exists a continuous function Lε ∈ (0, ∞) of
ε such that

Λε ≡
{

L > 0 : λ′L(α) < 0 for some α ∈ (0, ρL,ε)
}
= (Lε, ∞) .

Furthermore, λ′L(α) > 0 for α ∈ (0, ρL,ε) where 0 < L < Lε.

Proof. Let ε ∈ (0, ε0) be given. By Lemma 2.9 and similar argument in the proof of [7, Lemma
4.7], there exists Lε ∈ [0, ∞) such that Λε = (Lε, ∞). We divide the rest of the proof into the
next three steps.

Step 1. We prove that Lε > 0. Assume that Lε = 0. By Lemma 2.9, we have

T′λ(α) ≥ 0 for 0 < α < βε and λ ≥ ξε. (2.53)
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Let L = Tξε
(1). It implies that L ∈ Λε = (0, ∞). Then there exists α1 ∈ (0, ρL,ε) such that

λ′L(α1) < 0. It follows that T′λL(α1)
(α1) < 0 by Lemma 2.12(iii). By (2.45) and (2.53), we observe

that α1 > 1 and 0 < λL(α1) < ξε. By Lemmas 2.1(iii), 2.12(i) and (2.53), we further observe that

L = TλL(α1)(α1) > Tξε
(α1) ≥ Tξε

(1) = L,

which is a contradiction. Thus Lε > 0.

Step 2. We prove that λ′L(α) > 0 for α ∈ (0, ρL,ε) where 0 < L < Lε. Let L ∈ (0, Lε) be given.
Assume that there exists α2 ∈ (0, ρL,ε) such that λ′L(α2) = 0. So by Lemma 2.12(iii), we obtain
that T′λL(α2)

(α2) = 0. Since

0 < α2 < ρL,ε = min{L, βε} < min{Lε, βε} = ρLε,ε,

we see that TλL(α2)(α2) = L < Lε = TλLε (α2)(α2). So by Lemma 2.1(iii), we obtain that λL(α2) >

λLε(α2). Assume that α2 ≥ 5ε
12 . Since T′λL(α2)

(α2) = 0, and by Lemma 2.2(ii), TλL(α2)(α) has a
local minimum at α2. By Lemma 2.13, we find that λL(α) has a local minimum at α2, which is
a contradiction since L < Lε. So 0 < α2 < 5ε

12 . By Lemma 2.3, we see that√
λLε(α2)T′λLε (α2)

(α2) <
√

λL(α2)T′λL(α2)
(α2) = 0,

from which it follows that by Lemma 2.12(iii), λ′Lε
(α2) < 0. It is a contradiction since λ′Lε

(α) ≥
0 for α ∈ (0, ρL,ε). Thus λ′L(α) > 0 for α ∈ (0, ρL,ε) where 0 < L < Lε.

Step 3. We prove the continuity of Lε. Let ε̄ ∈ (0, ε0) be given. For the sake of convenience,
we let Tλ(α, ε) = Tλ(α) and λL(α, ε) = λL(α). We consider the following two cases and prove
they would not occur.

Case 1. Assume that lim infε→ε̄ Lε < Lε̄. Let L ∈ (lim infε→ε̄ Lε, Lε̄) be given. Then there exists
{εn}n∈N ⊂ (0, ε0) such that

lim
n→∞

εn = ε̄ and Lεn < L < Lε̄ for n ∈N.

So there exists {αn}n∈N ⊂ (0, ρL,εn) such that

∂

∂α
λL(α, ε̄) > 0 for 0 < α < ρL,ε and

∂

∂α
λL(αn, εn) < 0 for n ∈N. (2.54)

By Lemmas 2.2(i) and 2.12(iii), we have

∂

∂α
λL(α, ε) > 0 for 0 < α ≤ 1 and 0 < ε < ε0. (2.55)

By (2.54) and (2.55), we see that αn ∈ (1, ρL,εn). We assume without loss of generality that
limn→∞ αn = ᾱ ∈ [1, ρL,εn ]. If ᾱ < ρL,εn , by (2.54), we observe that

0 <
∂

∂α
λL(ᾱ, ε̄) = lim

n→∞

∂

∂α
λL(αn, εn) ≤ 0,

which is a contradiction. If ᾱ = ρL,εn , by (2.54) and Lemma 2.12(ii), we observe that

lim
α→ρ−L,ε

λL(α, ε̄) = ∞ and lim
α→ρ−L,ε

∂

∂α
λL(α, ε̄) ≤ 0,
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which is a contradiction.

Case 2. Assume that lim supε→ε̄ Lε > Lε̄. Let L ∈ (Lε̄, lim supε→ε̄ Lε) be given. Then there
exists {εn}n∈N ⊂ (0, ε0) such that

lim
n→∞

εn = ε̄ and Lε̄ < L < Lεn for n ∈N.

So there exists ᾱ ∈ (0, ρL,ε̄) such that

∂

∂α
λL(ᾱ, ε̄) < 0 and

∂

∂α
λL(α, εn) > 0 for 0 < α < ρL,εn and n ∈N. (2.56)

Since f (βε) = 0, and by implicit function theorem, βε is a strictly decreasing and continuous
function of ε > 0. So we see that ᾱ < ρL,ε̄ ≤ β ε̄ < βεn for n ∈ N. It implies that 0 < ᾱ < ρL,εn

for n ∈N. By (2.56), we observe that

0 >
∂

∂α
λL(ᾱ, ε̄) = lim

n→∞

∂

∂α
λL(ᾱ, εn) ≥ 0,

which is a contradiction.
So by Cases 1 and 2, we see that lim supε→ε̄ Lε ≤ Lε̄ ≤ lim infε→ε̄ Lε. It follows that Lε̄ =

lima→ā Lε. Thus Lε is a continuous function on (0, ε0).
The proof is complete.

Lemma 2.15. Consider (1.1) with 0 < ε < ε0. Then there exists L̃ε > Lε such that λL(α) has exactly
one local maximum and exactly one local minimum on (0, ρL,ε) for L > L̃ε.

Proof. Let λ∗ ∈ (0, κε) be given. By Lemma 2.10, then

T′λ(α)


> 0 for α ∈ (0, αM(λ)) ∪ (αm(λ), βε) ,

= 0 for α = αM(λ) or α = αm(λ),

< 0 for α ∈ (αM(λ), αm(λ)) ,

if 0 < λ ≤ λ∗. (2.57)

Let L̃ε ≡ Tλ∗(αM(λ∗)). We divide this proof into the next three steps.

Step 1. We prove that L̃ε > Lε. Let L ≥ L̃ε and

α1 ∈
(

αM(λ∗), min
{

αm(λ
∗),

5
12ε

})
. (2.58)

By (2.57) and (2.58), we see that

lim
λ→0+

Tλ(α) = ∞ > L ≥ Tλ∗(αM(λ∗)) > Tλ∗(α1).

So by Lemma 2.1(iii) and continuity of Tλ(α) with respect to λ, there exists λ∗ ∈ (0, λ∗) such
that L = Tλ∗(α1). Clearly, λ∗ = λL(α1) by Lemma 2.12(i). Then by (2.57), (2.58) and Lemma 2.3,
we observe that √

λ∗T′λL(α1)
(α1) =

√
λ∗T′λ∗(α1) <

√
λ∗T′λ∗(α1) < 0.

So by Lemma 2.12(iii), we obtain that λ′L(α1) < 0. It implies that L > Lε by Lemma 2.14. Thus
L̃ε > Lε.

Step 2. We prove that λL(α) has exactly one local maximum in (0, ρL,ε) for L > L̃ε. Let
L > L̃ε be given. By Lemmas 2.2(i) and 2.12(iii), we see that λ′L(α) > 0 for 0 < α ≤ 1. Since
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L > L̃ε, and by Lemma 2.14, λL(α) has at least one local maximum in (0, ρL,ε). Assume that
λL(α) has two local maximums at α1

M and α2
M
(
> α1

M
)
. Then λL(α) has a local minimum at

αm ∈ (α1
M, α2

M). Without loss of generality, we assume that λL(α
1
M) > λL(αm). For the sake of

convenience, we let

λ1 = λL(α
1
M), λ2 = λL(α

2
M) and λ3 = λL(αm).

So by Lemma 2.13, we see that Tλ1(α
1
M) and Tλ2(α

2
M) are local maximum values and Tλ3(αm)

is a local minimum value. In addition, we note that

Tλ1(α
1
M) = TλL(α

1
M)(α

1
M) = L > L̃ε = Tλ∗(αM(λ∗)). (2.59)

Assume that λ1 ≥ λ∗. By Lemma 2.1(iii) and (2.59), we observe that Tλ∗(α
1
M) ≥ Tλ1(α

1
M) >

Tλ∗(αM(λ∗)). It implies that

αm(λ
∗) < α1

M and T′λ∗(α
1
M) > 0. (2.60)

By Lemma 2.2(ii), we have α1
M < α2

M < 5
12ε . So by Lemma 2.3 and (2.60), we observe hat

0 <
√

λ∗T′λ∗(α
1
M) ≤

√
λ1T′λ1

(α1
M) = 0,

which is a contradiction. So λ1 < λ∗. Similarly, we obtain that λ2 < λ∗. So by (2.57) and
Lemma 2.10, we see that

αM(λ1) = α1
M < αm = αm(λ3) < α2

M = αM(λ2),

which is a contradiction by Lemma 2.11. Thus λL(α) has exactly one local maximum in
(0, ρL,ε).

Step 3. We prove Lemma 2.15. Since λ′L(α) > 0 for 0 < α ≤ 1, and by Lemma 2.12(ii) and
Step 2, we see that λL(α) has exactly one local maximum and one local minimum on (0, ρL,ε)
for L > L̃ε.

The proof is complete.

3 Proof of the main result

Proof of Theorem 1.3. (I) The statement (i) follows immediately by Lemma 2.12(i)(ii).
(II) Assume that ε ≥ ε0. By Theorem 1.2 and (2.4), we obtain that T̄′(α) ≥ 0 for 0 < α < βε.

So by Lemmas 2.1(ii) and 2.3, we see that

0 ≤ T̄′(α) = lim
λ→0+

√
λT′λ(α) <

√
λT′λ(α) for 0 < α ≤ 5

12ε
and λ > 0. (3.1)

Since T′λ(
5

12ε ) > 0 for λ > 0, and by Lemma 2.2(ii), we further see that

T′λ(α) > 0 for
5

12ε
< α < βε and λ > 0. (3.2)

So by (3.1), (3.2) and Lemma 2.12(iii), we obtain that

λ′L(α) > 0 for 0 < α < ρL,ε and λ > 0.
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Then the statement (ii) holds.
(III) Assume that 0 < ε < ε0. By Lemma 2.14, there exists a continuous function Lε ∈ (0, ∞)

of ε such that

Λε =
{

L > 0 : λ′L(α) < 0 for some α ∈ (0, ρL,ε)
}
= (Lε, ∞) .

So by Lemma 2.12(i), the bifurcation curve SL is monotone increasing if 0 < L ≤ Lε, and is
S-like shaped if L > Lε. In addition, by Lemma 2.15, there exists L̃ε > Lε such that λL(α) has
one local maximum and one local minimum on (0, ρL,ε) for L > L̃ε. So by Lemma 2.12(i), the
bifurcation curve SL is S-shaped if L > L̃ε. Next, we divide into the next two steps to prove
that limε→0+ Lε ∈ (0, ∞) and limε→ε−0

Lε = ∞.

Step 1. We prove that limε→ε−0
Lε = ∞. Assume that limε→ε−0

Lε < ∞. Let L > limε→ε−0
Lε. For

the sake of convenience, we let

λL(α, ε) = λL(α), Tλ(α, ε) = Tλ(α) and T̄(α, ε) = T̄(α).

Since L > limε→ε−0
Lε, there exists δ > 0 such that L > Lε for ε ∈ (ε0 − δ, ε0). So for ε ∈

(ε0 − δ, ε0), by Lemmas 2.2(ii) and 2.14, there exists αε ∈
[
1, 5

12ε

]
such that ∂

∂α λL(αε, ε) < 0.
Without loss of generality, we assume that limε→ε+0

αε = α0 ∈
[
1, 5

12ε

]
. By Theorem 1.2 and

(2.4), we see that T̄′(α0, ε0) ≥ 0. So by Lemma 2.3, we further see that

0 ≤ T̄′(α0, ε0) = lim
λ→0+

√
λT′λ(α0, ε0) <

√
λT′λ(α0, ε0) for λ > 0.

Then by Lemma 2.12(iii), we obtain that ∂
∂α λL(α0, ε0) > 0. It follows that

0 ≥ lim
ε→ε+0

∂

∂α
λL(αε, ε) =

∂

∂α
λL(α0, ε0) > 0,

which is a contradiction. So limε→ε−0
Lε = ∞.

Step 2. We prove that limε→0+ Lε ∈ (0, ∞). Notice that as ε → 0+, the cubic polynomial f (u)
reduces to the quadratic polynomial u2 + u + 1. So we consider the equation

−

 u′(x)√
1− (u′(x))2

′ = λ(u2 + u + 1), − L < x < L,

u(−L) = u(L) = 0.

(3.3)

Since u2 + u + 1 satisfies all hypotheses of [7, Theorem 3.2], there exists L0 > 0 such that the
bifurcation curve SL of (3.3) is S-like shaped for L > L0, monotone increasing for 0 < L ≤ L0,
and has no vertical tangent lines for 0 < L < L0. Thus we have the following assertions
(i)–(iii):

(i) if L > L0, then λ′L(α, 0) < 0 for some α > 0.

(ii) if L = L0, then λ′L(α, 0) ≥ 0 for α > 0.

(iii) if 0 < L < L0, then λ′L(α, 0) > 0 for α > 0.

By a similar argument as in the proof of Lemma 2.14, we can prove that Lε is a continuous
function of ε ∈ [0, ε0). Thus limε→0+ Lε = L0 ∈ (0, ∞).

The proof is complete.
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4 Appendix

In this section, we prove assertion (2.31). Let ε̄ =
√

31
1000 (≈ 0.176). By Lemma 2.5(iii), we have

ε̂ < ε̄. To prove (2.31), it is sufficient to prove that

N2 (α, u) < 0 for 0 < u < α, 1.7 ≤ α ≤ 1
3ε

and 0.07 ≤ ε ≤ ε̄ (≈ 0.176). (4.1)

Let α ∈ [1.7, 1
3ε ] be given and N2 (u) = N2(α, u). It is easy to compute that

N′2 (u) = −
1
2

ε2u7 +
49
24

εu6 +

(
21
4

ε− 2
3

)
u5 +

(
125
8

ε− 25
12

)
u4 +

(
1
2

ε2α4 − 7
6

εα3

−7
2

εα2 − 25
2

εα− 20
3

)
u3 +

(
−7

8
εα4 +

2
3

α3 +
5
4

α2 + 5α +
3
4

)
u2

+

(
−7

4
εα4 +

5
6

α3 − 1
2

α + 4
)

u− 25
8

εα4 +
5
3

α3 − 1
4

α2 − 4α,

N′′2 (u) = − 7
2

ε2u6 +
49
4

εu5 +

(
105

4
ε− 10

3

)
u4 +

(
125

2
ε− 25

3

)
u3 +

(
3
2

ε2α4 − 7
2

εα3

−21
2

εα2 − 75
2

εα− 20
)

u2 +

(
−7

4
εα4 +

4
3

α3 +
5
2

α2 + 10α +
3
2

)
u

− 7
4

εα4 +
5
6

α3 − 1
2

α + 4,

N′′′2 (u) = − 21ε2u5 +
245
4

εu4 +

(
105ε− 40

3

)
u3 +

(
375

2
ε− 25

)
u2 + (3ε2α4 − 7εα3

− 21εα2 − 75εα− 40)u− 7
4

εα4 +
4
3

α3 +
5
2

α2 + 10α +
3
2

,

N(4)
2 (u) = − 105ε2u4 + 245εu3 + (315ε− 40) u2 + (375ε− 50) u + 3ε2α4 − 7εα3

− 21εα2 − 75εα− 40,

N(5)
2 (u) = −420ε2u3 + 735εu2 + (630ε− 80) u + 375ε− 50,

N(6)
2 (u) = −1260ε2u2 + 1470εu + 630ε− 80.

Then we divide the proof into the next four steps.

Step 1. We prove that, for 0.07 ≤ ε ≤ ε̄,

N′′2 (0) = −7
4

εα4 +
5
6

α3 − 1
2

α + 4 > 0. (4.2)

It is easy to see that

1.7 ≤ α ≤ 1
3ε
≤ 1

3 (0.07)
=

100
21

for 0.07 ≤ ε ≤ ε̄. (4.3)
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Since ε ≤ 1
3α , and by (4.3), we observe that

N′′2 (0) ≥ −7
4

(
1

3α

)
α4 +

5
6

α3 − 1
2

α + 4 =
1
4
(
α3 − 2α + 16

)
>

1
4

[
(1.7)3 − 2

(
100
21

)
+ 16

]
=

239173
84000

> 0.

Step 2. We prove that, for 0.07 ≤ ε ≤ ε̄,

N′′2 (α) = −2α6ε2 + α3 (7α2 + 14α + 25
)

ε− 2α4 − 5α3 − 10α2 + α + 4 < 0. (4.4)

Clearly, {
(α, ε) : 1.7 ≤ α ≤ 1

3ε
and 0.07 ≤ ε ≤ ε̄

}
= Ω1 ∪Ω2,

where

Ω1 ≡
{
(α, ε) : 1.7 ≤ α ≤ 1

3ε̄
and 0.07 ≤ ε ≤ ε̄

}
, (4.5)

Ω2 ≡
{
(α, ε) :

1
3ε̄
≤ α ≤ 1

3ε
and 0.07 ≤ ε ≤ ε̄

}
, (4.6)

see Figure 4.1. So we consider the following two cases.

Figure 4.1: The sets Ω1 and Ω2.0

Case 1. Assume that (α, ε) ∈ Ω1. It implies that

1.7 ≤ α ≤ 1
3ε̄

(≈ 1.893) < 1.9. (4.7)

So we observe that

∂

∂ε
N′′2 (α) = −4εα6 + 7α5 + 14α4 + 25α3 > −4ε̄α6 + 7α5 + 14α4 + 25α3

> −4ε̄ (1.9)6 + 7 (1.7)5 + 14 (1.7)4 + 25 (1.7)3

=
33914439

105 − 47045881
25× 106

√
310 (≈ 306.01) > 0.
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Then by (4.7),

N′′2 (α) < N′′2 (α)
∣∣
ε=ε̄

= − 31
500

α6 +
7
10

√
31
10

α5 +

(
7
5

√
31
10
− 2

)
α4 +

(
5
2

√
31
10
− 5

)
α3

− 10α2 + α + 4

< 0,

see Figure 4.2(i).

Case 2. Assume that (α, ε) ∈ Ω2. It implies that

(α, ε) ∈ Ω2 =

{
(α, ε) :

1
3ε̄
≤ α ≤ 1

0.21
and 0 < ε <

1
3α

}
.

Then we observe that

∂

∂ε
N′′2 (α) = − 4α6ε + α3 (7α2 + 14α + 25

)
> −4α6

(
1

3α

)
+ α3 (7α2 + 14α + 25

)
=

1
3
(
17α2 + 75 + 42α

)
α3 > 0. (4.8)

Since
1.8 < (1.89 ≈) 1

3ε̄
≤ α ≤ 1

0.21
< 5, (4.9)

and by (4.8), we observe that

N′′2 (α) < N′′2 (α)
∣∣
ε= 1

3α
=

1
9
(
α2 − 3

) (
α2 − 3α− 12

)
< 0,

see Figure 4.2(ii).
Thus (4.4) holds by Cases 1–2.

Figure 4.2: (i) The graph of − 31
500 α6 + 7

10

√
31
10 α5 +

(
7
5

√
31
10 − 2

)
α4 +

(
5
2

√
31
10 − 5

)
α3

−10α2 + α + 4 on [1.7, 9]. (ii) The graph of
(
α2 − 3

) (
α2 − 3α− 12

)
on [1.8, 5].

Step 3. We prove that, for 0.07 ≤ ε ≤ ε̄,

N′′2 (u) is strictly increasing, or strictly increasing-decreasing,

or strictly increasing-decreasing-increasing on (0, α) . (4.10)
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Clearly, N(6)
2 (u) is a quadratic polynomial of u with negative leading coefficient. Since, for

ε > 0,

N(6)
2 (0) = 630ε− 80

{
< 0 if 0.07 ≤ ε < 8

63 ,

≥ 0 if 8
63 ≤ ε ≤ ε̄,

and N(6)
2

(
1
3ε

)
= 90 (7ε + 3) > 0,

we see thatN(5)
2 (u) is strictly decreasing-increasing on (0, α) if 0.07 ≤ ε < 8

63 ,

N(5)
2 (u) is strictly increasing on (0, α) if (0.126 ≈) 8

63 ≤ ε ≤ ε̄.
(4.11)

In addition, we compute and find that

N(5)
2 (0) = 375ε− 50

< 0 for 0.07 ≤ ε < 2
15 (≈ 0.133) ,

≥ 0 for 2
15 ≤ ε ≤ ε̄,

(4.12)

N(5)
2 (1.7) = −103173

50
ε2 +

71403
20

ε− 186 > 0 for 0.07 ≤ ε ≤ ε̄. (4.13)

Since 0 < u < α and 1.7 ≤ α ≤ 1
3ε , and by (4.11)–(4.13), we obtain that

N(4)
2 (u) is either strictly decreasing-increasing, or strictly increasing on (0, α) . (4.14)

Since 1.7 ≤ α ≤ 1
3ε and 0.07 ≤ ε ≤ ε̄, we compute and find that

N(4)
2 (0) = 3ε2α4 − 7εα3 − 21εα2 − 75εα− 40

< 3ε2
(

1
3ε

)4

− 7ε (1.7)3 − 21ε (1.7)2 − 75ε (1.7)− 40

=
1

27000ε2

(
−6009687ε3 − 1080000ε2 + 1000

)
<

1
27000ε2

[
−6009687 (0.07)3 − 1080 000 (0.07)2 + 1000

]
= −6353322641

27× 109ε2 < 0. (4.15)

So by (4.14) and (4.15), we obtain that

N′′′2 (u) is either strictly decreasing, or strictly decreasing-increasing on (0, α) . (4.16)

Since 0.07 ≤ ε ≤ ε̄, and by (4.3), we see that

N′′′2 (0) = −7
4

εα4 +
4
3

α3 +
5
2

α2 + 10α +
3
2
≥ −7

4
ε̂α4 +

4
3

α3 +
5
2

α2 + 10α +
3
2

=
1
12

(
−21

10

√
31
10

α4 + 16α3 + 30α2 + 120α + 18

)
> 0, (4.17)

see Figure 4.3. Then by (4.16) and (4.17), we obtain (4.10).

Step 4. We prove (4.1). By Steps 1–2 and (4.10), we obtain that

N′2 (u) is strictly increasing-decreasing on (0, α) . (4.18)
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Figure 4.3: The graph of − 21
10

√
31
10 α4 + 16α3 + 30α2 + 120α + 18 on [1.7, 5].

Since N′2 (α) = 0 for 1.7 ≤ α ≤ 1
3ε , and by (4.18), we obtain that

N2 (u) is either strictly increasing, or strictly decreasing-increasing on (0, α) . (4.19)

We assert that

N2 (0) = −
1
16

ε2α8 +
7
24

εα7 +
7
8

εα6 +
25
8

εα5 − 1
9

α6 − 5
12

α5 − 5
3

α4 +
1
4

α3 + 2α2 ≤ 0. (4.20)

Since N2 (α) = 0, and by (4.19) and (4.20), we see that (4.1) holds. Next, we prove assertion
(4.20). Since 1.7 ≤ α ≤ 1

3ε and 0.07 ≤ ε ≤ ε̄, we compute and find that

∂

∂ε
N2 (0) =

(
−1

8
εα3 +

7
24

α2 +
7
8

α +
25
8

)
α5

≥
[
−1

8
ε

(
1
3ε

)3

+
7
24

(1.7)2 +
7
8
(1.7) +

25
8

]
α5

=
117837ε2 − 100

21600ε2 α5 ≥ 117837 (0.07)2 − 100
21600ε2 α5

=
4774 013

216× 106ε2 α5 > 0. (4.21)

Recall the sets Ω1 and Ω2 defined by (4.5) and (4.6) respectively, see Figure 4.1. Then we
consider the following two cases.

Case 1. Assume that (α, ε) ∈ Ω1. By (4.7) and (4.21), we see that

N2 (0) ≤ N2 (0)|ε=ε̄ = Q1 (α) < 0 for 0.07 ≤ ε ≤ ε̄,

where

Q1 (α) ≡ −
31

16000
α8 +

7
240

√
31
10

α7 +

(
7
80

√
31
10
− 1

9

)
α6

+

(
5

16

√
31
10
− 5

12

)
α5 − 5

3
α4 +

1
4

α3 + 2α2,

see Figure 4.4(i).
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Case 2. Assume that (α, ε) ∈ Ω2. By (4.9) and (4.21), we see that

N2 (0) ≤ N2 (0)|ε= 1
3α
= Q2(α) < 0 for

1
3ε̄
≤ α ≤ 1

0.21
,

where

Q2 (α) ≡ −
1
48

α6 − 1
8

α5 − 5
8

α4 +
1
4

α3 + 2α2,

see Figure 4.4(ii).

Figure 4.4: (i) The graph of Q1 (α) on [1.7, 1.9]. (ii) The graph of Q2 (α) on [1.8, 5].

Thus, by Cases 1 and 2, assertion (4.20) holds. The proof is complete.
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