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1 Introduction

In the paper we investigate the second order nonlinear differential equation

x′′ + b(t)t−γ|x|β sgn x = 0, t ∈ [1, ∞), (1.1)

where the function b ∈ AC[1, ∞) is positive on [1, ∞) and bounded away from zero, i.e.,

inf
t∈[1,∞)

b(t) = b0 > 0,

and the constants β and γ are positive and satisfy

β > 1, γ =
β + 3

2
.

Equation (1.1) is the so-called generalized super-linear Emden–Fowler differential equa-
tion; it is widely studied in the literature, see, e.g., [16,20,26] and references therein. Equation
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(1.1) arises also in the study for searching spherically symmetric solutions of the nonlinear
elliptic equation

div (r(x)∇u) + q(x) F(u) = 0,

where r and q are smooth functions defined on Rd, d ≥ 2, r is positive, F ∈ C(R). The search
for radially symmetric solutions outside of a ball of radius R leads to the equation(

td−1r(t)u′
)′
+ td−1q(t)F(u) = 0, t ≥ R, (1.2)

where t = |x|. In the special case r(t) = t1−d, q(t) = b(t)t1−γ−d for t ≥ 1 and F(u) = |u|βsgn u,
we get (1.1).

By a solution of (1.1) we mean a function x, defined on some interval of positive measure
contained on [1, ∞), satisfying (1.1). Further, x is said to be proper if it is defined on some
interval [tx, ∞), tx ≥ 1, and supt∈[τ,∞)|x(t)| > 0 for any τ ≥ tx. In other words, a proper
solution of (1.1) is a solution that is continuable to infinity and different from the trivial
solution in any neighborhood of infinity. Since β > 1, the initial value problem associated to
(1.1) has a unique local solution, that is a solution x such that x(t) = x0, x′(t) = x1, defined in
a suitable neighborhood of t ∈ [tx, ∞) for arbitrary numbers x0, x1. Moreover, in view of the
assumptions on the function b, any nontrivial local solution of (1.1) is a proper solution, see,
e.g., [16, Theorem 17.1] or [26, Section 3]. Observe that, if b(t) > 0 but b 6∈ AC[1, ∞), then
equation (1.1) with uncontinuable to infinity solutions may exist, see, e.g., [10, 15].

As usual, a proper solution x of (1.1) is said to be nonoscillatory if x is different from zero for
any large t and oscillatory otherwise. Clearly, in view of the positiveness of b, any eventually
positive solution x of (1.1) is increasing for any large t. Thus, nonoscillatory solutions x of (1.1)
can be a-priori divided into three classes. More precisely, x is called a subdominant solution if

lim
t→∞

x(t) = `x, 0 < `x < ∞,

or intermediate solution if
lim
t→∞

x(t) = ∞, lim
t→∞

x′(t) = 0,

or dominant solution if

lim
t→∞

x(t) = ∞, lim
t→∞

x′(t) = `x, 0 < `x < ∞,

see, e.g., [11, 18, 24, 25].
In the literature great attention has been devoted to the existence of unbounded solutions

which are dominant solutions, sometimes called asymptotically linear solutions. However,
unbounded nonoscillatory solutions, which are not asymptotically linear solutions, are very
difficult to treat. Indeed, as far we know, until now no general necessary and sufficient
conditions for existence of intermediate solutions of (1.1) are known; this fact mainly is due to
the lack of sharp upper and lower bounds for intermediate solutions, see, e.g., [1, page 241],
[13, page 3], [18, page 2].

For the special case of (1.1) with b(t) = 1/4, that is for the equation

x′′ +
1
4

t−γ|x|β sgn x = 0, t ∈ [1, ∞), (1.3)

the above three types of nonoscillatory solutions cannot simultaneously coexist, as Moore and
Nehari proved in [21]. The problem of this triple coexistence has been solved in a negative
way for the more general equation

(a(t)|x′|αsgn x′)′ + b(t)|x|βsgn x = 0,
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where a is a positive continuous function on [1, ∞) and α is a positive constant, α 6= β, in
[14, 22] and [5, 7], according to α > β or α < β, respectively.

A much more subtle question concerns the possible coexistence between oscillatory so-
lutions and nonoscillatory solutions. The particular equation (1.3), as it is shown in [21],
has both oscillatory solutions and nonoscillatory solutions. These nonoscillatory solutions
are either subdominant solutions or intermediate solutions and both types exist. Moreover,
intermediate solutions of (1.3) intersect the intermediate solution

√
t infinitely many times.

Many efforts have been made to obtain the existence of at least one oscillatory solution for
more general equations than (1.3). A classical approach is due to Jasný [12] and Kurzweil [17],
see also [16, Theorem 18.4.], and is based on certain properties of an auxiliary energy-type
function. In particular, in [12, 17] it is proved that, if the function b is nondecreasing for large
t, then any proper solution x of (1.1), with x(t1) = 0 and |x′(t1)| sufficiently large, t1 ≥ 1, is os-
cillatory. The sharpness of this monotonicity condition follows from a Skhalyakho–Kiguradze
result, see e.g., [20, Theorem 14.3.], where it is shown that if the function tεb(t) is nonincreas-
ing for any large t and some ε > 0, then every proper solution of (1.1) is nonoscillatory.

Roughly speaking, in view of the above quoted results by Jasný, Kurzweil and Kiguradze,
equation (1.3) can be considered as the border equation between oscillation and nonoscillation.

Our aim here is to study how the quoted results in [21] for (1.3) can be extended to the
perturbed equation (1.1).

Since b ∈ AC[1, ∞), there exists the derivative of b almost everywhere on [1, ∞). Thus,
under the additional assumption ∫ ∞

1
|b′(t)| dt < ∞, (1.4)

we will study the existence of at least one oscillatory solution to (1.1) and its coexistence with
intermediate solutions. Observe that in view of (1.4), the function b is of bounded variation
on [1, ∞), but b could not be monotone for large t.

Our main results are the following.

Theorem 1.1. Assume (1.4) holds. Then (1.1) has infinitely many oscillatory solutions.

Theorem 1.2. Assume (1.4) holds. Equation (1.1) has infinitely many intermediate solutions x defined
on [1, ∞) such that

C0t1/2 ≤ x(t) ≤ C1t1/2 for large t (1.5)

where C0 is a suitable positive constant which does not depends on the choice of x, and

C1 =

(
β + 1
8b0

)1/(β−1)

.

Moreover, intermediate solutions intersect the function(
1

4b(t)

)1/(β−1)√
t

infinitely many times.

Corollary 1.3. Assume (1.4) holds. Equation (1.1) admits simultaneously infinitely many oscillatory
solutions, subdominant solutions, and intermediate solutions.
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For equation (1.1), Theorem 1.2 extends analogues results in [6, Theorem 2.1] and [3, The-
orem 3.1], where b is required to be nonincreasing for t ≥ 1. Recently, the existence of inter-
mediate solutions of (1.1) has been considered in [23, 24]. More precisely, in these papers, the
existence problem is reduced, by means of an ingenious change of variables, to the solvability
of a system of two integral equations on the half-line [1, ∞). Moreover, an asymptotic formula
for these solutions is presented, too. Observe that asymptotic forms of intermediate solutions
of (1.1) are given also in [13], where the existence problem is not studied. Hence, Theorem 1.2
extends also these quoted results in [13, 23, 24].

2 Preliminaries

We start by recalling the following asymptotic property of nonoscillatory solutions of (1.1).

Lemma 2.1. Any nonoscillatory solution x of (1.1) satisfies limt→∞ x′(t) = 0. Consequently, x is
either subdominant solution or intermediate solution.

Proof. Since

β− γ =
β− 3

2
> −1,

and b is bounded away from zero, we obtain∫ ∞

1
tβ−γb(t) dt = ∞.

Hence, in view of [8, Theorem 1], equation (1.1) does not have nonoscillatory solutions x such
that limt→∞ x′(t) 6= 0.

The approach for proving our main results is based on the following lemma.

Lemma 2.2. The change of variable

x(t) = t1/2u(s) , s = log t , t ∈ [1, ∞) , (2.1)

transforms equation (1.1) into equation

ü− u
4
+ b(es)|u(s)|β sgn u(s) = 0 , s ∈ [0, ∞), (2.2)

where “ · ” denotes the derivative with respect to the variable s.

Proof. We have

x′(t) =
1

2t1/2 u(s) + t1/2u̇(s)
1
t
=

1
t1/2

(
u(s)

2
+ u̇(s)

)
x′′(t) = − 1

2t3/2

(
u(s)

2
+ u̇(s)

)
+

1
t1/2

(
u̇(s)

2
+ ü(s)

)
1
t

=
1

t3/2

(
−u(s)

4
+ ü(s)

)
.

Substituting into (1.1) we get (2.2).

Lemma 2.3. All the solutions of (2.2) are defined on [0, ∞). Moreover, any solution u of (2.2) such
that u(S) = 0, u̇(S) = 0 at some S ≥ 0, satisfies u(s) ≡ 0 for s ≥ 0.
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Proof. The continuability at infinity follows from the same property for (1.1), see, e.g., [16,
Theorem 17.1]. Another approach employs an idea of Conti [4] and uses two Lyapunov
functions, see [9, Theorem 3.1.] and [27, Appendix A]. The second statement follows, e.g.,
from [19, Lemma 1.1.] and Lemma 2.2.

Set, for u ≥ 0,

Q(u) = −u2 +
8b0

β + 1
uβ+1 (2.3)

and

A0 =

(
1

4b0

) 1
β−1

, A =

(
β + 1
8b0

) 1
β−1

. (2.4)

Since β > 1, we have A0 < A. The following holds.

Lemma 2.4. The function Q satisfies

Q(0) = Q(A) = 0, Q(A0) = −A2
0

β− 1
β + 1

.

Moreover, Q is decreasing on [0, A0) and increasing on (A0, A].

Proof. Since 8b0Aβ+1/(β + 1) = A2, we obtain

Q(A) = −A2 +
8b0

β + 1
Aβ+1 = 0.

From dQ/du = 2u(−1 + 4b0uβ−1) we get dQ/du = 0 for u = A0, dQ/du < 0 for u ∈ (0, A0),
and dQ/du > 0 for u ∈ (A0, A). This gives the assertion.

Lemma 2.5. Let u be a solution of (2.2). For fixed s ∈ [0, ∞), the solution u satisfies for s ∈ [0, ∞)

4u̇2(s) + Q(|u(s)|) = 4u̇2(s̄) + Q(|u(s̄)|) + 8
β + 1

(
b0 − b(es)

)
|u(s)|β+1

− 8
β + 1

(
b0 − b(es̄)

)
|u(s̄)|β+1 +

8
β + 1

∫ s

s̄
b′(eσ)eσ|u(σ)|β+1 dσ . (2.5)

Proof. Multiplying equation (2.2) by 8u̇, we get

8üu̇− 2u̇u + 8b0|u|βu̇ sgn u = 8
(

b0 − b(es)
)
|u|βu̇ sgn u .

Integrating this equality on [s̄, s] we obtain

4u̇2(s) + Q(|u(s)|) = 4u̇2(s̄) + Q(|u(s̄)|) + 8
∫ s

s̄

(
b0 − b(eσ)

)
|u(σ)|β u̇(σ) sgn u(σ) dσ.

Hence (2.5) follows by integrating by parts.

Lemma 2.6. Let 0 < b1 ≤ b0 and T ≥ 1 be such that b(t) ≥ b1 on [T, ∞). Let x be a nonoscillatory
solution of (1.1) such that x(t) 6= 0 on [T, ∞) and u be given by (2.1) with s0 = log T. Then we have
for t ≥ T

|x(t)| ≤ Kt1/2 with K =
(β + 1

4b1

) 1
β−1

(2.6)
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and
|u(s)| ≤ K for s ≥ s0. (2.7)

Moreover, set b2 = supt≥T b(t). Then we have for t ≥ T

|x′(t)| ≤ K1t−1/2, with K1 = 2Kβb2 (2.8)

and
|u̇(s)| ≤ K1 + K/2 for s ≥ s0. (2.9)

Proof. Let x be nonoscillatory solution of (1.1) such that

x(t) > 0, x′(t) > 0 for t ≥ T.

Using Lemma 2.1, we have limt→∞ x′(t) = 0. Integrating (1.1) on [t, ∞), t ≥ T, we get

x′(t) =
∫ ∞

t
b(τ)τ−γxβ(τ)dτ ≥ b1xβ(t)

∫ ∞

t
σ−

β+3
2 dσ = Ct−

β+1
2 xβ(t)

with C = 2
β+1 b1. Hence,

x′(t)
xβ(t)

≥ Ct−
β+1

2

or
x−β+1(t)

β− 1
≥ 2C

β− 1
t−

β−1
2 .

Thus, we have for t ≥ T

x(t) ≤
(

1
2C

) 1
β−1

t1/2 = Kt1/2 .

Since b(t) ≤ b2 < ∞ on [T, ∞), integrating (1.1) and using (2.6) we obtain for t ≥ T

x′(t) =
∫ ∞

t
b(τ)τ−γxβ(τ)dτ ≤ b2Kβ

∫ ∞

t
τ−3/2dτ = 2Kβb2t−1/2 = K1t−1/2.

Thus, (2.8) holds and using the transformation (2.1), the estimations for u and u̇ follow.

Lemma 2.7. Equation (2.2) has two types of nonoscillatory solutions. Namely:
Type (a): solution u satisfies for large s

0 < |u(s)| ≤ De−s/2 (2.10)

where |u| is decreasing and D > 0 is a suitable constant.
Type (b): solution u intersects the function

Z(s) =
(

1
4b(es)

) 1
β−1

, (2.11)

infinitely many times, i.e., there exists a sequence {sn}∞
n=1 , limn sn = ∞, such that |u(sn)| = Z(sn).
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Proof. First, observe that the function Z in (2.11) satisfies

lim
s→∞

Z(s) =
(

1
4b0

) 1
β−1

= A0. (2.12)

Let u be a nonoscillatory solution of (2.2) and, for sake of simplicity, assume

u(s) > 0 for s ≥ S ≥ 0 , (2.13)

where S is chosen such that for any s ≥ S

b(es) ≥ b0/2.

According to (2.7), we get for s ≥ S
0 < u(s) ≤ K, (2.14)

where K is given by (2.6) with b1 = b0/2.
Then, from (2.2), we get the following:

ü(s) > 0 if and only if u(s) < Z(s)

ü(s) < 0 if and only if u(s) > Z(s)

ü(s) = 0 if and only if u(s) = Z(s).

(2.15)

Since A0 < K, from (2.14) and (2.15), a-priori, only one of the following possibilities holds:

(i) A0 < lim
s→∞

u(s) ≤ K, ü(s) < 0 for large s;

(ii) 0 ≤ lim
s→∞

u(s) ≤ A0, ü(s) > 0 for large s;

(iii) u intersects infinitely many times the function Z.

Observe that in case (iii), the solution u is of Type (b) and the corresponding solution x of
(1.1) satisfies limt→∞ x(t) = ∞, limt→∞ x′(t) = 0. Thus, x is an intermediate solution of (1.1).

To prove the lemma, it is sufficient to prove that in cases (i) and (ii), the solution u is of
Type (a).

Case (i). Since lims→∞ u(s) = B > A0, we get from (2.2)

lim
s→∞

ü(s) = lim
s→∞

[
u(s)

4
− b(es)uβ(s)

]
=

B
4
− Bβb0

=
B
4
(1− 4b0Bβ−1) <

B
4
(1− 4b0Aβ−1

0 ) = 0.

Hence, lims→∞ u̇(s) = lims→∞ u(s) = −∞, which is a contradiction with the positiveness of
the constant B. Thus, the case (i) cannot occur.

Case (ii). If 0 < B = lims→∞ u(s) < 1, reasoning in a similar way as in case (i), we get a
contradiction. Now suppose lims→∞ u(s) = 0. According to (2.12), there exists S1 ≥ S such
that for s ≥ S1,

u(s) < Z(s), 0 < u(s) ≤
(

β + 1
24b0

)1/(β−1)

, b(es) ≤ 3
2

b0. (2.16)
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From this and (2.15) we obtain ü(s) > 0. Thus, we have for s ∈ [S1, ∞)

u̇(s) < 0 and lim
s→∞

u̇(s) = 0. (2.17)

Let S1 ≤ s < s̄. Multiplying (2.2) by 8u̇ and integrating on [s, s̄] we get

4u̇2(s̄)− u2(s̄) = 4u̇2(s)− u2(s)− 8
∫ s̄

s
b(eσ)uβ(σ) u̇(σ) dσ.

From this, (2.16) and (2.17), as s̄ tends to infinity, we have

4u̇2(s)− u2(s)− 8
∫ ∞

s
b(eσ)uβ(σ) u̇(σ) dσ = 0,

and

4u̇2(s)
u2(s)

= 1 +
8

u2(s)

∫ ∞

s
b(eσ)uβ(σ) u̇(σ) dσ ≥ 1 +

12b0

u2(s)

∫ ∞

s
uβ(σ) u̇(σ) dσ

= 1− 12b0

β + 1
uβ−1(s) > 0.

Since u̇(s) < 0, we obtain

u̇(s)
u(s)

≤ −1
2

√
1− 12b0

β + 1
uβ−1(s) ≤ −1

2

(
1− 12b0

β + 1
uβ−1(s)

)
. (2.18)

Using the estimation for u in (2.16), we get for s ≥ S1

u̇(s)
u(s)

≤ −1
4

,

or
u(s) ≤ u(S1)e(−s+S1)/4.

Applying this estimation to the inequality (2.18), we have for s ≥ S1

u̇(s)
u(s)

≤ −1
2
+

6b0

β + 1
uβ−1(S1)e−(β−1)(s−S1)/4

or

log
u(s)

u(S1)
≤ −1

2
(s− S1) +

24b0

β2 − 1
uβ−1(S1)e(β−1)S1/4e−(β−1)s/4 ≤ − s

2
+ C,

where

C =
1
2

S1 +
24b0uβ−1(S1)e(β−1)S1/4

β2 − 1
.

Therefore, setting K2 = u(S1)eC, we obtain

u(s) ≤ K2e−s/2,

and in view of (2.17), u is of Type (a).

Remark 2.8. Solutions u of Type (a) in Lemma 2.7 correspond, via the transformation (2.1), to
subdominant solutions of equation (1.1) because

x(t) = t1/2u(s) ≤ t1/2K2e−s/2 = K2,

while solutions u of Type (b) correspond to intermediate solutions of (1.1).
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3 Proof of Theorem 1.1

Proof of Theorem 1.1. Consider equation (2.2) and the function Q given by (2.3). In view of
(1.4), there exists s0 ≥ 0 such that for s ≥ s0∫ ∞

s0

|b′(eσ)|eσdσ ≤ b0

8
, |b0 − b(es)| ≤ b0

8
. (3.1)

Let u be a solution of (2.2) such that

u(s0) = 0 , u̇(s0) = d > 0 , (3.2)

where

d >
√

3K3, K3 =

(
9
4

b0Kβ +
K
2

)
, (3.3)

and K is given by (2.6) with b1 = 7b0/8, i.e.,

K =

(
2(β + 1)

7b0

)1/(β−1)

.

Let us prove that u is oscillatory. By contradiction, suppose that there exists s2 ≥ s0 such that

u(s2) = 0 , u(s) 6= 0 for s > s2. (3.4)

Applying Lemma 2.6 with b1 = 7b0/8, b2 = 9b0/8, we have for s ≥ s2

|u(s)| ≤ K .

Using (2.9), we obtain for s ≥ s2

|u̇(s)| ≤ 2Kβb2 +
K
2
=

9
2

b0Kβ +
K
2
= K3. (3.5)

If s2 = s0, inequality (3.5) contradicts (3.2) and (3.3). Thus, suppose that s0 < s2. From
(3.2) and (3.4), there exists s1, s0 < s1 < s2, such that

|u(s1)| = maxs0≤s≤s2 |u(s)|.

Obviously, u̇(s1) = 0. Put
B = (β + 1)/(4b0)

and consider two cases:

(i) |u(s1)| < B1/(β−1), (ii) |u(s1)| ≥ B1/(β−1).

Assume case (i) holds. Applying Lemma 2.5 with s̄ = s0, s = s2, using (3.1), (3.2), and (3.4),
we get

4u̇2(s2) = 4d2 +
8

β + 1

∫ s2

s0

b′(eσ)eσ|u(σ)|β+1dσ

≥ 4d2 − 2
Bb0

B
β+1
β−1

∫ ∞

s0

|b′(eσ)|eσdσ ≥ 4d2 − 1
4

B
2

β−1

≥ 4d2 −
(

K
2

)2

≥ 4d2 − (K3)
2 ≥ 4d2 − d2

3
=

11
3

d2.
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Therefore,

|u̇(s2)| ≥
√

11
12

d ≥
√

33
12

K3,

which contradicts (3.5).
Assume case (ii) holds. We have

|u(s1)|β+1

B
≥ u2(s1).

Thus,
Q(|u(s1)|)

2
=

1
B
|u(s1)|β+1 − u2(s1)

2
≥ 1

2B
|u(s1)|β+1. (3.6)

From here, applying Lemma 2.5 with s̄ = s0, s = s1, using (3.1) and u̇(s1) = 0, we get

Q(|u(s1)|) = 4d2 +
8

β + 1

(
b0 − b(es1)

)
|u(s1)|β+1 +

8
β + 1

∫ s1

s0

b′(eσ)eσ|u(σ)|β+1dσ

≥ 4d2 − 2b0

β + 1
|u(s1)|β+1 ≥ 4d2 − 1

2B
|u(s1)|β+1 ≥ 4d2 − Q(|u(s1)|)

2
.

Thus,

Q(|u(s1)|) ≥
8
3

d2. (3.7)

Applying Lemma 2.5 with s̄ = s1, s = s2, using (3.1), (3.6) and (3.7), we have

4u̇2(s2) = Q(|u(s1)|)−
8

β + 1

(
b0 − b(es1)

)
|u(s1)|β+1 +

8
β + 1

∫ s2

s1

b′(eσ)eσ|u(σ)|β+1dσ

≥ Q(|u(s1)|)−
2b0

β + 1
|u(s1)|β+1

≥ Q(|u(s1)|)−
1

2B
|u(s1)|β+1 ≥ Q(|u(s1)|)

2
≥ 4

3
d2.

From this and (3.3), we obtain

|u̇(s2)| ≥
d√
3
> K3,

which contradicts (3.5).
Thus, the solution u satisfying the initial condition (3.2) is defined on [s0, ∞) and is oscil-

latory. According to Lemma 2.3, the solution u can be extended to [0, ∞). Moreover, since s0

does not depend on the value d, equation (2.2) has infinitely many oscillatory solutions and,
in virtue of the transformation (2.1), the same occurs for equation (1.1).

4 Proof of Theorem 1.2

Proof of Theorem 1.2. Let δ be a constant such that

|δ| < 1
2

(
1

4b0

) 1
β−1

√
β− 1

2(β + 1)
,

and put

ε =
1
24

b0(β− 1)
(

2
β + 1

)(β+1)/(β−1)

.
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Let T ≥ 1 be such that ∫ ∞

T
|b′(t)| dt ≤ ε , |b0 − b(t)| ≤ ε for t ≥ T . (4.1)

For s0 = log T, we have∫ ∞

s0

|b′(eσ)|eσdσ =
∫ ∞

T
|b′(t)| dt ≤ ε, |b0 − b(es)| ≤ ε for s ≥ s0. (4.2)

Now, consider the solution u of (2.2) with

u(s0) = A0 , u̇(s0) = δ , (4.3)

where A0 is given by (2.4). By Lemma 2.4 we get

Q(u(s0)) = −
β− 1
β + 1

(
1

4b0

) 2
β−1

(4.4)

and there exists u0, 0 < u0 < A0, such that

Q(u0) = −
Q(u(s0))

4
= − β− 1

4(β + 1)

(
1

4b0

) 2
β−1

. (4.5)

We want to prove that the solution u of (2.2) with (4.3) satisfies for s ≥ s0

0 < u0 ≤ u(s) ≤ A , (4.6)

where A is given in (2.4). Note that (4.6) is satisfied for s = s0 and

u0 < u(s0) = A0 < A. (4.7)

Step 1. We claim that if there exists s1 > s0 such that

u(s1) = u0 , u(s) > u0 for s ∈ [s0, s1) , (4.8)

then
u(s) ≤ A on [s0, s1] . (4.9)

Since u(s1) = u0, from (4.7) we get u(s1) < A. By contradiction, suppose that there exists
s2, s0 < s2 < s1, such that

u(s2) = A , u(s) < A for s ∈ [s0, s2) . (4.10)

Using Lemma 2.4, we have
Q(u(s2)) = 0 . (4.11)

According to (4.3) and (4.8), we can use Lemma 2.5 for s̄ = s0, s = s2 and this together with
(2.5), (4.4) and (4.11) imply

4u̇2(s2) = 4u̇2(s2) + Q(u(s2))

= 4u̇2(s2) + Q(u(s0)) +
8

β + 1

(
b0 − b(es2)

)
uβ+1(s2)

− 8
β + 1

(
b0 − b(es0)

)
uβ+1(s0) +

8
β + 1

∫ s2

s0

b′(eσ)eσ|u(σ)|β+1 dσ.
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Thus, we get

4u̇2(s2) ≤ 4δ2 − β− 1
β + 1

(
1

4b0

) 2
β−1

+
8

β + 1

∣∣∣b0 − b(es2)
∣∣∣uβ+1(s2)

+
8

β + 1

∣∣∣b0 − b(es0)
∣∣∣Aβ+1

0 +
8

β + 1
Aβ+1

∫ s2

s0

|b′(eσ)|eσ dσ.

From this, (2.4), (4.2), and (4.7), we have

4u̇2(s2) ≤ 4δ2 − β− 1
β + 1

(
1

4b0

) 2
β−1

+
24

β + 1
εAβ+1. (4.12)

Since

4δ2 <
β− 1

2(β + 1)

(
1

4b0

) 2
β−1

(4.13)

and
24

β + 1
εAβ+1 =

β− 1
4(β + 1)

(
1

4b0

) 2
β−1

, (4.14)

the inequality (4.12) implies

4u̇2(s2) ≤ −
β− 1

4(β + 1)

(
1

4b0

) 2
β−1

< 0

and this contradiction proves Step 1.

Step 2. Now, we prove that
u(s) > u0 > 0 for s ≥ s0. (4.15)

As claimed, (4.15) holds for s = s0. By contradiction, assume that (4.8) is valid and s1 > s0

exists such that u(s1) = u0 and u(s) > u0 on [s0, s1). Hence, in view of (4.8) and (4.9) we
obtain

0 < u0 ≤ u(s) ≤ A for s ∈ [s0, s1]. (4.16)

Using this inequality and Lemma 2.5 with s̄ = s0 and s = s1, we have

4u̇2(s1) + Q(u(s1)) = 4u̇2(s0) + Q(u(s0)) +
8

β + 1

(
b0 − b(es1)

)
uβ+1(s1)

− 8
β + 1

(
b0 − b(es0)

)
uβ+1(s0) +

8
β + 1

∫ s1

s0

b′(eσ)eσuβ+1(σ) dσ

≤ 4u̇2(s0) + Q(u(s0)) +
8

β + 1

∣∣∣b0 − b(es0)
∣∣∣Aβ+1

+
8

β + 1

∣∣∣b0 − b(es1)
∣∣∣Aβ+1 +

8Aβ+1

β + 1

∫ s1

s0

|b′(eσ)|eσ dσ .

From this, (4.2), (4.4) and (4.5) we have

4u̇2(s1)−
β− 1

4(β + 1)

(
1

4b0

) 2
β−1

≤ 4δ2 − β− 1
β + 1

(
1

4b0

) 2
β−1

+
24

β + 1
εAβ+1.

Hence, in view of (4.13) and (4.14), we get

4u̇2(s1) < 0 ,
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which is a contradiction. This proves the validity of (4.15).
From here, using the transformation (2.1) and Remark 2.8, we obtain that the correspond-

ing solution x of (1.1) is an intermediate solution.
In a similar way, we prove that the second inequality of (4.6) is valid for s ≥ s0; the details

are left to the reader.
Thus, from the inequality (4.15) and Lemma 2.7, the solution u intersects the function Z(s),

given by (2.11), infinitely many times. Using the transformation (2.1), the final statement of
Theorem 1.2 follows.

Proof of Corollary 1.3. By using a similar argument to the one presented in [11, Theorem 4.3.],
equation (1.1) has infinitely many subdominant solutions. Thus, the assertion follows from
Theorems 1.1 and 1.2.

5 Case b nondecreasing

The assumption (1.4) is fulfilled if, in addition, the function b is either nondecreasing and
bounded or nonincreasing and bounded away from zero.

If b is nondecreasing, then intermediate solutions x are globally positive, that is x(t) 6= 0
on the whole interval [1, ∞). Moreover, any solution with a zero is oscillatory. These properties
follow from the following.

Theorem 5.1. Let b′(t) ≥ 0 for t ∈ [1, ∞) and limt→∞ b(t) = b0, b0 > 0. Then

(i) Equation (1.1) has infinitely many intermediate solutions.

(ii) Any eventually positive solution x is globally positive on [1, ∞) and satisfies (2.6) and (2.8).

(iii) For any a ≥ 1 every solution of (1.1) with the initial condition

x(a) = 0 or |x(a)| > K
√

a or |x′(a)| > K1a−1/2

where

K =

(
β + 1
4b(a)

)1/(β−1)

, K1 = 2b0Kβ,

is oscillatory.

Proof. Claim (i) follows from Theorem 1.2.

Claim (ii). Let u be the solution of (2.2), which is obtained from x by the change of variable
(2.1). For proving that x is globally positive, it is sufficient to show that u(s) > 0 on [0, ∞). By
contradiction, suppose that there exists s0 such that

u(s0) = 0 , u(s) > 0 on (s0, ∞) . (5.1)

According to Lemma 2.7, we obtain lim infs→∞ u(s) = ū, where ū ∈ [0, A0]. Moreover, either
lims→∞ u(s) = 0, or u is an intermediate solution of (2.2).

For these solutions, let {sn} be a sequence such that limn sn = ∞, s1 > s0,

lim
n

u(sn) = ū, lim
n

u̇(sn) = 0, (5.2)
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and
0 < u(sn) ≤

1
2
(A + A0), n ∈N, (5.3)

where A > A0 is given by (2.4). The sequence {sn} may be defined in the following way,
according to whether u is either of Type (a) or of Type (b).

Let u be of Type (a). Then lims→∞ u(s) = 0 and by Lemma 2.7, we obtain u̇(s) < 0 for large
s. Then any sequence {sn} tending to infinity satisfies (5.2) and (5.3).

Let u be of Type (b). Then by Lemma 2.7, the solution u intersects the function Z, for which
lims→∞ Z(s) = A0, Z is decreasing and lims→∞ Ż(s) = 0. Thus, ū ∈ [0, A0]. Now, consider two
cases:

(i) ū ∈ [0, A0),

(ii) ū = A0.

In the first case the sequence {sn} can be choosen as points at which u has a local mini-
mum. In the second case, if u has a local minimum, then {sn} can be defined as in the first
case; if u does not have local minima, i.e., u is nonincreasing to A0, we choose {sn} as

u(sn) = Z(sn),

u(s) < Z(s) in a left neighborhood of sn.
(5.4)

Indeed, the first relation in (5.2) follows from lims→∞ Z(s) = A0. Since lims→∞ Ż(s) = 0, 0 >

u̇(sn) ≥ Ż(sn) and limn Ż(sn) = 0, the second relation in (5.2) follows. Thus, limn→∞ u̇(s) = 0.
From here and Lemma 2.4, we obtain

Q(sn) < 0, n ∈N. (5.5)

By Lemma 2.3 and (5.1) we have
u̇(s0) > 0. (5.6)

Thus, applying Lemma 2.5 for s̄ = s0 and s = sn, from (5.1) we obtain

4u̇2(sn) + Q(u(sn)) = 4u̇2(s0) +
8

β + 1

(
b0 − b(esn)

)
uβ+1(sn)

+
8

β + 1

∫ sn

s0

b′(eσ)eσuβ+1(σ) dσ ≥ 4u̇2(s0).

Therefore, from (5.2) and (5.6) we get

lim inf
n→∞

Q(sn) ≥ 4 lim inf
n→∞

u̇2(sn) + 4u̇2(s0) = 4u̇2(s0) > 0,

which contradicts (5.5). Hence, u is positive for any s ≥ 0.
The estimations (2.6), (2.8) follow from Lemma 2.6 and Claim (ii) is proved.

It remains to prove Claim (iii). If x(a) = 0, the assertion follows from (ii). Otherwise,
using Lemma 2.6 with T = a, every nonoscillatory solution of (1.1) satisfies (2.6), (2.8) for t ≥ a.
Therefore, every solution x of (1.1) with the initial condition |x(a)| > K

√
a or |x′(a)| > K1a−1/2

must be oscillatory, and the proof is now complete.

If b is nondecreasing, it would be interesting to give conditions for the existence of inter-
mediate solutions of (1.1) in case b is unbounded. For example, the equation

x′′ +
15
64

t−11/4x3 = 0

has an intermediate solution x(t) = t3/8, whereby γ = 3 and b(t) = t1/4.
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