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Abstract. Our first purpose is to study the stability of linear flows on real, connected,
compact, semisimple Lie groups. Our second purpose is to study periodic orbits of
linear and invariant flows. As an application, we present periodic orbits of linear or
invariant flows on SO(3) and SU(2) and we study periodic orbits of linear or invariant
flows on SO(4).
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1 Introduction

Let G be a real, connected Lie group. A vector field X on G is called linear if its flow, which
is denoted by ϕt, is a family of automorphisms of G. In this work, we assume that G is a
semisimple Lie group. Our wish is to study some aspects of stability of a linear flow ϕt and
periodic orbits of a linear or invariant flows.

Our first task is to study the stability in a fixed point of a linear flow ϕt. In a natural way,
we follow the ideas presented in the classical literature of dynamical systems on a Euclidian
space (see for instance [3], [6] and [7]). In [5], Da Silva, Santana, and Stelmastchuk show
that a necessary and sufficient condition to the asymptotically and exponential stability of ϕt

at identity e is that X is hyperbolic. However, if a linear vector field X on G is hyperbolic,
then G is a nilpotent Lie group. Then, it is obstructed the use of hyperbolic property in the
study of the stability of a linear flow on a semisimple Lie group. Thus, we choose to restrict
our study to compact, semisimple Lie groups because their algebraic structure allows us to
develop some results about stability.

Let G be a real, connected, compact, semisimple Lie group. Consider a linear vector field
X on G and its linear flow ϕt. The first part of our work is about stability. We show that
any fixed point of the linear flow ϕt is stable (see Theorem 3.10). Furthermore, we proof that
any periodic orbit of the linear flow ϕt is stable (see Theorem 3.13). Also, we proof that the
derivation D = −ad(X ) associated to X has only semisimple eigenvalues since the identity e
is stable. The last fact is the key to study periodic orbits of linear flow ϕt.
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The second part of our work is about periodic orbits of the invariant and linear flows on
compact, semisimple Lie groups. An important fact is that, in semisimple Lie groups, for any
linear vector field X there is a right invariant vector field X associated to it. Thus, our first
step is to show that if the orbits of the invariant flow exp(tX) are periodic, then the orbits of
the linear flow ϕt are also periodic. Done this, we show that the orbits of the invariant flow
exp(tX) are periodic if and only if the derivation D of X has as eigenvalues 0 or ±αi i with
αi 6= 0, i = 1, . . . , r, and αi/αj is a rational number for i, j = 1, . . . , r (see Theorem 4.2). As
a direct consequence, every orbit that is not a fixed point of an invariant flow exp(tX) on a
3-dimensional, compact, semisimple Lie group is periodic.

To end, we present the periodic orbits of a linear or invariant flows on SO(3) and SU(2),
and we study the periodic orbits on SO(4) (see Theorem 5.4).

This paper is organized as follows. Section 2 briefly reviews the notions of the linear vector
fields. Section 3 works with stability on compact, semisimple Lie groups. Section 4 develops
results in periodic orbits of a linear or invariant flows. Finally, section 5 applies the previous
results on compact, semisimple Lie groups SO(3), SU(2) and SO(4).

2 Linear vector fields

Let G be a connected Lie group and g be its Lie algebra. We call a vector field X linear if its
flow (ϕt)t∈R is a family of automorphisms of the Lie group G. It is known that for any linear
vector field X we can define a derivation D by

D(Y) = −[X , Y], Y ∈ g.

Thus, the dynamical system
ġ = X (g), g ∈ G, (2.1)

is associated to the derivation D. In fact, the linearization of system above at the identity is

Ẋ = D(X), X ∈ g.

For the Euclidian case, if A ∈ Rn×n and b, x ∈ Rn, then D(b)(x) = [Ax, b] = −Ab. Thus, we
can view the dynamical system (2.1) as a generalization of dynamical system on Rn given by

ẋ = Ax.

Da Silva, in [4], writes

g+ =
⊕

α;Re(α)>0

gα, g0 =
⊕

α;Re(α)=0

gα, and g− =
⊕

α;Re(α)<0

gα,

where α are eigenvalues of the derivation D such that

g = g+ ⊕ g0 ⊕ g− and [gα, gβ] = gα+β

with α + β = 0 if the sum is not an eigenvalue. Let us denote by G+, G0 and G− the Lie
subgroups of the Lie algebras g+, g0 and g−, respectively. It is simple to show that G+, G0 and
G+ are ϕt-invariant. The Lie subgroups G+, G0 and G− are called unstable, central and stable
groups associated to ϕt, respectively.

For the convenience of the reader we resume some facts about a linear vector field X and
its flow ϕt. The proof of these facts can be found in [2].
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Proposition 2.1. Let X be a linear vector field, ϕt be its flow, and D be the derivation associated to
X . The following assertions are true:

(i) ϕt is an automorphism of Lie groups for each t;

(ii) X is linear iff X (gh) = Rh∗X (g) + Lg∗X (h) for g, h ∈ G;

(iii) (dϕt)e = etD for all t ∈ R.

3 Stability of the linear flow

Let G be a real, connected, semisimple Lie group and X be a linear vector field on G. In
this section, our wish is to study the stability of the linear flow ϕt that is the solution of the
differential equation on G given by

ġ = X (g), g ∈ G. (3.1)

Being G semisimple, there is a right invariant vector field X such that X = X + I∗X, where
I∗X is the left invariant vector field associated to X and I∗ is the differential of inverse map
i(g) = g−1 (more details is founded in [9]). It follows that the linear flow can be written as

ϕt(g) = exp(tX) · g · exp(−tX), ∀ g ∈ G.

According to the above expression, we have that the identity e is a fixed point for the linear
flow ϕt. However, it may exist other fixed points.

Proposition 3.1. If a point g belongs to center of the Lie group G, then g is a fixed point of the linear
flow ϕt.

Proof. Let g be a point in the center of the Lie group G. Then, for all t ∈ R,

ϕt(g) = exp(tX) · g · exp(−tX) = exp(tX) · exp(−tX) · g = g,

which is the desired conclusion.

Our next step is to present the hyperbolic concept to the linear vector fields. We remember
that the stability in Euclidian space is obtained if a dynamical system is hyperbolic (see for
instance [7]). As one can see in [5], it is also true if X is hyperbolic on a Lie group G.

Definition 3.2. Let X be a linear vector field on a Lie group G. We call X hyperbolic if its
associated derivation D is hyperbolic, that is, D has no eigenvalues with zero real part.

Let X be a hyperbolic linear vector field on a semisimple Lie group G. Then D has no
eigenvalues with zero real part. Denoting by gα the generalized eigenspace associated with
an eigenvalue α of D we get

[gα, gβ] ⊂ gα+β,

where α + β is an eigenvalue of D and zero otherwise (see for instance Proposition 3.1 in [9]).
Since dim G < ∞, it implies that the Lie algebra g is nilpotent. In consequence, G is nilpotent.

Proposition 3.3. There is not hyperbolic linear vector field on semisimple Lie groups.

We now begin studying the stability of linear flows on semisimple Lie groups. Firstly, we
remember some concepts of stability.
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Definition 3.4. Let g ∈ G be a fixed point of the linear vector field X . We call g

1) stable if for all g-neighborhood U there is a g-neighborhood V such that ϕt(V) ⊂ U for
all t ≥ 0;

2) asymptotically stable if it is stable and there exists a g-neighborhood W such that
limt→∞ ϕt(x) = g whenever x ∈W;

3) exponentially stable if there exist c, µ and a g-neighborhood W such that for all x ∈ W
it holds that

$(ϕt(x), g) ≤ ce−µt$(x, g), for all t ≥ 0;

4) unstable if it is not stable.

Since property 3) is local, it does not depend of the metric on G. Because of this reason,
we will assume from now on that $ is a left invariant Riemannian metric.

In order to study the stability, let us work with the Lyapunov exponents. We follow [5] in
assuming that the Lyapunov exponent can be written as

λ(e, v) = lim sup
t→∞

1
t

log(‖etD(v)‖),

where v is in g and the norm ‖ · ‖ is given by the left invariant metric.
We will use λ1, . . . , λk to denote k distinct values of the real parts eigenvalues of the deriva-

tion D. Then, the Lie algebra g can be written as

g =
k⊕

i=1

gλi where gλi :=
⊕

α;Re(α)=λi

gα.

Furthermore, from Theorem 4.2 in [5] we see that

λ(e, v) = λ ⇔ v ∈ gλ :=
⊕

α;Re(α)=λ

gα. (3.2)

Using the Lyapunov exponent we show a first result about stability of linear flow ϕt.

Theorem 3.5. For any linear vector field X on a semisimple Lie group G, any fixed point is neither
asymptotically nor exponentially stable to the linear flow ϕt.

Proof. We first observe that the Lyapunov exponents satisfy the following: λ(g, v) = λ(e, v)
for each v ∈ g. We need only consider the assertion at identity e. Suppose, contrary to our
claim, that the identity e is either asymptotically or exponentially stable. By Theorem 4.5 in
[5], it follows that all Lyapunov exponents of D are negatives. From (3.2) it follows that any
eigenvalue of D has the real part negative. It means that X is hyperbolic, and this contradicts
Proposition 3.3.

Despite any fixed point is neither asymptotically nor exponentially stable, they are stable
if G is compact and semisimple as we will show. For this purpose, we begin by introducing
an appropriate metric on G.

Let G be a compact, semisimple Lie group. It implies that the Cartan–Killing form is
negative defined. Thus we adopt the metric 〈·, ·〉 given by negative of the Cartan–Killing form
on g. Since 〈·, ·〉 satisfies

〈Ad(g)X, Ad(g)Y〉 = 〈X, Y〉 , ∀ g ∈ G and X, Y ∈ g,
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it follows that 〈·, ·〉 is an invariant Riemannian metric on G (see [1] for more details). From
now on we make the assumption: every compact, semisimple Lie group is equipped with the
Riemannian metric given by Cartan–Killing form.

Adopting these invariant metrics and using the Lyapunov exponents we obtain an alge-
braic characterization of linear vector fields on compact, semisimple Lie groups.

Proposition 3.6. Let X be a linear vector field on a compact, semisimple Lie group G. Then G is the
central group of linear flow ϕt.

Proof. We begin by writing X = X + I∗(X) with X ∈ g. It is clear that D = −Ad(X). Then,
for any v ∈ g we have

‖etDv‖ = ‖et (−Ad(X))v‖ = ‖Ad(exp(−tX))v‖ = ‖v‖,

where we used the Ad-invariance of metric at last equality. Thus, Lyapunov exponents can be
written as

λ(e, v) = lim sup
t→∞

1
t

log(‖etDv‖) = lim sup
t→∞

1
t

log(‖v‖) = 0.

Therefore, λ1 = . . . = λk = 0. Using the relation (3.2) we conclude that g = g0. Since G is
connected, G = G0. It means that G is the central group associated to the linear flow ϕt.

Despite Proposition above is presented in [4], we proved it because our proof is done by
dynamical concepts instead of algebraic concepts.

Our next step is to show that the linear flow ϕt satisfies some metric properties. Let (M, g)
be a Riemannian manifold, a Riemannian distance is ρ associated to g is defined by

ρ(x, y) = inf
σ

{∫ 1

0
g(σ̇(s), σ̇(s))1/2ds

}
,

where the infimum is taken over all smooth curves σ such that σ(0) = x and σ(1) = y.

Proposition 3.7. Let X be a linear vector field on a compact, semisimple Lie group G. Then ϕt is an
isometry for all t.

Proof. We begin writing X = X + I∗X where X is a right invariant vector field. Thus for any
g, h ∈ G and t ∈ R we see that

ρ(ϕt(g), ϕt(h)) = ρ
(

Lexp(tX) ◦ Rexp(−tX)(g), Lexp(tX) ◦ Rexp(−tX)(h)
)

,

where L and R stands for the left and right translation. Since left and right translations are
isometries on G to the invariant distance given by Cartan–Killing form, it follows that

ρ(ϕt(g), ϕt(h)) = ρ(g, h),

which shows that ϕt is an isometry for any t ∈ R.

Before our next result, we need to introduce some notations. For r > 0 we will denote an
sphere of radius r with center g by Sr(g) = {x ∈ G : ρ(x, g) = r} and an open ball of radius r
with center g by Br(g) = {x ∈ G; ρ(x, g) < r}.

Proposition 3.8. If G is a compact, semisimple Lie group, then for each g ∈ G the linear flow ϕt(g)
is in a sphere.
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Proof. We first choose an arbitrary point g ∈ G and write r = ρ(g, e). Then

ρ(ϕt(g), e) = ρ(ϕt(g), ϕt(e)) = ρ(g, e) = r, ∀ t.

It means that ϕt(g) ∈ Sr for all t, and the proof is complete.

A direct consequence of the proposition above is about ω-limit and α-limit sets.

Corollary 3.9. If G is a compact, semisimple Lie group, then ω-limit and α-limit sets of g are in
spheres.

We can now to prove our main result of our section.

Theorem 3.10. Let G be a compact, semisimple Lie Group. Then any fixed point of linear flow ϕt is
an stable point.

Proof. We begin by fixing an arbitrary fixed point g of G. We also remember that a Rieman-
nian distance induces the topology of Riemannian manifold. So it is sufficient to consider as
neighborhoods of g open balls Br(g) where r > 0 is arbitrary. Choose r0 > 0 such that r0 ≤ r
and consider the ball Br0(g). Taking any y ∈ Br0(g) we see that

ρ(ϕt(y), g) = ρ(y, g) < r0 ≤ r,

where we used Proposition 3.7 at first equality. It shows that ϕt(Br0(g)) ⊂ Br(g). Conse-
quently, by definition, g is a stable point to the linear flow ϕt.

Hereafter we give a characterization of derivations on compact, semisimple Lie groups.
Before we need to introduce some concepts. Following [3], if for an eigenvalue µ all com-
plex Jordan blocks are one-dimensional, i.e., a complete set of eigenvectors exists, it is called
semisimple. Equivalently, the corresponding real Jordan blocks are one-dimensional if µ is
real and two-dimensional if µ, µ̄ ∈ C \R.

Theorem 3.11. On a compact, semisimple Lie group G, every derivation has only semisimple eigen-
values.

Proof. Let D be a derivation on G. From Theorem 3.10 we see that e is a stable point of the
linear flow ϕt associated to D. Since (dϕt)e = etD, it follows that the linearization of ġ = X (g)
is X = D(X). Being exp a local diffeomorphism and e stable, it follows that 0 is stable. From
Proposition 3.6 we know that eigenvalues of D has real part null. Then Theorem 1.4.10 in [3]
assures that every eigenvalue of D is semisimple, which gives the proof.

Theorem above is fundamental to study periodic orbits of linear flows.
To end this section, we study the stability of periodic orbits to the linear flows. A periodic

orbit Γ of a linear flow ϕt is stable if for each open set V that contains Γ, there is an open set
W ⊂ V such that every solution, starting at a point in W at t = 0, stays in V for all t ≥ 0.

Before presenting our next result, we need to introduce the following notation. Take g ∈ G
and consider the orbit ϕt(g). Write for any r > 0, Tuber(ϕt(g)) = {h ∈ G : ρ(h, ϕt(g)) < r for
some t}.

Proposition 3.12. Let X be a linear vector field on a compact, semisimple Lie group G. If h ∈
Tuber(ϕt(g)), then ϕs(h) ∈ Tuber(ϕt(g)) for any s ∈ R.
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Proof. Suppose that h ∈ Tuber(ϕt(g)). Then for some t we have ρ(h, ϕt(g)) < r. From Propo-
sition 3.7 it follows for any s ∈ R that

ρ(ϕs(h), ϕt+s(g)) = ρ(h, ϕt(g)) < r,

which implies that ϕs(h) ∈ Tuber(ϕt(g)).

Theorem 3.13. Let X be a linear vector field on a compact, semisimple Lie group G. Then every
periodic orbit is stable.

Proof. Let g ∈ G such that ϕt(g) is a periodic orbit of linear flow ϕt. We consider a open set
V such that ϕt(g) ⊂ V. Take r0 = inf{r : Br(ϕt(g)) ⊂ V, ∀ t ≥ 0}. Thus it is sufficient to take
U = Tuber0(ϕt(g)) and to apply the proposition above.

4 Periodic orbits

In this section, we study periodic orbits of a linear flow in a compact, semisimple Lie group
G. The key of our study is Theorem 3.11 because it describes all eigenvalues of any derivation
on G.

We begin by recalling that a linear vector field X can be written as X = X + I∗X, where X
is a right invariant vector field, I∗X is the left invariant vector field associated to X, and I∗ is
the differential of inverse map i(g) = g−1. In this way, we can rewrite the differential equation
(3.1) as

ġ = X(g) + (I∗X)(g).

It implies that there exists a relation between flows of the linear dynamical system ġ = X (g)
and of the invariant one ġ = X(g). In fact, direct accounts shows that, for all g ∈ G, ϕt(g) is
a solution of (3.1) if, and only if, ϕt(g) · exp(tX) is a solution of ġ = X(g). It suggests us that
there exists a relation between periodic orbits of the linear flow ϕt and its associated invariant
flow exp(tX). Therefore, our next step is to investigate this fact.

Proposition 4.1. Let X be a linear vector field on a compact, semisimple Lie group G. The following
sentences are equivalent:

(i) for every g ∈ G the invariant flow exp(tX)g is periodic;

(ii) the identity e is a periodic point of invariant flow exp(tX);

(iii) for each g the point Ad(g) is periodic with respect to the flow etD.

Furthermore, any assertion above implies that any point g ∈ G is a periodic point of linear flow ϕt.

Proof. (i) ⇔ (ii) If for every g ∈ G the orbit exp(tX)g is periodic, then e is a periodic point of
the curve exp(tX). On contrary, suppose that e is a periodic point of the flow exp(tX), that is,
there is a s > 0 such that exp((t + s)X) = exp(tX). Then for any g ∈ G

exp((t + s)X)g = (exp((t + s)X) · e) · g = exp(tX)g.

(i)⇔ (iii) Since G is a semisimple Lie group, it follows

Ad(exp(tX) · g) = et Ad(X) Ad(g) = etD Ad(g).
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We thus get the equivalence.
Suppose now that e is a periodic point of the flow exp(tX), then there is a s > 0 such that

exp(tX) = exp((t + s)X). Thus

ϕt+s(g) = exp((t + s)X) · g · exp(−(t + s)X) = exp(tX) · g · exp(−tX) = ϕt(g),

which shows that g is a periodic point of ϕt.

The interest of the proposition above is that periodic orbits of linear or invariant flows are
equivalents on compact, semisimple Lie groups.

We are now in position to show our main result.

Theorem 4.2. Let G be a compact, semisimple Lie group. Assume that X is a linear vector field on
G, that D and X are its associated derivation and invariant vector field, respectively. The following
sentences are equivalent:

(i) there exists a periodic orbit for the right invariant flow exp(tX);

(ii) the eigenvalues of the derivation D = −Ad(X) are the form 0 or ±α1 i, . . . ,±αr i where αi 6= 0,
i = 1, . . . , r, and αi/αj is a rational for i, j = 1, . . . , r.

Furthermore, the sentences above implies that there exists a periodic orbit for the linear flow ϕt.

Proof. We first observe that (i) assures that ϕt has a periodic orbit by Proposition 4.1. We are
going to show that (i) is equivalent to (ii). For this, it is sufficient to consider e as a periodic
point to the flow exp(tX) with period T > 0. Then for all t ∈ R

exp((t + T)X) = exp(tX)⇔ exp(TX) = e⇔ eTD = Id.

Take the Jordan form J of D. A simple account shows that eTJ = Id. Since any eigenvalues of D
is semisimple, its real Jordan Block has dimension 1 or 2 if it is real or complex, respectively. If
0 is eigenvalue of D, then its real Jordan block is written as J0 = [0]. Therefore etJ0 is constant.
It implies that in direction of 0 the etJ is constant. Consequently, solutions associated to 0 are
trivially periodic. Suppose that there are non-null eigenvalues. From Proposition 3.6 these
eigenvalues are of the form ±αi i, i = 1, . . . , r. By Theorem 3.11, its real Jordan blocks are(

cos(tαi) − sin(tαi)

sin(tαi) cos(tαi)

)
, i = 1, . . . r.

As eTJ = Id we have αi · T = pi · 2π for some pi ∈ Z, i = 1, . . . , r. It entails for any i, j = 1, . . . , r
that αi/αj = pi/pj is a rational number

Reciprocally, suppose that the eigenvalues of D are 0 or ±α1 i, . . . ,±αr i where αi 6= 0,
i = 1, . . . , r and αi/αj is rational for i, j = 1, . . . n. For the eigenvalue 0 we have that the solution
is constant. We thus consider the eigenvalues ±αi i with αi 6= 0. Being ±αi i semisimple, every
real Jordan block associated to it has dimension two and the solution applied at this block
gives the following matrix (

cos(tαi) − sin(tαi)

sin(tαi) cos(tαi)

)
.

By assumption, there exists pij, qij ∈ Z with qij > 0 such that αi/αj = pij/qij for i, j = 1, . . . r.
In particular, we can written αi = (pi1/qi1)α1 for i = 2, . . . , r. Assuming that α1 > 0 it is
sufficient to take T = q21q31 . . . qr1(2π/α1) to see that J satisfies eTJ = Id. In other words, Id is
a periodic point of eTJ with period T > 0, which is equivalent Id to be periodic point of eTD.
Consequently, by Proposition 4.1, the right invariant flow exp(tX) is periodic with period of
T > 0.
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Remark 4.3. The theorem above fails if αi/αj is irrational for some i and j in {1, . . . r} because
the flow etJ in the proof of theorem above is a flow of a harmonic oscillator. The bidimensional
case is treated in Section 6.2 of [6].

Corollary 4.4. Let G be a compact, semisimple Lie group with dimension 3. If X is a right invariant
flow, then for every g ∈ G the orbit exp(tX) · g of the invariant flow is periodic. In consequence, the
orbit ϕt(g) of the linear flow is periodic for all g ∈ G.

Proof. It is sufficient to observe that the derivation D = − ad(X) has only eigenvalues 0, α i,
and −α i with α ∈ R∗.

5 Applications

In this section, our wish is to study the periodic orbits on compact, semisimple Lie groups of
lower dimension. In fact, we are interested to describe the periodic orbits of linear flows on
SO(3) and SU(2) and to study the periodic orbits of linear flows on SO(4).

5.1 Linear flows on SO(3) and SU(2)

Our first case is the orthogonal group

SO(3) = {g ∈ R3×3 : ggT = 1, det g = 1}.

It is well known that its Lie algebra is

so(3) =


 0 −z y

z 0 −x
−y x 0

 : x, y, z ∈ R

 .

Let X be a linear vector field on SO(3). Then there exists a right invariant vector field X
such that X = X + I∗X. A direct calculus shows that eigenvalues of D = − ad(X) are{

0,−
√
−x2 − y2 − z2,

√
−x2 − y2 − z2

}
.

Write λ1 = −
√
−x2 − y2 − z2 and λ2 =

√
−x2 − y2 − z2. Using functional calculus we obtain

exp(tX) =
cosh(tλ1)− 1

λ2
1

X2 +
sinh(tλ1)

λ1
X + Id.

Therefore it is possible to give the solution of linear flow ϕt on SO(3).

Proposition 5.1. Let X be a linear vector field on SO(3). Then the solution of linear flow ϕt(g)
associated to X is(

cosh(tλ1)− 1
λ2

1
X2+

sinh(tλ1)

λ1
X+ Id

)
· g ·

(
cosh(tλ2)− 1

λ2
2

X2+
sinh(tλ2)

λ2
X+ Id

)
,

where X is the right invariant vector field associated to X and

λ1 = −
√
−x2 − y2 − z2 and λ2 =

√
−x2 − y2 − z2.
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Corollary 4.4 now assures the characterization of periodic orbits of the linear flow ϕt.

Proposition 5.2. Under assumptions above,

(i) every orbit of the invariant flow exp(tX) is periodic;

(ii) every orbit of the linear flow ϕt is periodic.

Our other case is the unitary group SU(2), which is a matrix group given by

SU(2) =
{

g ∈ C2×2 : ggT = 1, det g = 1
}

.

The Lie algebra associated to SU(2) is described as

su(2) =
{[ i

2 x 1
2 (iz + y)

1
2 (iz− y) − 1

2 x

]
: x, y, z ∈ R

}
.

Let X be a linear vector field on SU(2) and X the right invariant vector field associated to
it. In analogous way to the case of SO(3), it is easily to see that eigenvalues of a derivation
D = − ad(X) are {

0,−
√
−x2 − y2 − z2,

√
−x2 − y2 − z2

}
.

In consequence,

Proposition 5.3. Under assumptions above,

(i) every orbit of some invariant flow exp(tX) is periodic;

(ii) every orbit of some linear flow ϕt is periodic.

5.2 Periodic orbits on SO(4)

In this subsection, our wish is to give a condition for the orbits of invariant or linear flow on
SO(4) be or not be periodic. Let so(4) be the Lie algebra of SO(4) given by


0 −x −y −z
x 0 −u −v
y u 0 −w
z v w 0

 : x, y, z, u, v, w ∈ R

 .

Consider the basis β for so(4) that consists of 4× 4 matrices e12, e13, e14, e23, e24, e34 that have 1
in the (i, j) entry, −1 in the (j, i) entry, and 0 elsewhere (1 ≤ i < j ≤ 4). A computation of Lie
brackets gives

[e12, e13] = e23, [e12, e14] = e24, [e12, e23] = −e13, [e12, e24] = −e14, [e12, e34] = 0,

[e13, e14] = e34, [e13, e23] = e12, [e13, e24] = 0, [e13, e34] = −e14, [e14, e23] = 0,

[e14, e24] = e12, [e14, e34] = e13, [e23, e24] = e34 [e23, e34] = −e24, [e24, e34] = e23.

Let X be a linear vector field on SO(4). Let us denote by D = −Ad(X) the associated
derivation to X where X is an right invariant vector field on SO(4). Our next step is to
describe the derivation D. To do this, write

X = ae12 + be13 + ce14 + de23 + ee24 + f e34, a, b, c, d, e, f ∈ R.
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By Lie brackets above, we compute

D = − ad(X) =



0 −d −e b c 0
d 0 − f −a 0 c
e f 0 0 −a −b
−b a 0 0 − f e
−c 0 a f 0 −d
0 −c b −e d 0


.

Some calculus show that the eigenvalues of D = − ad(X) are{
0, 0,±

√
−(a + f )2 − (b− e)2 − (c + d)2,±

√
−(a + f )2 − (b + e)2 − (c− d)2

}
.

We observe that the eigenvalues are according to Theorem 3.11. We now are in a position to
give a condition that characterizes periodic orbits of an invariant or linear flow.

Theorem 5.4. Let X be a linear vector field on SO(4). Consider the derivation D = − ad(X) of X ,
where X is a right invariant vector field such that

X = ae12 + be13 + ce14 + de23 + ee24 + f e34, a, b, c, d, e, f ∈ R.

A necessary and sufficient condition to every orbit that is not a fixed point of the invariant flow exp(tX)

be periodic is that √
(a + f )2 + (b− e)2 + (c + d)2

(a + f )2 + (b + e)2 + (c− d)2 (5.1)

is a rational number. The last condition is satisfies if be = cd.

Proof. It is a direct application of Theorem 4.2.

Corollary 5.5. Under conditions of Theorem above, if (5.1) is a rational number, then every orbit of
the linear flow ϕt associated to derivation D that is not a fixed point is periodic.

As a direct application of the theorem above, each right invariant vector field of the basis
β = {e12, e13, e14, e23, e24, e34} yields periodic orbits for the linear or invariant flows.

References

[1] A. Arvanitoyeorgos, An introduction to Lie groups and the geometry of homogeneous spaces,
Student Mathematical Library, Vol. 22, American Mathematical Society, Providence, RI,
2003. https://doi.org/10.1090/stml/022; MR2011126; Zbl 1045.53001

[2] F. Cardetti, D. Mittenhuber, Local controllability for linear control systems on Lie
groups, J. Dyn. Control Syst. 11(2005), No. 3., 353–373. https://doi.org/10.1007/
s10883-005-6584-1; MR2147190; Zbl 1085.93004

[3] F. Colonius, W. Kliemman, Dynamical systems and linear algebra, Graduate Studies in
Mathematics, Vol. 158, American Mathematical Society, Providence, RI, 2014. https://
doi.org/10.1090/gsm/158; MR3242107; Zbl 1306.37001

https://doi.org/10.1090/stml/022
https://www.ams.org/mathscinet-getitem?mr=2011126
https://zbmath.org/?q=an:1045.53001
https://doi.org/10.1007/s10883-005-6584-1
https://doi.org/10.1007/s10883-005-6584-1
https://www.ams.org/mathscinet-getitem?mr=2147190
https://zbmath.org/?q=an:1085.93004
https://doi.org/10.1090/gsm/158
https://doi.org/10.1090/gsm/158
https://www.ams.org/mathscinet-getitem?mr=3242107
https://zbmath.org/?q=an:1306.37001


12 S. N. Stelmastchuk

[4] A. Da Silva, Controllability of linear systems on solvable Lie groups, SIAM J. Con-
trol Optim. 54(2016), No. 1, 372–390. https://doi.org/10.1137/140998342; MR3944253;
Zbl 1440.93025

[5] A. Da Silva, A. J. Santana, S. N. Stelmastchuk, Topological conjugacy of linear systems
on Lie groups, Discrete Contin. Dyn. Syst. 37(2017), No. 6, 3411–3421. https://doi.org/
10.3934/dcds.2017144; MR3622087; Zbl 1362.37048

[6] M. W. Hirsch, S. Smale, R. L. Devaney, Differential equations, dynamical systems and
an introduction to chaos, Academic Press, London, 2004. https://doi.org/10.1016/
C2009-0-61160-0; MR3293130; Zbl 1135.37002

[7] C. Robinson, Dynamical systems. Stability, symbolic dynamics, and chaos, 2nd Edition, CRC
Press, London, 1999. MR1792240; Zbl 0914.58021

[8] Y. L. Sachkov, Control theory on Lie groups, J. Math. Sci. 156(2009), 381–439. https:
//doi.org/10.1007/s10958-008-9275-0; MR2373391; Zbl 1211.93038

[9] L. B. A. San Martin, Álgebra de Lie (in Portuguese), Editora da Unicamp, Campinas,
2017.

https://doi.org/10.1137/140998342
https://www.ams.org/mathscinet-getitem?mr=3944253
https://zbmath.org/?q=an:1440.93025
https://doi.org/10.3934/dcds.2017144
https://doi.org/10.3934/dcds.2017144
https://www.ams.org/mathscinet-getitem?mr=3622087
https://zbmath.org/?q=an:1362.37048
https://doi.org/10.1016/C2009-0-61160-0
https://doi.org/10.1016/C2009-0-61160-0
https://www.ams.org/mathscinet-getitem?mr=3293130
https://zbmath.org/?q=an:1135.37002
https://www.ams.org/mathscinet-getitem?mr=1792240
https://zbmath.org/?q=an:0914.58021
https://doi.org/10.1007/s10958-008-9275-0
https://doi.org/10.1007/s10958-008-9275-0
https://www.ams.org/mathscinet-getitem?mr=2373391
https://zbmath.org/?q=an:1211.93038

	Introduction
	Linear vector fields
	Stability of the linear flow
	Periodic orbits
	Applications
	Linear flows on SO(3) and SU(2)
	Periodic orbits on SO(4)


