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Abstract. We consider a nonlinear Dirichlet problem driven by the variable exponent
(anisotropic) p-Laplacian and a reaction that has the competing effects of a singular
term and of a superlinear perturbation. There is no parameter in the equation (non-
parametric problem). Using variational tools together with truncation and comparison
techniques, we show that the problem has at least two positive smooth solutions.
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1 Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. In this paper we study the
following anisotropic singular Dirichlet problem

− ∆p(z)u(z) = u(z)−η(z) + f (z, u(z)) in Ω, u|∂Ω = 0, u > 0. (1.1)

In this problem the exponent p : Ω→ R in the differential operator, is Lipschitz continuous
(that is p ∈ C0,1(Ω)) and 1 < p− = minΩ p. By ∆p(z) we denote the anisotropic p-Laplace
operator defined by

∆p(z)u = div(|Du|p(z)−2Du) ∀u ∈W1,p(z)
0 (Ω).

In problem (1.1) we have the competing effects of a singular term x−η(z) with η ∈ C(Ω), 0 <

η(z) < 1 for all z ∈ Ω and a Carathéodory perturbation f (z, x) (that is, for all x ∈ R, z →
f (z, x) is measurable and for a.a. z ∈ Ω, x → f (z, x) is continuous), which is (p+ − 1)-
superlinear as x → +∞ (here p+ = maxΩ p), but need not satisfy the usual for superlinear
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problems Ambrosetti–Rabinowitz condition (the AR-condition for short). We are looking for
positive solutions. Using a combination of variational tools based on the critical point theory,
together with truncation and comparison techniques, we show that the problem has at least
two positive smooth solutions.

While anisotropic boundary value problems have been studied extensively in the last few
years (see the books of Diening–Harjulehto–Hästö–Růžička [2] and of Rădulescu–Repovš [12]
and the references therein), the study of singular anisotropic problems is lagging behind.
Only a very limited number of works exist on this subject and they all concern parametric
problems (see the works of Byun-Ko [1] and Saoudi–Ghanmi [13]). The presence of parameter
in the equation is very helpful, since by varying the parameter, we achieve certain desirable
geometric configurations which in turn permit the use of the minimax theorems of critical
point theory. In problem (1.1) there is no parameter to facilitate the analysis.

2 Mathematical background – hypotheses

The study of problem (1.1) requires the use of Lebesgue and Sobolev spaces with variable ex-
ponents. A comprehensive presentation of these spaces can be found in the book of Diening–
Harjulehto–Hästö–Růžička [2].

For every r ∈ C(Ω) we set

r− = min
Ω

r and r+ = max
Ω

r.

Let E1 = {r ∈ C(Ω) : 1 < r−} and M(Ω) = {u : Ω → R measurable}. As usual, we
identify two such functions which differ only on a Lebesgue-null set. For r ∈ E1, the variable
exponent Lebesgue space Lr(z)(Ω) is defined by

Lr(z)(Ω) =

{
u ∈ M(Ω) :

∫
Ω
|u|r(z)dz < ∞

}
.

We equip this space with the so-called “Luxemburg norm” defined by

‖u‖r(z) = inf

[
λ > 0 :

∫
Ω

(
|u(z)|

λ

)r(z)

dz ≤ 1

]
, u ∈ Lr(z)(Ω).

With this norm the space Lr(z)(Ω) is a Banach space which is separable and reflexive
(in fact uniformly convex). Let r′ ∈ E1 be defined by r′(z) = r(z)

r(z)−1 for all z ∈ Ω (that is,
1

r(z) +
1

r′(z) = 1 for all z ∈ Ω). Then we have

Lr(z)(Ω)∗ = Lr′(z)(Ω)

and the following version of Hölder’s inequality is true∫
Ω
|uv|dz ≤

[
1

r−
+

1
r′−

]
‖u‖r(z)‖v‖r′(z), ∀u ∈ Lr(z)(Ω), ∀v ∈ Lr′(z)(Ω).

Note that if r1, r2 ∈ E1 and r1(z) ≤ r2(z) for all z ∈ Ω, then we have

Lr2(z)(Ω) ↪→ Lr1(z)(Ω) continuously.
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Using the variable exponent Lebesgue spaces, we can introduce variable exponent Sobolev
spaces. Given r ∈ E1, the anisotropic Sobolev space W1,r(z)(Ω) is defined by

W1,r(z)(Ω) = {u ∈ Lr(z)(Ω) : |Du| ∈ Lr(z)(Ω)},

where Du denotes the gradient of u in the weak sense. This space is equipped with the norm

‖u‖1,r(z) = ‖u‖r(z) + ‖Du‖r(z), u ∈W1,r(z)(Ω) (here ‖Du‖r(z) = ‖|Du|‖r(z)).

If r ∈ E1 ∩ C0,1(Ω), then we define

W1,r(z)
0 (Ω) = C∞

c (Ω)
‖·‖1,r(z) .

The spaces W1,r(z)(Ω) and W1,r(z)
0 (Ω) are separable, reflexive (in fact uniformly convex).

For the space W1,r(z)
0 (Ω) the Poincaré inequality holds, that is, there exists ĉ > 0 such that

‖u‖r(z) ≤ ĉ‖Du‖r(z) for all u ∈W1,r(z)
0 (Ω).

This implies that on W1,r(z)
0 (Ω) we can use the equivalent norm

|u|1,r(z) = ‖Du‖r(z), u ∈W1,r(z)
0 (Ω).

For r ∈ E1, we set

r∗(z) =


Nr(z)

N − r(z)
, if r(z) < N

+∞, if N ≤ r(z)
∀z ∈ Ω.

Let r, q ∈ E1 ∩ C0,1(Ω) and suppose that q(z) ≤ r∗(z) (resp. q(z) < r∗(z)) for all z ∈ Ω.
Then we have the anisotropic Sobolev embedding theorem

W1,r(z)
0 (Ω) ↪→ Lq(z)(Ω) continuously

(resp. W1,r(z)
0 (Ω) ↪→ Lq(z)(Ω) compactly).

In the study of these spaces, central role plays the following modular function

ρr(u) =
∫

Ω
|u|r(z)dz for all u ∈ Lr(z)(Ω).

If u ∈W1,r(z)
0 (Ω) or u ∈W1,r(z)(Ω), then ρr(Du) = ρr(|Du|).

This modular function is closely related to the Luxemburg norm.

Proposition 2.1. If r ∈ E1 and {un, u}n∈N ⊆ Lr(z)(Ω), then we have

(a) For all λ > 0,

‖u‖r(z) = λ⇔ ρr(
u
λ ) = 1;

(b) ‖u‖r(z) < 1⇔ ‖u‖r+
r(z) ≤ ρr(u) ≤ ‖u‖r−

r(z),

‖u‖r(z) > 1⇔ ‖u‖r−
r(z) ≤ ρr(u) ≤ ‖u‖r+

r(z);
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(c) ‖un‖r(z) → 0⇔ ρr(un)→ 0;

(d) ‖un‖r(z) → ∞⇔ ρr(un)→ +∞.

Also for r ∈ E1 ∩ C0,1(Ω), we have

W1,r(z)
0 (Ω)∗ = W−1,r′(z)(Ω).

Consider the operator Ar : W1,r(z)
0 (Ω)→W−1,r′(z)(Ω) defined by

〈Ar(z)(u), h〉 =
∫

Ω
|Du|r(z)−2(Du, Dh)RN dz, for all u, h ∈W1,r(z)

0 (Ω).

This operator has the following properties (see Gasiński–Papageorgiou [5], Proposition 2.5
and Rădulescu–Repovš [12], p.40).

Proposition 2.2. If r ∈ E1 ∩ C0,1(Ω) and Ar : W1,r(z)
0 (Ω) → W−1,r′(z)(Ω) is defined as above, then

Ar(·) is bounded (maps bounded sets to bounded sets), continuous, strictly monotone (hence maximal
monotone too) and is of type (S)+, that is, it has the following property:

“if un
w−→ u in W1,r(z)

0 (Ω) and lim sup
n→∞

〈Ar(z)(un), un − u〉 ≤ 0, then un → u in W1,r(z)
0 (Ω).”

For every u ∈W1,r(z)
0 (Ω), we define u± = max{±u, 0}. Then

u± ∈W1,r(z)
0 (Ω), u = u+ − u−, |u| = u+ + u−.

Suppose u, v : Ω → R are measurable functions such that u(z) ≤ v(z) for a.a z ∈ Ω. We
define

[u, v] =
{

h ∈W1,r(z)
0 (Ω) : u(z) ≤ h(z) ≤ v(z) for a.a. z ∈ Ω

}
,

[u) =
{

h ∈W1,r(z)
0 (Ω) : u(z) ≤ h(z) for a.a. z ∈ Ω

}
.

Another space that we will need is C1
0(Ω) = {u ∈ C1(Ω) : u|∂Ω = 0}. This is an ordered

Banach space with positive (order) cone C+ = {u ∈ C1
0(Ω) : u(z) ≥ 0 for all z ∈ Ω}. This

cone has a nonempty interior given by

int C+ =

{
u ∈ C+ : u(z) > 0 for all z ∈ Ω,

∂u
∂n

∣∣∣∣
∂Ω

< 0
}

.

with n(·) being the outward unit normal on ∂Ω.
Let X be a Banach space and ϕ ∈ C1(X). We introduce the set

Kϕ = {u ∈ X : ϕ′(u) = 0} (the critical set of ϕ).

We say that ϕ(·) satisfies the “C-condition”, if it has the following property:

“Every sequence {un}n∈N ⊆ X such that {ϕ(un)}n∈N ⊆ R is bounded

and (1 + ‖un‖X)ϕ′(un)→ 0 in X∗ as n→ ∞, admits a strongly convergent subsequence.”

Now we are ready to introduce our hypotheses on the data of problem (1.1).
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H0: p ∈ C0,1(Ω), 1 < p− = minΩ p, η ∈ C(Ω), 0 < η(z) < 1 for all z ∈ Ω.

H1: f : Ω×R→ R is a Carathéodory function such that f (z, 0) = 0 for a.a. z ∈ Ω and

(i) | f (z, x)| ≤ a(z)[1 + xr(z)−1] for a.a. z ∈ Ω, all x ≥ 0, with r ∈ C(Ω) and p(z) <

r(z) < p∗(z) for all z ∈ Ω;

(ii) if F(z, x) =
∫ x

0 f (z, s)ds, then limx→+∞
F(z,x)
xp+ = +∞ uniformly for a.a. z ∈ Ω and

there exists τ ∈ C(Ω) such that

τ(z) ∈
(
(r+ − p−)max

{
N
p−

, 1
}

, p∗(z)
)

for all z ∈ Ω,

0 < η̂0 ≤ lim inf
x→+∞

f (z, x)x− p+F(z, x)
xτ(z)

uniformly for a.a. z ∈ Ω;

(iii) there exists θ > 0 such that

θ−η(z) + f (z, θ) ≤ −ĉ < 0 for a.a. z ∈ Ω;

(iv) there exist δ > 0 and q ∈ E1 such that q+ < p− such that

c1xq(x)−1 ≤ f (z, x) for a.a. z ∈ Ω, all 0 ≤ x ≤ δ, with c1 > 0;

(v) there exists ξ̂θ > 0 such that for a.a.z ∈ Ω, the function

x → f (z, x) + ξ̂θxp(z)−1 is nondecreasing on [0, θ].

Remark 2.3. Since we look for positive solutions and all the above hypotheses concern the
positive semiaxis R+ = [0, ∞), we can always assume without any loss of generality that
f (z, x) = 0 for a.a. z ∈ Ω, all x ≤ 0. Hypotheses H1(ii) implies that for a.a. z ∈ Ω f (z, ·) is
(p+ − 1)-superlinear. However, it need not satisfy the AR-condition which is common in the
literature when dealing with superlinear problems (see, for example, Saoudi–Ghanmi [13],
hypothesis (H4) and Byun–Ko [1, p. 76]). Condition H1(ii) is less restrictive and incorporates
in our framework also superlinear nonlinearities with “slower” growth as x → +∞, which fail
to satisfy the AR-condition. For example, the following function f (z, x) satisfies hypotheses
H1 but fails to satisfy the AR-condition:

f (z, x) =

{
(x+)q(z)−1 − 2(x+)k(z)−1 if x ≤ 1

xp+−1 ln x− xp(z)−1 if 1 < x,

with q ∈ E1 as in hypothesis H1(iv), k ∈ C(Ω), τ(z) < k(z) for a z ∈ Ω. Evidently for this
f (z, x) we can choose θ = 1. Hypotheses H1(iii), (iv) dictate an oscillatory behavior for f (z, ·)
near 0+ since it starts positive near zero (see hypothesis H1(v)) and drops to negative values
as we approach θ > 0 (see hypothesis H1(iii)). Also, hypothesis H1(v) implies the presence of
a concave term near zero.

3 An auxiliary problem

When dealing with singular problems, a major difficulty that we encounter, is that the pres-
ence of the singularity leads to an energy functional which is not C1. This fact prevents us
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from using the results of critical point theory. So, we need to find a way to bypass the singu-
larity and deal with C1-functions in order to use the minimax theorems of critical point theory.
This is done by using the solution of an auxiliary problem which we introduce and solve in
this section. The auxiliary problem is suggested by a unilateral growth condition satisfied by
f (z, ·). More precisely note that on account of hypotheses H1(i), (iv), we can find c2 > 0 such
that

f (z, x) ≥ c1xq(z)−1 − c2xr(z)−1 for a.a z ∈ Ω, all x ≥ 0. (3.1)

Motivated by this unilateral growth condition on f (z, ·) and using hypothesis H1(iii), we
introduce the Carathéodory function g : Ω×R→ R defined by

g(z, x) =

{
c1(x+)q(z)−1 − c2(x+)r(z)−1 if x ≤ θ

c1θq(z)−1 − c2θr(z)−1 if θ < x.
(3.2)

Then we consider the following Dirichlet problem

− ∆p(z)u(z) = g(z, u(z)) in Ω, u|∂Ω = 0, u > 0. (3.3)

Proposition 3.1. If hypotheses H0 hold, then problem (3.3) has a unique positive solution u ∈ int C+

and 0 ≤ u(z) ≤ θ for all z ∈ Ω.

Proof. First we show the existence of a positive solution for problem (3.3). To this end, let
ψ0 : W1,p(z)

0 (Ω)→ R be the C1-functional defined by ψ0(u) =
∫

Ω
1

p(z) |Du|p(z)dz−
∫

Ω G(z, u)dz

for all u ∈W1,p(z)
0 (Ω), where G(z, x) =

∫ x
0 g(z, s)ds. From (3.2), we see that

ψ0(u) ≥
1
p

ρp(Du)− c3 for some c3 > 0,

⇒ ψ0(·) is coercive (see Proposition 2.1).

Also, from the anisotropic Sobolev embedding theorem, we see that ψ0(·) is sequentially
weakly lower semicontinuous.

So, by the Weierstrass–Tonelli theorem, we can find u ∈W1,p(z)
0 (Ω) such that

ψ0(u) = min[ψ0(u) : u ∈W1,p(z)
0 (Ω)]. (3.4)

Let u ∈ int C+ and choose t ∈ (0, 1) small so that 0 ≤ tu(z) ≤ θ for all z ∈ Ω. Then using
(3.2), we have

ψ0(tu) ≤
tp−

p−
ρp(Du) +

tr−

r−
ρτ(u)−

tq+

q+
ρq(u)

≤ c4tp− − c5tq+ for some c4, c5 > 0. (3.5)

(since 1 < q+ < p− < r− and t ∈ (0, 1)).

From (3.5) we see that by taking t ∈ (0, 1) even smaller if necessary, we have

ψ0(tu) < 0,

⇒ ψ0(u) < 0 = ψ0(0) (see (3.4)),

⇒ u 6= 0.
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From (3.4) we have that

ψ′0(u) = 0,

⇒ 〈Ap(z)(u), h〉 =
∫

Ω
g(z, u)hdz, for all h ∈W1,p(z)

0 (Ω). (3.6)

In (3.6) first we choose h = −u− ∈W1,p(z)
0 (Ω) and obtain

ρp(Du−) = 0 (see (3.2)),

⇒ u ≥ 0, u 6= 0.

Next in (3.6) first we choose h = [u− θ]+ ∈W1,p(z)
0 (Ω). We obtain

〈Ap(z)(u), (u− θ)+〉 =
∫

Ω
[c1θq(z)−1 − c2θr(z)−1](u− θ)+dz (see (3.2))

≤
∫

Ω
f (z, θ)(u− θ)+dz (see (3.1))

≤ 0 = 〈Ap(z)(θ), (u− θ)+〉 (see H1(iii)),

⇒ u ≤ θ.

So, we have proved that
u ∈ [0, θ], u 6= 0. (3.7)

From (3.7),(3.2) and (3.6), we infer that u 6= 0 is a positive solution of problem (3.3). From
Fan [3] (Theorem 1.3), we have that u ∈ C+\{0}. Moreover, we have

∆p(z)(u) ≤ c2θr(z)−p(z)u(z)p(z)−1 ≤ c6u(z)p(z)−1 in Ω for some c6 > 0.

Then the anisotropic maximum principle of Zhang [15, Theorem 1.2] implies that

u ∈ int C+. (3.8)

Next we show that this positive solution of (3.3) is in fact unique. Let v ∈ W1,p(z)
0 (Ω) be

another positive solution of (3.3). Again we have

v ∈ int C+. (3.9)

From (3.8) and (3.9) and using Proposition 4.1.22, p. 274, of Papageorgiou–Rădulescu-
Repovš [9], we have that

u
v
∈ L∞(Ω) and

v
u
∈ L∞(Ω). (3.10)

Let j : L1(Ω)→ R = R∪ {+∞} be the integral functional defined by

j(u) =

{∫
Ω

1
p(z) |Du1/p− |p(z)dz if u ≥ 0, u1/p− ∈W1,p(z)

0 (Ω),

+∞ otherwise.

Let dom j = {u ∈ L1(Ω) : j(u) < ∞} (the effective domain of j(·)). From Theorem 2.2
of Takač–Giacomoni [14], we know that j(·) is convex. Let h = up− − vp− ∈ W1,p(z)

0 (Ω). On
account of (3.10), for |t| < 1 small, we have

up− + th ∈ dom j and vp− + th ∈ dom j.
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Then the convexity of j(·) implies the Gateaux differentiability of j(·) at up− and at vp− in
the direction h. Moreover, using Green’s theorem, we obtain

j′(up−)(h) =
1

p−

∫
Ω

−∆p(z)u

up−−1 hdz =
1

p−

∫
Ω

[
c1

up−−q(z)
− c2ur(z)−p−

]
hdz,

j′(vp−)(h) =
1

p−

∫
Ω

−∆p(z)v

vp−−1 hdz =
1

p−

∫
Ω

[
c1

vp−−q(z)
− c2vr(z)−p−

]
hdz.

The convexity of j(·) implies the monotonicity of j′(·). So, we have

0 ≤
∫

Ω

[
c1

(
1

up−−q(z)
− 1

vp−−q(z)

)
− c2(ur(z)−p− − vr(z)−p−)

]
(up− − vp−)dz ≤ 0

(since q+ < p− < r−)

⇒ u = v.

This proves the uniqueness of the positive solution u ∈ int C+.

In what follows, let d̂(·) = d(·, ∂Ω) and û1 is the positive, Lp+-normalized (that is, ‖û1‖p+ =

1) eigenfunction corresponding to the principal eigenvalue of (−∆p+ , W1,p+(Ω)). We know
that û1 ∈ int C+ (see, for example, Gasiński–Papageorgiou [4, p. 739]).

Proposition 3.2. If Hypotheses H0 hold and u ∈ int C+ is the unique solution of problem (3.3), then
u(·)−η(·) ∈ L1(Ω) and for every h ∈W1,p(z)

0 (Ω), u(·)−η(·)h(·) ∈ L1(Ω).

Proof. From Lemma 14.16, p. 355 of Gilbarg–Trudinger [6], we can find δ0 > 0 such that,
if Ωδ0 = {z ∈ Ω : d̂(z) < δ0}, then d̂ ∈ C2(Ωδ0). If follows that d̂ ∈ int C+ and so by
Proposition 4.1.22, p. 274, of Papageorgiou–Rădulescu–Repovš [9], we can find c7 > 0 such
that

c7û1 ≤ d̂ and c7d̂ ≤ u (recall u ∈ int C+). (3.11)

From (3.11) we infer that

u−η(·) ≤ c8û−η(·)
1 for some c8 > 0.

Then the Lemma (in fact its proof to be precise) of Lazer–McKenna [8], implies that û−η(·)
1 ∈

L1(Ω). Therefore we have
u−η(·) ∈ L1(Ω).

On the other hand, for every h ∈W1,p(z)
0 (Ω), we have∫

Ω
|u−η(z)h|dz =

∫
Ω

u1−η(z) |h|
u

dz

≤ c9

∫
Ω

|h|
u

dz for some c9 > 0

(recall that u ∈ int C+ and see hypotheses H0)

≤ c10

∫
Ω

|h|
d̂

dz for some c10 > 0 (see (3.11))

≤ c11‖
h
d̂
‖p(z) for some c11 > 0

≤ c12‖Dh‖p(z) for some c12 > 0.
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This last inequality is a consequence of the anisotropic Hardy inequality due to Harjulehto–
Hästö–Koskenoja [7]. So, finally we have

u(·)−η(·)h(·) ∈ L1(Ω) for all h ∈W1,p(z)
0 (Ω).

4 Multiple positive solutions

In this section using u ∈ int C+, the unique positive solution of (3.3), we are able to bypass the
singularity and have C1-functionals. Working with them, we show that problem (1.1) has at
least two positive smooth solutions.

Theorem 4.1. If hypotheses H0, H1 hold, then problem (1.1) has at least two positive solutions u0, û ∈
int C+, u0 6= û, u0(z) < θ for all z ∈ Ω.

Proof. Let u ∈ int C+ be the unique positive solution of problem (3.3) produced in Proposi-
tion 3.1. We introduce the Carathéodory function g : Ω×R→ R defined by

g(z, x) =

{
u−η(z) + f (z, u(z)) if x ≤ u(z)

x−η(z) + f (z, x) if u(z) < x.
(4.1)

From Proposition 3.1 we know that 0 ≤ u(z) ≤ θ for all z ∈ Ω. Hence we can consider the
truncation of g(z, ·) at θ, that is, the Carathéodory function ĝ : Ω×R→ R defined by

ĝ(z, x) =

{
g(z, x) if x ≤ θ

g(z, θ) if θ < x.
(4.2)

We set G(z, x) =
∫ x

0 g(z, s)ds and Ĝ(z, x) =
∫ x

0 ĝ(z, s)ds and consider the functions ψ, ψ̂ :

W1,p(z)
0 (Ω)→ R defined by

ψ(u) =
∫

Ω

1
p(z)
|Du|p(z)dz−

∫
Ω

G(z, u)dz,

ψ̂(u) =
∫

Ω

1
p(z)
|Du|p(z)dz−

∫
Ω

Ĝ(z, u)dz, for all u ∈W1,p(z)
0 (Ω).

On account of Proposition 3.2, these functionals are well-defined and in fact Proposition 3.1
of Papageorgiou–Smyrlis [11] implies that ψ, ψ̂ ∈ C1(W1,p(z)

0 (Ω)).

For every u ∈W1,p(z)
0 (Ω), we have

ψ̂(u) ≥ 1
p+

ρp(Du)− c13 for some c13 > 0,

(see (4.1),(4.2) and Proposition 3.2)

⇒ ψ̂(·) is coercive.

(see Proposition 2.1 and use Poincaré’s inequality).

The anisotropic Sobolev embedding theorem implies that ψ̂(·) is sequentially weakly lower
semicontinuous.

So, by the Weierstrass–Tonelli theorem, we can find u0 ∈W1,p(z)
0 (Ω) such that

ψ̂(u0) = min[ψ̂(u) : u ∈W1,p(z)
0 (Ω)], (4.3)
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From (4.3) we have

〈ψ̂′(u0), h〉 = 0 for all h ∈W1,p(z)
0 (Ω),

⇒ 〈Ap(z)(u0), h〉 =
∫

Ω
ĝ(z, u0)hdz for all h ∈W1,p(z)

0 (Ω). (4.4)

In (4.4) first we choose h = [u− u0]+ ∈W1,p(z)
0 (Ω). We have

〈Ap(z)(u0), (u− u0)
+〉 =

∫
Ω
[u−η(z) + f (z, u)](u− u0)

+dz (see (4.1),(4.2))

≥
∫

Ω
f (z, u)(u− u0)

+dz (since u ∈ int C+)

= 〈Ap(z)(u), (u− u0)
+〉 (see Proposition 3.1),

⇒ u ≤ u0 (see Proposition 2.2).

Next in (4.4) we choose h = [u0 − θ]+ ∈W1,p(z)
0 (Ω). We have

〈Ap(z)(u0), (u0 − θ)+〉 =
∫

Ω
[θ−η + f (z, θ)](u0 − θ)+dz (see (4.1),(4.2))

≤ 0 = 〈Ap(z)(θ), (u0 − θ)+〉 (see hypothesis H1(iii)),

⇒ u0 ≤ θ.

So, we have proved that
u0 ∈ [u, θ]. (4.5)

From (4.5), (4.1), (4.2) and (4.4), we have that u0 is a positive solution of (1.1). Invoking
Theorem 13.1 of Saaudi–Ghanmi [13] (see also Theorem 3.2 of Byun–Ko [1]), we have that
u0 ∈ int C+ (recall u ∈ int C+).

Now let ξ̂θ > 0 be as postulated by hypothesis H1(v). We have

− ∆p(z)u0 + ξ̂θup(z)−1
0 − u−η(z)

0

= f (z, u0) + ξ̂θup(z)−1
0

≤ f (z, θ) + ξ̂θθp(z)−1 (see (4.5) and hypothesis H1(v))

≤ − ∆p(z)θ + ξ̂θθp(z)−1 − θ−η(z) (see hypothesis H1(iii)),

⇒ u0(z) < θ for all z ∈ Ω (4.6)

(from Proposition A4 of Papageorgiou–Rădulescu–Zhang [10]).

It is clear from (4.1) and (4.2) that

ψ|[0,θ] = ψ̂|[0,θ].

Since u0 ∈ int C+, we infer that

u0 is a local C1
0(Ω) minimizer of ψ(·) (see (4.6)),

⇒ u0 is a local W1,p(z)
0 (Ω) minimizer of ψ(·) (see [10, 13]). (4.7)

Using (4.1) and the anisotropic regularity theory, we can see that Kψ ⊆ [u) ∩ int C+. So,
we may assume that Kψ is finite or otherwise on account of (4.1) we see that we already have
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a whole sequence of distinct positive smooth solutions and so we are done. Then from (4.7)
and Theorem 5.7.6, p. 449, of Papageorgiou–Rădulescu–Repovš [9], we know that we can find
ρ ∈ (0, 1) small such that

ψ(u0) < inf[ψ(u) : ‖u− u0‖ = ρ] = mρ. (4.8)

Moreover, hypothesis H1(ii) implies that if u ∈ int C+, then

ψ(tu)→ −∞ as t→ +∞. (4.9)

Finally from Proposition 4.1 of Gasiński–Papageorgiou [5] (see hypothesis H1(ii)), we have
that

ψ(·) satisfies the C-condition. (4.10)

Then (4.8), (4.9) and (4.10) permit the use of the mountain pass theorem. Therefore we can
find û ∈W1,p(z)

0 (Ω) such that

û ∈ Kψ ⊆ [u) ∩ int C+, mρ ≤ ψ(û), (4.11)

⇒ û ∈ int C+ is a positive solution of (1.1) (see (4.1)),

û 6= u0 ( see (4.8) and (4.11)), u0(z) < θ for all z ∈ Ω.
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