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ered to illustrate the main results and suggestions for future research are also included.
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1 Introduction

In this paper, we wish to obtain some new criteria for the oscillation of all solutions of the
third-order differential equations with bounded and unbounded neutral coefficients of the
form

(x(t) + p(t)x(τ(t)))′′′ + q(t)xβ(σ(t)) = 0, (1.1)

where t ≥ t0 > 0, and β is the ratio of odd positive integers with 0 < β ≤ 1. Throughout the
paper, we will always assume that:

(C1) p, q : [t0, ∞) → R are continuous functions with p(t) ≥ 1, p(t) 6≡ 1 for large t, q(t) ≥ 0,
and q(t) not identically zero for large t;

(C2) τ, σ : [t0, ∞) → R are continuous functions such that τ(t) ≤ t, τ is strictly increasing, σ

is nondecreasing, and limt→∞ τ(t) = limt→∞ σ(t) = ∞;
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(C3) there exist a constant θ ∈ (0, 1) and tθ ≥ t0 such that(
t

τ(t)

)2/θ 1
p(t)

≤ 1, t ≥ tθ . (1.2)

By a solution of equation (1.1), we mean a function x ∈ C ([tx, ∞), R) for some tx ≥ t0 such
that x(t) + p(t)x(τ(t)) ∈ C3 ([tx, ∞), R) and x satisfies (1.1) on [tx, ∞). We only consider those
solutions of (1.1) that exist on some half-line [tx, ∞) and satisfy the condition

sup {|x(t)| : T1 ≤ t < ∞} > 0 for any T1 ≥ tx;

we tacitly assume that (1.1) possesses such solutions. Such a solution x(t) of equation (1.1)
is said to be oscillatory if it has arbitrarily large zeros, and it is called nonoscillatory otherwise.
Equation (1.1) is termed oscillatory if all its solutions are oscillatory.

Neutral differential equations are differential equations in which the highest order deriva-
tive of the unknown function appears both with and without deviating arguments. As stated
in many sources, besides their theoretical interest, equations of this type have numerous appli-
cations in the natural sciences and technology. For example, they appear in networks contain-
ing lossless transmission lines (as in high-speed computers where the lossless transmission
lines are used to interconnect switching circuits), in the study of vibrating masses attached to
an elastic bar, and as the Euler equation in some variational problems; we refer the reader to
the monograph by Hale [14] for these and other applications.

Oscillatory and asymptotic behavior of solutions to various classes of third and higher
odd-order neutral differential equations have been attracting attention of researchers during
the last few decades, and we mention the papers [1, 3–13, 15, 18–26] and the references cited
therein for examples of some recent contributions in this area. However, except for the papers
[3,4,12,23,26], all the above cited papers were concerned with the case where p(t) is bounded,
i.e., the cases where 0 ≤ p(t) ≤ p0 < 1, −1 < p0 ≤ p(t) ≤ 0, and 0 ≤ p(t) ≤ p0 < ∞
were considered, and so the results established in these papers cannot be applied to the case
p(t) → ∞ as t → ∞. Based on this observation, the aim of this paper is to establish some
new oscillation criteria that can be applied not only to the case where p(t) → ∞ as t → ∞
but also to the case where p(t) is a bounded function. We would like to point out that the
results established here are motivated by oscillation results of Koplatadze et all. [17], where
a nth order linear differential equation with a deviating argument was considered. Since our
equation considered here is fairly simple, it would be possible to extend our results to the
more general equations studied in the papers cited above and to the others types that include
equation (1.1) as a special case. For these reasons, it is our hope that the present paper will
stimulate additional interest in research on third and higher odd-order neutral differential
equations in general, and those with unbounded neutral coefficients in particular.

In the sequel, all functional inequalities are supposed to hold for all t large enough. With-
out loss of generality, we deal only with positive solutions of (1.1); since if x(t) is a solution of
(1.1), then −x(t) is also a solution.

2 Main results

For the reader’s convenience, we define:

z(t) := x(t) + p(t)x(τ(t)),
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h(t) := τ−1(σ(t)), g(t) := τ−1(η(t)), η ∈ C1([t0, ∞)),

π1(t) :=
1

p(τ−1(t))

[
1−

(
τ−1(τ−1(t))

τ−1(t)

)2/θ 1
p(τ−1(τ−1(t)))

]
and

π2(t) :=
1

p(τ−1(t))

[
1− 1

p(τ−1(τ−1(t)))

]
,

where τ−1 is the inverse function of τ (if τ is invertible) and θ ∈ (0, 1). It is also important to
notice that condition (1.2) in (C3) ensures the nonnegativity of the functions π1(t).

Lemma 2.1 (See [2, Lemma 1]). Suppose that the function h satisfies h(i)(t) > 0, i = 0, 1, 2, . . . , m,
and h(m+1)(t) ≤ 0 on [T, ∞) and h(m+1)(t) is not identically zero on any interval of the form [T′, ∞),
T′ ≥ T. Then for every θ ∈ (0, 1),

h(t)
h′(t)

≥ θ
t
m

,

eventually.

Lemma 2.2. Assume that x is an eventually positive solution of (1.1), say for t1 ≥ t0. Then there
exists a t2 ≥ t1 such that the corresponding function z satisfies one of the following two cases:

(I) z(t) > 0, z′(t) > 0, z′′(t) > 0, z′′′(t) ≤ 0,

(II) z(t) > 0, z′(t) < 0, z′′(t) > 0, z′′′(t) ≤ 0

for t ≥ t2.

Proof. This result follows immediately from Kiguradze’s lemma [16], so we omit its proof.

Lemma 2.3. Let x(t) be an eventually positive solution of (1.1) with z(t) satisfying case (I) of Lemma
2.2 for t ≥ t2 for some t2 ≥ t1. Then for every θ ∈ (0, 1) there exists a tθ ≥ t2 such that(

z(t)
t2/θ

)′
≤ 0 for t ≥ tθ . (2.1)

Proof. Since z satisfies case (I) of Lemma 2.2 for t ≥ t2 for some t2 ≥ t1, by Lemma 2.1, there
exists a tθ ≥ t2 for every θ ∈ (0, 1) such that

z(t) ≥ θ

2
tz′(t) for t ≥ tθ . (2.2)

It follows from (2.2) that (
z(t)
t2/θ

)′
=

θtz′(t)− 2z(t)
θt2/θ+1 ≤ 0 for t ≥ tθ .

This completes the proof of the lemma.

Lemma 2.4. Let x(t) be an eventually positive solution of (1.1) with z(t) satisfying case (I) of Lemma
2.2. Assume that ∫ ∞

t0

∫ ∞

u
q(s)πβ

1 (σ(s))h
β(s)dsdu = ∞. (2.3)

Then:
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(i) z satisfies the inequality
z′′′(t) + q(t)πβ

1 (σ(t))z
β(h(t)) ≤ 0 (2.4)

for large t;

(ii) z′(t)→ ∞ as t→ ∞;

(iii) z(t)/t is increasing.

Proof. Let x(t) be an eventually positive solution of (1.1) such that x(t) > 0, x(τ(t)) > 0, and
x(σ(t)) > 0 for t ≥ t1 for some t1 ≥ t0. From the definition of z, we have

x(t) =
1

p(τ−1(t))

[
z(τ−1(t))− x(τ−1(t))

]
≥ z(τ−1(t))

p(τ−1(t))
− 1

p(τ−1(t))p(τ−1(τ−1(t)))
z(τ−1(τ−1(t))). (2.5)

Now τ(t) ≤ t and τ is strictly increasing, so τ−1 is increasing and t ≤ τ−1(t). Thus,

τ−1(t) ≤ τ−1(τ−1(t)). (2.6)

Since z(t) satisfies case (I) for t ≥ t2, by Lemma 2.3, there exists a tθ ≥ t2 such that (2.1) holds
for t ≥ tθ . From (2.1) and (2.6), we observe that

z
(

τ−1(τ−1(t))
)
≤
(
τ−1(τ−1(t))

)2/θ z(τ−1(t))

(τ−1(t))2/θ
. (2.7)

Using (2.7) in (2.5) yields
x(t) ≥ π1(t)z(τ−1(t)) for t ≥ tθ . (2.8)

Since limt→∞ σ(t) = ∞, we can choose t3 ≥ tθ such that σ(t) ≥ tθ for all t ≥ t3. Thus, it follows
from (2.8) that

x(σ(t)) ≥ π1(σ(t))z(τ−1(σ(t))) for t ≥ t3. (2.9)

Using (2.9) in (1.1) gives

z′′′(t) + q(t)πβ
1 (σ(t))z

β(h(t)) ≤ 0 for t ≥ t3, (2.10)

i.e., (2.4) holds.
Next, we claim that condition (2.3) implies z′(t)→ ∞ as t→ ∞. If this is not the case, then

there exists a constant k > 0 such that limt→∞ z′(t) = k, and so z′(t) ≤ k. Since z′(t) is positive
and increasing on [t2, ∞), there exist a t3 ≥ t2 and a constant c > 0 such that

z′(t) ≥ c for t ≥ t3,

which implies
z(t) ≥ dt

for t ≥ t4, for some t4 ≥ t3 and some d > 0. Since limt→∞ h(t) = ∞, we can choose t5 ≥ t4

such that h(t) ≥ t4 for all t ≥ t5, so

z(h(t)) ≥ dh(t).
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Using this in (2.10) gives

z′′′(t) + dβq(t)πβ
1 (σ(t))h

β(t) ≤ 0 for t ≥ t5.

Integrating this inequality from t to ∞, we obtain

z′′(t) ≥ dβ
∫ ∞

t
q(s)πβ

1 (σ(s))h
β(s)ds.

Now integrating from t5 to t yields

k ≥ z′(t) ≥ dβ
∫ t

t5

∫ ∞

u
q(s)πβ

1 (σ(s))h
β(s)dsdu,

which contradicts (2.3) and proves the claim.
Finally, from the fact that z′(t)→ ∞ as t→ ∞, we see that

z(t) = z(t2) +
∫ t

t2

z′(s)ds ≤ z(t2) + (t− t2)z′(t) ≤ tz′(t),

which implies (
z(t)

t

)′
=

tz′(t)− z(t)
t2 ≥ 0,

i.e., (iii) holds. The proof of the lemma is now complete.

Lemma 2.5. Let x(t) be an eventually positive solution of (1.1) with z(t) satisfying case (I) of
Lemma 2.2. If ∫ ∞

t0

q(s)πβ
1 (σ(s))h

2β/θ(s)ds = ∞, (2.11)

then

lim
t→∞

z(t)
t2/θ

= 0. (2.12)

Proof. Since z(t) satisfies case (I) for t ≥ t2 for some t2 ≥ t1, by Lemma 2.3, there exists a
tθ ≥ t2 such that (2.1) holds for t ≥ tθ , i.e., z(t)/t2/θ is decreasing for t ≥ tθ . We now claim
that (2.11) implies

lim
t→∞

z(t)
t2/θ

= 0.

If this is not the case, then there exist a constant b > 0 and a t3 ≥ tθ such that

z(t) ≥ bt2/θ for t ≥ t3. (2.13)

Since case (I) holds, we again arrive at (2.10) for t ≥ t3. Using (2.13) in (2.10) gives

z′′′(t) + bβq(t)πβ
1 (σ(t))h

2β/θ(t) ≤ 0 (2.14)

for t ≥ t4 for some t4 ≥ t3. Integrating (2.14) from t4 to t yields∫ t

t4

q(s)πβ
1 (σ(s))h

2β/θ(s)ds ≤ z′′(t4)

bβ
,

which contradicts (2.11) and completes the proof.
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Lemma 2.6. Let x(t) be an eventually positive solution of (1.1) with z(t) satisfying case (II) of
Lemma 2.2. Suppose also that there exists a nondecreasing function η ∈ C1([t0, ∞), R) such that
σ(t) ≤ η(t) < τ(t) for t ≥ t0. If∫ ∞

t0

q(s)π2(σ(s))(g(s)− h(s))2βds = ∞, (2.15)

then
lim
t→∞

z′′(t) = 0. (2.16)

Proof. Let x(t) be an eventually positive solution of (1.1) such that x(t) > 0, x(τ(t)) > 0, and
x(σ(t)) > 0 for t ≥ t1 for some t1 ≥ t0. As in Lemma 2.4, we again see that (2.5) and (2.6)
hold. Since z′(t) < 0, it follows from (2.6) that

z(τ−1(t)) ≥ z(τ−1(τ−1(t))),

so inequality (2.5) takes the form

x(t) ≥ π2(t)z(τ−1(t)). (2.17)

Using (2.17) in (1.1) gives
z′′′(t) + q(t)πβ

2 (σ(t))z
β(h(t)) ≤ 0 (2.18)

for t ≥ t3 for some t3 ≥ t2. Since (−1)kz(k)(t) > 0 for k = 0, 1, 2 and z′′′(t) ≤ 0, for t3 ≤ u ≤ v,
it is easy to see that

z(u) ≥ (v− u)2

2
z′′(v). (2.19)

Since σ(t) ≤ η(t) and τ is increasing, we conclude that τ−1(σ(t)) ≤ τ−1(η(t)), i.e, h(t) ≤ g(t).
Letting u = h(t) and v = g(t) in (2.19), we obtain

z(h(t)) ≥ (g(t)− h(t))2

2
z′′(g(t)).

Using the latter inequality in (2.18) gives

z′′′(t) +
1
2β

q(t)πβ
2 (σ(t))(g(t)− h(t))2β

(
z′′(g(t))

)β ≤ 0. (2.20)

Since π2(t) < 1, we have π
β
2 (t) ≥ π2(t). So, inequality (2.20) takes the form

z′′′(t) +
1
2β

q(t)π2(σ(t))(g(t)− h(t))2β
(
z′′(g(t))

)β ≤ 0. (2.21)

Now, we claim that (2.15) implies z′′(t)→ 0 as t→ ∞. Suppose to the contrary that

lim
t→∞

z′′(t) = ` > 0.

Then, z′′(t) ≥ ` for t ≥ t3 for some t3 ≥ t2. Since limt→∞ g(t) = ∞, we can choose t4 ≥ t3 such
that g(t) ≥ t3 for all t ≥ t4. Hence, z′′(g(t)) ≥ ` for t ≥ t4. Using this in (2.21) gives

z′′′(t) +
`β

2β
q(t)π2(σ(t))(g(t)− h(t))2β ≤ 0 for t ≥ t4. (2.22)

Integrating (2.22) from t4 to t yields∫ t

t4

q(s)π2(σ(s))(g(s)− h(s))2βds ≤
(

2
`

)β

z′′(t4),

which contradicts (2.15) and completes the proof.
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Now, we are ready to present our main results. Our first result is concerned with equation
(1.1) in the case where β = 1, i.e., equation (1.1) is linear.

Theorem 2.7. Let (2.3) hold and assume that there exists a nondecreasing function η ∈ C1([t0, ∞), R)

such that σ(t) ≤ η(t) < τ(t) for t ≥ t0. If there exist constants α, θ ∈ (0, 1) such that

lim sup
t→∞

(
αθh1− 2

θ (t)
2

∫ h(t)

t0

sq(s)π1(σ(s))(h(s))2/θds

+
αθh2− 2

θ (t)
2

∫ t

h(t)
q(s)π1(σ(s))(h(s))2/θds

+
αθh(t)

2

∫ ∞

t
q(s)π1(σ(s))h(s)ds

)
> 1, (2.23)

and

lim sup
t→∞

∫ t

g(t)

1
2

q(s)π2(σ(s))(g(s)− h(s))2ds > 1, (2.24)

then equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1), say x(t) > 0, x(τ(t)) > 0, and
x(σ(t)) > 0 for t ≥ t1 for some t1 ≥ t0. Then, from Lemma 2.2, the corresponding function z
satisfies either case (I) or case (II) for t ≥ t2 for some t2 ≥ t1.

First, we consider case (I). By Lemma 2.4, we again arrive at (2.10) for t ≥ t3, which, for
β = 1, takes the form

z′′′(t) + q(t)π1(σ(t))z(h(t)) ≤ 0 for t ≥ t3. (2.25)

Integrating (2.25) from t to ∞ yields

z′′(t) ≥
∫ ∞

t
q(s)π1(σ(s))z(h(s))ds, (2.26)

and integrating again from t3 to t yields

z′(t) ≥
∫ t

t3

∫ ∞

u
q(s)π1(σ(s))z(h(s))dsdu

=
∫ t

t3

∫ t

u
q(s)π1(σ(s))z(h(s))dsdu +

∫ t

t3

∫ ∞

t
q(s)π1(σ(s))z(h(s))dsdu

=
∫ t

t3

(s− t3)q(s)π1(σ(s))z(h(s))ds + (t− t3)
∫ ∞

t
q(s)π1(σ(s))z(h(s))ds.

For any α ∈ (0, 1) there exists t4 ≥ t3 such that s− t3 ≥ αs and t− t3 ≥ αt for t ≥ s ≥ t4. Thus,
from the last inequality we see that

z′(t) ≥ α
∫ t

t4

sq(s)π1(σ(s))z(h(s))ds + αt
∫ ∞

t
q(s)π1(σ(s))z(h(s))ds. (2.27)

In view of (2.2), it follows that

2z(t)
θt
≥ α

∫ t

t4

sq(s)π1(σ(s))z(h(s))ds + αt
∫ ∞

t
q(s)π1(σ(s))z(h(s))ds. (2.28)
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From (2.28), we see that

2z(h(t))
θh(t)

≥ α
∫ h(t)

t4

sq(s)π1(σ(s))z(h(s))ds

+ αh(t)
∫ t

h(t)
q(s)π1(σ(s))z(h(s))ds

+ αh(t)
∫ ∞

t
q(s)π1(σ(s))z(h(s))ds. (2.29)

Also, for t ≤ s, we have h(t) ≤ h(s). Since z(t)/t is increasing (see Lemma 2.4 (iii)),

z(h(s)) ≥ h(s)z(h(t))
h(t)

. (2.30)

For h(t) ≤ s ≤ t, we have h(h(t)) ≤ h(s) ≤ h(t). Since z(t)/t2/θ is decreasing (see (2.1)),

z(h(s)) ≥ h2/θ(s)
z(h(t))
h2/θ(t)

. (2.31)

For t4 ≤ s ≤ h(t) and h(t) ≤ t, we have h(s) ≤ h(h(t)) ≤ h(t). Since z(t)/t2/θ is decreasing,
we again obtain (2.31). Using (2.30) and (2.31) in (2.29) gives

2z(h(t))
θh(t)

≥
(

α
∫ h(t)

t4

sq(s)π1(σ(s))(h(s))2/θds
)

z(h(t))

(h(t))
2
θ

+

(
αh(t)

∫ t

h(t)
q(s)π1(σ(s))(h(s))2/θds

)
z(h(t))

(h(t))
2
θ

+

(
αh(t)

∫ ∞

t
q(s)π1(σ(s))h(s)ds

)
z(h(t))

h(t)
. (2.32)

From (2.32), we see that

αθh1− 2
θ (t)

2

∫ h(t)

t4

sq(s)π1(σ(s))(h(s))2/θds

+
αθh2− 2

θ (t)
2

∫ t

h(t)
q(s)π1(σ(s))(h(s))2/θds +

αθh(t)
2

∫ ∞

t
q(s)π1(σ(s))h(s)ds ≤ 1.

Taking the lim supt→∞ on both sides of the above inequality, we obtain a contradiction to
condition (2.23),

Next, we consider case (II). As in Lemma 2.6, we again arrive at (2.20), which, for β = 1,
takes the form

z′′′(t) +
1
2

q(t)π2(σ(t))(g(t)− h(t))2z′′(g(t)) ≤ 0. (2.33)

Integrating (2.33) from g(t) to t yields

z′′(t) +
[∫ t

g(t)

1
2

q(s)π2(σ(s))(g(s)− h(s))2ds− 1
]

z′′(g(t)) ≤ 0,

which, by (2.24), leads to a contradiction. This completes the proof of the theorem.

Our next results is for equation (1.1) in the case where β < 1, i.e., equation (1.1) is sublinear.
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Theorem 2.8. Let (2.3) and (2.11) hold. Assume that there exists a nondecreasing function η ∈
C1([t0, ∞), R) such that σ(t) ≤ η(t) < τ(t) for t ≥ t0. If there exists θ ∈ (0, 1) such that

lim sup
t→∞

(
h1− 2

θ (t)
∫ h(t)

t0

sq(s)πβ
1 (σ(s))(h(s))

2β/θds

+ h2− 2
θ (t)

∫ t

h(t)
q(s)πβ

1 (σ(s))(h(s))
2β/θds

+
h2−β(t)

h2(1−β)/θ(t)

∫ ∞

t
q(s)πβ

1 (σ(s))h
β(s)ds

)
> 0, (2.34)

and

lim sup
t→∞

∫ t

g(t)
q(s)π2(σ(s))(g(s)− h(s))2βds > 0, (2.35)

then equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1), say x(t) > 0, x(τ(t)) > 0, and
x(σ(t)) > 0 for t ≥ t1 for some t1 ≥ t0. Then, by Lemma 2.2, the corresponding function z
satisfies either case (I) or case (II) for t ≥ t2 for some t2 ≥ t1.

First, we consider case (I). By Lemma 2.4, we again arrive at (2.10) for t ≥ t3. Integrating
(2.10) from t to ∞ gives

z′′(t) ≥
∫ ∞

t
q(s)πβ

1 (σ(s))z
β(h(s))ds. (2.36)

Integrating (2.36) from t3 to t yields

z′(t) ≥
∫ t

t3

∫ ∞

u
q(s)πβ

1 (σ(s))z
β(h(s))dsdu

=
∫ t

t3

∫ t

u
q(s)πβ

1 (σ(s))z
β(h(s))dsdu +

∫ t

t3

∫ ∞

t
q(s)πβ

1 (σ(s))z
β(h(s))dsdu

=
∫ t

t3

(s− t3)q(s)π
β
1 (σ(s))z

β(h(s))ds + (t− t3)
∫ ∞

t
q(s)πβ

1 (σ(s))z
β(h(s))ds.

For any α ∈ (0, 1) there exists t4 ≥ t3 such that s− t3 ≥ αs and t− t3 ≥ αt for t ≥ s ≥ t4. Thus,

z′(t) ≥ α
∫ t

t4

sq(s)πβ
1 (σ(s))z

β(h(s))ds + αt
∫ ∞

t
q(s)πβ

1 (σ(s))z
β(h(s))ds. (2.37)

By (2.2) and (2.37), we observe that

2z(t)
θt
≥ α

∫ t

t4

sq(s)πβ
1 (σ(s))z

β(h(s))ds + αt
∫ ∞

t
q(s)πβ

1 (σ(s))z
β(h(s))ds. (2.38)

It follows from (2.38) that

2z(h(t))
θh(t)

≥ α
∫ h(t)

t4

sq(s)πβ
1 (σ(s))z

β(h(s))ds

+ αh(t)
∫ t

h(t)
q(s)πβ

1 (σ(s))z
β(h(s))ds

+ αh(t)
∫ ∞

t
q(s)πβ

1 (σ(s))z
β(h(s))ds. (2.39)
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Using (2.30) and (2.31) in (2.39) gives

2z(h(t))
θh(t)

≥
(

α
∫ h(t)

t4

sq(s)πβ
1 (σ(s))(h(s))

2β/θds
)

zβ(h(t))
h2β/θ(t)

+

(
αh(t)

∫ t

h(t)
q(s)πβ

1 (σ(s))(h(s))
2β/θds

)
zβ(h(t))
h2β/θ(t)

+

(
αh(t)

∫ ∞

t
q(s)πβ

1 (σ(s))h
β(s)ds

)
zβ(h(t))

hβ(t)
. (2.40)

Letting

w(t) =
z(h(t))
(h(t))2/θ

,

it follows from (2.40) that

2
αθ

w1−β(t) ≥ h1− 2
θ (t)

(∫ h(t)

t4

sq(s)πβ
1 (σ(s))(h(s))

2β/θds
)

+ h2− 2
θ (t)

(∫ t

h(t)
q(s)πβ

1 (σ(s))(h(s))
2β/θds

)
+

h2−β(t)
h2(1−β)/θ

(∫ ∞

t
q(s)πβ

1 (σ(s))h
β(s)ds

)
. (2.41)

Taking the lim supt→∞ on both sides of the above inequality and using (2.12) , we obtain a
contradiction to condition (2.34).

Next, we consider case (II). As in the proof of Lemma 2.6, we again arrive at (2.21). Inte-
grating (2.21) from g(t) to t yields∫ t

g(t)
q(s)π2(σ(s))(g(s)− h(s))2βds ≤ 2β

(
z′′(g(t))

)1−β .

Noting that (2.35) implies (2.15), we see that (2.16) holds. Taking the lim supt→∞ on both sides
of the above inequality and using (2.16), we obtain a contradiction to condition (2.35), and this
proves the theorem.

We conclude this paper with the following examples and remarks to illustrate the above
results. Our first example is concerned with an equation with bounded neutral coefficients in
the case where p is a constant function; the second example is for an equation with unbounded
neutral coefficients in the case where p(t)→ ∞ as t→ ∞.

Example 2.9. Consider the third-order differential equation of Euler type(
x(t) + 16x

(
t
2

))′′′
+

q0

t3 x
(

t
4

)
= 0, t ≥ 1. (2.42)

Here p(t) = 16, q(t) = q0/t3, β = 1, τ(t) = t/2, and σ(t) = t/4. Then, it is easy to see that
conditions (C1)–(C2) hold, and

τ−1(t) = 2t, τ−1(τ−1(t)) = 4t, h(t) = t/2, and g(t) = 2t/3 with η(t) = t/3.

Choosing θ = 2/3, we see that (
t

τ(t)

)2/θ 1
p(t)

=
1
2

,
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i.e., condition (C3) holds, π1(t) = 1/32 and π2(t) = 15/256. Letting α = θ = 2/3, by Theorem
2.7, Eq. (2.42) is oscillatory for

q0 >
3× 211

5 ln 3
2

.

Example 2.10. Consider the sublinear equation(
x(t) + tx

(
t
2

))′′′
+

q0

t6/5 x3/5
(

t
10

)
= 0, t ≥ 16. (2.43)

Here p(t) = t, q(t) = q0/t6/5, β = 3/5, τ(t) = t/2, and σ(t) = t/10. Then, it is easy to see
that conditions (C1)–(C2) hold, and

τ−1(t) = 2t, τ−1(τ−1(t)) = 4t, h(t) = t/5, and g(t) = t/4 with η(t) = t/8.

Choosing θ = 2/3, we see that (
t

τ(t)

)2/θ 1
p(t)

=
8
t
≤ 1

2
,

i.e., condition (C3) holds. Since π1(t) ≥ 7/16t and π2(t) ≥ 63/128t, by Theorem 2.8, Eq. (2.43)
is oscillatory for all q0 > 0.

Remark 2.11. The results of this paper can be extended to the odd-order equation(
r(t)

(
z(n−1)(t)

)γ)′
+ q(t)xβ(σ(t)) = 0, t ≥ t0 > 0,

under either of the conditions ∫ ∞

t0

r−1/γ(t)dt = ∞

or ∫ ∞

t0

r−1/γ(t)dt < ∞,

where n ≥ 3 is an odd natural number, r ∈ C ([t0, ∞), (0, ∞)), γ is the ratio of odd positive
integers, and the other functions in the equation are defined as in this paper.

Remark 2.12. It would be of interest to study the oscillatory behavior of all solutions of (1.1)
for p(t) ≤ −1 with p(t) 6≡ −1 for large t.
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