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Abstract. In this paper, we consider the following fractional equation with a gradient
term

(−∆)su(x) = f (x, u(x),∇u(x)),

in a bounded domain and the upper half space. Firstly, we prove the monotonicity
and uniqueness of solutions to the fractional equation in a bounded domain by the
sliding method. In order to obtain maximum principle on unbounded domain, we
need to estimate the singular integrals define the fractional Laplacians along a sequence
of approximate maximum points by using a generalized average inequality. Then we
prove monotonicity and uniqueness of solutions to fractional equation in Rn

+ by the
sliding method. In order to solve the difficulties caused by the gradient term, some new
techniques are developed. The paper may be considered as an extension of Berestycki
and Nirenberg [J. Geom. Phys. 5(1988), 237–275].
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1 Introduction

During the last decades, fractional Laplacian has attracted more and more attention due to its
various applications. The methods to study the fractional Laplacian are the extension method
[6], moving planes method in integral form [11], the method of moving sphere [26] and direct
methods of moving planes [9, 22] etc. Recently, to study the monotonicity of the solution, Liu
[28], Wu and Chen [35, 36] introduced a direct sliding method for fractional Laplacian and
fractional p-Laplacian. Berestycki and Nirenberg [3–5] first developed the sliding method,
which was used to establish qualitative properties of solutions for nonlinear elliptic equations
involving the regular Laplacian such as monotonicity, nonexistence and uniqueness etc. The
essential ingredients are different forms of maximum principles. The main idea lies in com-
paring values of the solution to the equation at two different points, between which one point
is obtained from the other by sliding the domain in a given direction, and then the domain
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is slide back to a critical position. While in the method of moving planes, one point is the
reflection of the other.

Inspired by the above article, in this article, we show the monotonicity, antisymmetry and
uniqueness of solutions for the following fractional equation with a gradient term

(−∆)su(x) = f (x, u(x),∇u(x)), (1.1)

where ∇u denotes the gradient of u, the fractional Laplacian (−∆)s with 0 < s < 1 is given
by

(−∆)su(x) = Cn,s P.V.
∫

Rn

u(x)− u(y)
|x− y|n+2s dy

= Cn,s lim
ε→0

∫
Rn\Bε(x)

u(x)− u(y)
|x− y|n+2s dy.

Define

L2s =
{

u : u ∈ L1
loc(R

n),
∫

Rn

|u(x)|
1 + |x|n+2s dx < ∞

}
,

then it is easy to see that for u ∈ C1,1
loc (R

n) ∩ L2s, (−∆)su is well defined.
When s = 1, [3] derived the monotonicity, symmetry and uniqueness of (1.1) in a finite

cylinder and a bounded domain which is convex in the x1 direction by the sliding method. In
the case s = 1, f (x, u,∇u) = f (u), Gidas, Ni, Nirenberg [21] obtained monotonicity and sym-
metry for positive solutions of (1.1), vanishing on the boundary, using the maximum principle
and the method of moving planes; in [2, 5], Berestycki, Cafferelli and Nirenberg considered
the monotonicity and uniqueness of solution for (1.1) by the sliding method. Recently, in the
case 0 < s < 1, Chen, Li and Li [9] investigated the semilinear equation in the whole space
with f (x, u,∇u) = up, 1 < p ≤ n+2s

n−2s , developed a direct method of moving planes for the
fractional Laplacian and showed that the nonnegative solution of (1.1) is radially symmetric
and monotone decreasing about some point in the critical case p = n+2s

n−2s and nonexistence
of positive solutions in the subcritical case 1 < p < n+2s

n−2s ; Dipierro, Soave and Valdinoci [16]
proved symmetry, monotonicity and rigidity results to (1.1) in an unbounded domain with
the epigraph property.

The purpose of the present paper is to extend the results in [3] to the fractional equation.
On the one hand, we extent the case s = 1 in [3] to the fractional case 0 < s < 1, and extend
bounded domain to Rn

+. On the other hand, the nonlinear term f (x, u,∇u) has a broader
form containing nonlinear term f (u) and f (x, u).

In order to solve the difficulty that the nonlinear term at the right side of (1.1) contain
the gradient term, in the bounded domain when deriving the contradiction for the minimum
point of the function wτ(x) (see Section 2 below for definition), for the first time, we use
the technique of finding the minimum value of the function wτ(x) for the variables τ and x
at the same time. This is different from the previous sliding process which only finds the
minimum value of the variable x for the fixed τ. In the whole space, we estimate the singular
integrals defining the fractional Laplacian along a sequence of approximate maximum, and
the estimating is for τ and the sequence of approximate maximum at the same time.

In order to apply the sliding method, we give the exterior condition on u. Let u(x) =

ϕ(x), x ∈ Ωc, and assume that

(C) for any three points x = (x′, xn), y = (x′, yn) and z = (x′, zn) lying on a segment parallel
to the xn axis, yn < xn < zn, with y, z ∈ Ωc, we have

ϕ(y) < u(x) < ϕ(z), if x ∈ Ω (1.2)
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and
ϕ(y) ≤ ϕ(x) ≤ ϕ(z), if x ∈ Ωc. (1.3)

Remark 1.1. The same monotonicity conditions (1.2) and (1.3) (with Ωc replaced by ∂Ω) were
assumed in [4, 5, 35].

The main result of this paper is

Theorem 1.2. Suppose that u ∈ C1,1
loc (Ω) ∩ C(Ω̄) satisfies (C) and is a solution of equation{

(−∆)su(x) = f (x, u,∇u), x ∈ Ω,

u(x) = ϕ(x), x ∈ Ωc,
(1.4)

where Ω is a bounded domain which is convex in xn direction. Assume that f is continuous in all
variables, locally Lipschitz continuous in (u,∇u) and is nondecreasing in xn. Then u is strictly
monotone increasing with respect to xn in Ω, i.e., for any τ > 0,

u(x′, xn + τ) > u(x′, xn), for all (x′, xn), (x′, xn + τ) ∈ Ω.

Furthermore, the solution of (1.4) is unique.

Remark 1.3. Theorem (1.2) includes the result of Theorem 2 in [35], and we also prove the
uniqueness of solutions in bounded domain. If Ω is the finite cylinder C = {x = (x′, xn) ∈
Rn | |xn| < l, x′ ∈ ω}, where l > 0 and ω is a bounded domain in Rn−1 with smooth
boundary, the result of Theorem 1.2 still holds.

Remark 1.4. The conditions in Theorem 1.2 and Theorem 1 of [14] are different. Neither
implies the other. Cheng, Huang and Li [14] studied the positive solution u and obtained that
u is strictly increasing in the half of Ω in xn-direction with xn < 0 by the method of moving
planes, but the solution we study can be negative and is strictly increasing with respect to xn

in the whole domain Ω by the sliding method.

We also have a new antisymmetry result for the equation (1.4) if the bounded domain Ω
is symmetric about xn = 0.

Corollary 1.5 (Antisymmetry). Assume that the conditions of Theorem 1.2 are satisfied and in addi-
tion that ϕ is odd in xn on Ωc. If f (x, u,∇u) is odd in (xn, u,∇x′u). Then u is odd, i.e. antisymmetric
in xn:

u(x′,−xn) = −u(x′, xn), ∀ x ∈ Ω.

This follows from the fact that ū = −u(x′,−xn) is a solution satisfying the same conditions,
and so is u.

For the unbounded domain, we give the following result on Rn
+.

Theorem 1.6. Suppose that u ∈ C1,1
loc (R

n
+) ∩ L2s(Rn) ∩ C(Rn

+) is a solution of
(−∆)su(x) = f (u,∇u), x ∈ Rn

+,

0 < u(x) ≤ µ, x ∈ Rn
+,

u(x) = 0, x 6∈ Rn
+,

(1.5)

and
lim

xn→+∞
u(x′, xn) = µ, uniformly for all x′ ∈ Rn−1. (1.6)
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Assume that f is bounded, continuous in all variables and nonincreasing in u ∈ [µ− δ, µ] for some
δ > 0. Then u is strictly monotone increasing in xn direction, and moreover it depends on xn only.

Furthermore, the solution of (1.5) is unique.

Theorem 1.6 is closely related to the following well-known De Giorgi conjecture [19].

Conjecture (De Giorgi [19]). If u is a solution of

−∆u = u− u3,

such that
lim

xn→±∞
u(x′, xn) = ±1, for all x′ ∈ Rn−1,

and

|u(x)| ≤ 1, x ∈ Rn,
∂u
∂xn

> 0.

Then there exists a vector µ ∈ Rn−1 and a function u1 : R→ R such that

u(x′, xn) = u1(µx′ + xn) in Rn.

The other symmetry, uniqueness and monotonicity results on local and nonlocal equations,
we also refer readers to [1, 18, 24, 25] for semilinear elliptic equations, [9, 13, 17, 23, 30, 31] for
fractional equations, [34, 38] for weighted fractional equation, [14, 37] for fractional equations
with a gradient term, [27] for integral system with negative exponents, [12] for weighted
Hardy-sobolev type system, [8, 32, 33] for fully nonlinear nonlocal equations with gradient
term, [7, 15, 29] for fractional p-Laplace equation, and references therein.

The paper is organized as follows. In Section 2 we prove Theorem 1.2 via the sliding
method. In Section 3, we first establish a maximum principle in the unbounded domain,
then uniqueness and monotonicity for the fractional equation with a gradient term on Rn

+ are
obtained.

2 The proof of Theorem 1.2

For convenience, we list some notations used frequently. For τ ∈ R, denote x = (x′, xn),
x′ = (x1, · · · , xn−1) ∈ Rn−1. Set

uτ(x) = u(x′, xn + τ), wτ(x) = uτ(x)− u(x).

Proof of Theorem 1.2. For τ > 0, it is defined on the set Ωτ = Ω − τen which is obtained
from Ω by sliding it downward a distance τ parallel to the xn axis, where en = (0, . . . , 0, 1).
Set

Dτ := Ωτ ∩Ω, τ̃ = sup{τ | τ > 0, Dτ 6= ∅}

and
wτ(x) = uτ(x)− u(x), x ∈ Dτ.

We mainly divide the following two steps to prove that u is strictly increased in the xn direc-
tion, i.e.

wτ(x) > 0, x ∈ Dτ, for any 0 < τ < τ̃. (2.1)
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Step 1. For τ sufficiently close to τ̃ i.e., Dτ is narrow, we claim that there exists δ > 0 small enough
such that

wτ(x) ≥ 0, ∀ x ∈ Dτ, ∀ τ ∈ (τ̃ − δ, τ̃). (2.2)

Otherwise, we set
A0 = min

x∈D̄τ

τ̃−δ<τ<τ̃

wτ(x) < 0.

From condition (C), A0 can be obtained for some (τ0, x0) ∈ {(τ, x) | (τ, x) ∈ (τ̃− δ, τ̃)×Dτ}.
Noticing that wτ0

(x) ≥ 0, x ∈ ∂Dτ0
, we arrive at x0 ∈ Dτ0

. So wτ0
(x0) = A0. Since (τ0, x0) is

a minimizing point, we have ∇wτ0
(x0) = 0, i.e., ∇uτ0

(x0) = ∇u(x0). Since uτ0
satisfies the

same equation (1.4) in Ωτ0
as u does in Ω, and f is nondecreasing in xn, so we have

(−∆)swτ0
(x0) = f ((x0)′, x0

n + τ0, uτ0
(x0),∇uτ0

(x0))− f (x0, u(x0),∇u(x0))

≥ f (x0, uτ0
(x0),∇uτ0

(x0))− f (x0, u(x0),∇u(x0))

= f (x0, uτ0
(x0),∇u(x0))− f (x0, u(x0),∇u(x0))

= −cτ0
(x0)wτ0

(x0),

(2.3)

where −cτ0
(x0) = f (x0,uτ0

(x0),∇u(x0))− f (x0,u(x0),∇u(x0))

uτ0 (x0)−u(x0)
is a L∞ function satisfying

|cτ0
(x0)| ≤ C, ∀ x0 ∈ Dτ0

.

Hence
(−∆)swτ0

(x0) + cτ0
(x0)wτ0

(x0) ≥ 0.

On the other hand, we obtain

(−∆)swτ0
(x0) + cτ0

(x0)wτ0
(x0)

= Cn,sP.V.
∫

Rn

wτ0
(x0)− wτ0

(y)
|x0 − y|n+2s dy + cτ0

(x0)wτ0
(x0)

≤ Cn,swτ0
(x0)

∫
(Dτ0 )c

1
|x0 − y|n+2s dy + inf

Dτ0
cτ0

(x)wτ0
(x0)

≤ wτ0
(x0)

(
C1

d2s
n
− C

)
< 0,

(2.4)

where dn denotes the width of Dτ0
in the xn direction and Dτ0

is narrow. This is a contradic-
tion.

Therefore we derive (2.2) is true for τ sufficiently close to τ̃.

Step 2. The inequality (2.2) provides a starting point, from which we can carry out the sliding. Now
we decrease τ as long as (2.2) holds to its limiting position. Define

τ0 = inf{τ | wτ(x) ≥ 0, x ∈ Dτ, 0 < τ < τ̃}.

We will prove
τ0 = 0.
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Otherwise, assume τ0 > 0, we show that the domain Ω can be slided upward a little bit
more and we still have

wτ(x) ≥ 0, x ∈ Dτ, for any τ0 − ε < τ ≤ τ0, (2.5)

which contradicts the definition of τ0.
Since wτ0(x) > 0, x ∈ Ω ∩ ∂Dτ0 by condition (C) and wτ0(x) ≥ 0, x ∈ Dτ0 , then

wτ0(x) 6≡ 0, x ∈ Dτ0 .

If there exists a point x̃ ∈ Dτ0 such that wτ0(x̃) = 0, then x̃ is the minimum point. So we have
∇wτ0(x̃) = 0 and

(−∆)swτ0(x̃) = Cn,sP.V.
∫

Rn

wτ0(x̃)− wτ0(y)
|x̃− y|n+2s dy < 0,

which contradicts to

(−∆)swτ0(x̃) = f (x̃′, x̃n + τ0, uτ0(x̃),∇uτ0(x̃))− f (x̃, u(x̃),∇u(x̃))

≥ f (x̃, uτ0(x̃),∇uτ0(x̃))− f (x̃, u(x̃),∇u(x̃))

= 0.

Hence,
wτ0(x) > 0, x ∈ Dτ0 . (2.6)

Next we will prove (2.5). Suppose (2.5) is not true, one has

A1 = min
x∈Dτ

τ0−ε<τ<τ0

wτ(x) < 0.

The minimum A1 can be obtained for some µ ∈ (τ0 − ε, τ0), x̄ ∈ Dµ where wµ(x̄) = A1 by
condition (C). We carve out of Dτ0 a closed set K ⊂ Dτ0 such that Dτ0 \K is narrow. According
to (2.6),

wτ0(x) ≥ C0 > 0, x ∈ K.

From the continuity of wτ in τ, we have for small ε > 0,

wµ(x) ≥ 0, x ∈ K. (2.7)

From (C), it follows
wµ(x) ≥ 0, x ∈ (Dµ)c.

So x̄ ∈ Dµ \K and ∇wµ(x̄) = 0. Since Dτ0 ⊂ Dµ and small ε, we obtain that Dµ \K is a narrow
domain. Similar to (2.3), we have

(−∆)swµ(x̄) + c(x̄)wµ(x̄) ≥ 0.

Similar to (2.4) and narrow domain Dµ \ K , we have

(−∆)swµ(x̄) + c(x̄)wµ(x̄) < 0.

This is a contradiction. Hence we derive (2.5), which contradicts to the definition of τ0. So
τ0 = 0. Therefore, we have shown that

wτ(x) ≥ 0, x ∈ Dτ, for any 0 < τ < τ̃. (2.8)
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Next we prove (2.1). Since

wτ(x) 6≡ 0, x ∈ Dτ, for any 0 < τ < τ̃,

if there exists a point x0 for some τ1 ∈ (0, τ̃) such that wτ1(x0) = 0, then x0 is the minimum
point and

(−∆)swτ1(x0) = Cn,sP.V.
∫

Rn

wτ1(x0)− wτ1(y)
|x0 − y|n+2s dy < 0.

This contradicts to

(−∆)swτ1(x0) = f ((x0)′, x0
n + τ1, uτ1(x0),∇uτ1(x0))− f (x0, u(x0),∇u(x0)) ≥ 0.

Therefore, we arrive at (2.1).
Now we prove uniqueness. If u is another solution satisfying the same conditions, the

same argument as before but replace wτ = uτ − u with wτ = uτ − u. Similarly to (2.8), we
have uτ(x) ≥ u in Dτ for any 0 < τ < τ̃. Hence, u ≥ u. Interchanging the roles of u and u,
we find the opposite inequality. Therefore, u = u.

This completes the proof of Theorem 1.2.

3 The uniqueness and monotonicity of solution on Rn
+

In the section, we will prove Theorem 1.6. We first establish a maximum principle in the
unbounded domain for the fractional equation with a gradient term.

Lemma 3.1 (Maximum principle). Let D be an open set in Rn, possibly unbounded and disconnected,
suppose that

lim
k→∞

|Dc ∩ (B2k+1(q) \ B2k(q))|
|(B2k+1(q) \ B2k(q))|

> 0,

where q is any point in D. Let w ∈ C1,1
loc (D) ∩ L2s be bounded from above and satisfy

(−∆)sw(x) + c(x)w(x) +
n

∑
j=1

bj(x)wj(x) ≤ 0, x ∈ D,

w(x) ≤ 0, x ∈ Rn \ D,

(3.1)

for some nonnegation function c(x). Then

w(x) ≤ 0, x ∈ D.

Furthermore, we have
either w(x) < 0 in D or w(x) ≡ 0 in Rn. (3.2)

Remark 3.2. The proof of Lemma 3.1 is different from Theorem 3 in [35]. Here we mainly use
the following generalized average inequality.

Lemma 3.3 ([35] A generalized average inequality). Suppose that w ∈ C1,1
loc (R

n) ∩ L2s and x̄ is a
maximum point of w in Rn. Then for any r > 0, we have

C0

Cn,s
r2s(−∆)sw(x̄) + C0

∫
Bc

r (x̄)

r2s

|x̄− y|n+2s w(y)dy ≥ w(x̄),

where C0 satisfies

C0

∫
Bc

r (x̄)

r2s

|x̄− y|n+2s dy = 1.
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Proof of Lemma 3.1. Suppose on the contrary, there is some point x such that w(x) > 0 in D,
then

0 < A := sup
x∈Rn

w(x) < ∞. (3.3)

There exists a sequence {xk} ⊂ D such that

w(xk)→ A > 0, as k→ ∞. (3.4)

Let

η(x) =

ce
1

|x|2−1 , |x| < 1,

0, |x| ≥ 1,
(3.5)

where c > 0 is a constant, taking c = e such that η(0) = maxRn η(x) = 1.
Set

ψk(x) = η(x− xk). (3.6)

From (3.4), there exists a sequence {εk} with εk > 0 such that

w(xk) + εkψk(xk) ≥ A.

Since w(x) ≤ 0, x ∈ Rn \ D, it follows from (3.4) that xk is away from ∂D. Without loss
of generality, we may assume that dist(xk, ∂D) = 2. So B1(xk) ⊂ D. Since for any x ∈
D \ B1(xk), w(x) ≤ A and ψk(x) = 0, hence

w(xk) + εkψk(xk) ≥ w(x) + εkψk(x), for any x ∈ Rn \ B1(xk).

It follows that there exists a point x̄k ∈ B1(xk) such that

w(x̄k) + εkψk(x̄k) = max
Rn

(w(x) + εkψk(x)) > A. (3.7)

So (w(x̄k) + εkψk(x̄k))j = 0 and

wj(x̄k)→ 0, as k→ ∞. (3.8)

For w + εkψk, using Lemma 3.3, we obtain

(w + εkψk)(x̄k) ≤ C1(−∆)s(w + εkψk)(x̄k) + C2

∫
Bc

2(x̄k)

(w + εkψk)(y)
|x̄k − y|n+2s dy.

Let εk → 0, by the first inequality of (3.1), it implies that

w(x̄k) ≤ C1(−∆)sw(x̄k) + C2

∫
Bc

2(x̄k)

w(y)
|x̄k − y|n+2s dy

≤ − c(x̄k)w(x̄k)−
n

∑
j=1

bj(x)wj(x̄k) + C2

∫
Bc

2(x̄k)

w(y)
|x̄k − y|n+2s dy.

(3.9)

Letting k→ ∞, combining (3.4), (3.8), (3.9) and nonnegative function c(x), we arrive at

0 < (c(x) + 1)A← (c(x̄k) + 1)w(x̄k) ≤ C2

∫
Bc

2(x̄k)

w(y)
|x̄k − y|n+2s dy,

this is impossible because of (3.3) and the second inequality of (3.1).
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Based on above result, if w = 0 at some point x0 ∈ D, then x0 is a maximum point of w in
D. And we still have wj = 0 in the maximum point. If w 6≡ 0 in Rn, then we have

(−∆)sw(x0) + c(x0)w(x0) +
n

∑
j=1

bj(x0)wj(x0) = Cn,sP.V.
∫

Rn

−w(y)
|x0 − y|n+2s dy > 0.

This is a contradiction with (3.1). So we have either w < 0 in D or w ≡ 0 in Rn.
This completes the proof Lemma 3.1.

We also need the following lemma.

Lemma 3.4 ([9], Maximum principle). Let Γ be a bounded domain in Rn. Assume that u ∈
C1,1

loc (Γ) ∩ L2s and u be lower semi-continuous on Γ̄, and satisfy{
(−∆)su(x) ≥ 0, x ∈ Γ,

u(x) ≥ 0, x ∈ Rn \ Γ.

Then
u(x) ≥ 0, x ∈ Γ.

If u(x) = 0 at some point x ∈ Γ, then

u(x) = 0 almost everywhere in Rn.

Proof of Theorem 1.6. Define Rn
+ = {x = (x1, . . . , xn) | xn > 0}. Let

uτ(x) = u(x′, xn + τ) and Uτ(x) = u(x)− uτ(x).

Outline of the proof: We will use the sliding method to prove the monotonicity and unique-
ness of u and divide the proof into three steps.

In Step 1, we will show that for τ sufficiently large, we have Uτ(x) ≤ 0, x ∈ Rn. Especially,
since u → µ uniformly as xn → +∞, for δ > 0, there exists a M0 > 0 such that for xn ≥ M0,
u ∈ [µ− δ, µ] and f is nondecreasing in u ∈ [µ− δ, µ]. Hence we will show that

Uτ(x) ≤ 0, x ∈ Rn, ∀ τ ≥ M0. (3.10)

This provides the starting point for the sliding method. Then in Step 2, we decrease τ contin-
uously as long as (3.10) holds to its limiting position. Define

τ0 := inf{τ | Uτ(x) ≤ 0, x ∈ Rn, 0 < τ < M0}. (3.11)

We first will show that τ0 = 0. Then we deduce that the solution u must be strictly monotone
increasing in xn. In Step 3, we obtain that the solution u depends on xn. Finally we will prove
the uniqueness.

Now we show the details in the three steps.

Step 1. Since u(x) = 0, x ∈ Rn \Rn
+, it yields that

Uτ(x) ≤ 0, ∀ x ∈ Rn \Rn
+.

For τ ≥ M0, suppose (3.10) is violated, there exists a constant A > 0 such that

sup
x∈Rn

+

Uτ(x) = A, (3.12)
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hence for some τ1 ≥ M0 there exists a sequence {xk} ⊂ Rn
+ such that

Uτ1(xk)→ A, as k→ ∞. (3.13)

We will apply Lemma 3.1 to function Uτ1(x)− A
2 .

Since τ1 ≥ M0, we have uτ1(x) ∈ [µ− δ, µ]. Let

D =

{
x ∈ Rn | Uτ1(x)− A

2
> 0

}
.

For x ∈ D, we have u(x) ≥ uτ1 ≥ µ− δ. From equation (1.5), Uτ1(x) satisfied

(−∆)sUτ1(x) = f (u,∇u)− f (uτ1 ,∇uτ1)

:= − bj(x)(Uτ1)j(x)− c(x)Uτ1(x),

where c(x) = − f (u,∇u)− f (uτ1 ,∇u)
u−uτ1 ≤ 0 by the monotonicity of f .

Hence Uτ1(x)− A
2 satisfies{

(−∆)sUτ1(x) + bj(x)(Uτ1)j(x) + c(x)(Uτ1(x)− A
2 ) = 0, x ∈ D,

Uτ1(x)− A
2 ≤ 0, x ∈ Rn \ D.

By Lemma 3.1, we derive

Uτ1(x)− A
2
≤ 0, x ∈ Rn,

which contradicts (3.13). Hence we obtain (3.10) and finish the proof of Step 1.
We also give an alternative proof which is an application of the general average inequality

(Lemma 3.3), and this idea can be applied to other problems.
For τ ≥ M0, if (3.10) is violated, we have (3.13). Obviously, Uτ1(x) ≤ 0, x ∈ ∂Rn

+. So by
(3.13) we have xk is away from ∂Rn

+, without loss of generality, assume dist(xk, ∂Rn
+) > 2.

Thus there exists 0 < εk → 0, x̄k ∈ B1(xk) such that

Uτ1(x̄k) + εkψk(x̄k) = max
Rn

(Uτ1(x) + εkψk(x)) ≥ A,

where ψk(x̄k) is as stated in (3.6). So ∇(Uτ1(x̄k) + εkψk(x̄k)) = 0 and

∇Uτ1(x̄k)→ 0, as k→ ∞. (3.14)

Since
[Uτ1 + εkψk](x̄k) ≥ [Uτ1 + εkψk](xk)

and ψk(x̄k) ≤ ψk(xk), we obtain
Uτ1(x̄k) ≥ Uτ1(xk). (3.15)

Hence for τ1 ≥ M0,
u(x̄k) ≥ uτ1(x̄k) ≥ µ− δ.

This means u(x̄k), uτ1(x̄k) are all in the nondecreasing interval of f . So

f (u(x̄k),∇u(x̄k))− f (uτ1(x̄k),∇uτ1(x̄k))

= f (u,∇u(x̄k))− f (u,∇uτ1(x̄k)) + f (u,∇uτ1(x̄k))− f (uτ1 ,∇uτ1(x̄k))

≤ f (u(x̄k),∇u(x̄k))− f (u(x̄k),∇uτ1(x̄k)).

(3.16)
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Using Lemma 3.3 to the function Uτ1 + εkψk at x̄k, we obtain

(Uτ1 + εkψk)(x̄k) ≤ C1(−∆)s(Uτ1 + εkψk)(x̄k) + C2

∫
Bc

2(x̄k)

(Uτ1 + εkψk)(y)
|x̄k − y|n+2s dy.

Let εk → 0, by the equation (1.5), it implies that

Uτ1(x̄k) ≤ C1(−∆)sUτ1(x̄k) + C2

∫
Bc

2(x̄k)

Uτ1(y)
|x̄k − y|n+2s dy

= C1[ f (u,∇u(x̄k))− f (u,∇uτ1(x̄k))] + C2

∫
Bc

2(x̄k)

Uτ1(y)
|x̄k − y|n+2s dy.

(3.17)

From (3.13) and (3.15), we have

Uτ1(x̄k)→ A > 0, as k→ ∞. (3.18)

Letting k→ ∞, combining (3.14), (3.17) and (3.18), we arrive at

0 < A← Uτ1(x̄k) ≤ C2

∫
Bc

2(x̄k)

Uτ1(y)
|x̄k − y|n+2s dy,

this is impossible because of (3.12) and Uτ1(y) ≤ 0, y ∈ Rn \Rn
+.

Hence (3.10) is correct and we have finished the proof of Step 1.

Step 2. Firstly, we will check that
τ0 = 0, (3.19)

where τ0 as defined in (3.11). In fact, suppose on the contrary τ0 > 0, then τ0 can be decreased
a little bit. To be more rigorously, there exists a ε > 0 such that for any τ ∈ (τ0 − ε, τ0], one
has

Uτ(x) ≤ 0, for any x ∈ Rn
+. (3.20)

This is a contradiction with the definition of τ0. Hence (3.19) is correct. In the sequel, we will
prove (3.20).

To do so, we just need to prove

sup
Rn−1×(0,M0+1]

Uτ(x) < 0, ∀ τ ∈ (τ0 − ε, τ0] (3.21)

and
sup

Rn−1×(M0+1,+∞)

Uτ(x) ≤ 0, ∀ τ ∈ (τ0 − ε, τ0]. (3.22)

In order to prove (3.21) we need to show that

sup
Rn−1×(0,M0+1]

Uτ0(x) < 0. (3.23)

If not, then
sup

Rn−1×(0,M0+1]
Uτ0(x) = 0.

So there exists a sequence {xk} ⊂ Rn−1 × (0, M0 + 1] such that

Uτ0(xk)→ 0, as k→ ∞. (3.24)
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We first show that xk is away from the boundary ∂Rn
+. Suppose that z be a point on ∂Rn

+.
Denote rz := dist(z + τ0en, ∂Rn

+), en = (0, . . . , 0, 1). For each fixed τ0 > 0, we have

inf
x∈∂Rn

+

dist(z + τ0en, ∂Rn
+) := r0 > 0.

For every point z on ∂Rn
+, there exists a ball Brz(z + τ0en) ⊂ Rn

+ with radius of rz centered at
z + τ0en. For simplicity of notation, we use B instead of Brz(z + τ0en).

Let
E = {x ∈ Rn

+ | dist(x, ∂Rn
+) ≥ 2}.

We construct a subsolution

ū(x) = uE(x) + εΦ(x), x ∈ B,

where Φ(x) = (1− |x|2)s
+, uE := u · χE and χE is define as

χE(x) =

{
1, x ∈ E,

0, x ∈ Rn \ E.

By (−∆)sΦ(x) = C [20], for x ∈ B it yields

(−∆)sū(x) = (−∆)s(uE + εΦ)(x)

= ε(−∆)sΦ(x) + (−∆)suE(x)

≤ εC− ε1Cn,s

∫
E

1
|x− y|n+2s dy

≤ εC− ε1CCn,s.

We can choose ε ≤ ε1Cn,sCC−1 := ε0 such that (−∆)su(x) ≤ 0, x ∈ B. Then fixing ε = ε0
2 ,

combining u(x) ≥ u(x), x ∈ Bc and Lemma 3.4, we derive

uτ0(z) = u(z + τ0en) ≥ u(z + τ0en) ≥
ε0

2
Φ(z + τ0en) ≥ Cτ0 > 0, ∀ z ∈ ∂Rn

+.

Then, we infer that
Uτ0(z) = uτ0(z) > Cτ0 > 0, ∀ z ∈ ∂Rn

+. (3.25)

By (3.24) and (3.25), we obtain that xk is away from the boundary ∂Rn
+. Without loss of

generality, we may assume B1(xk) ⊂ Rn
+. Similar to the argument as Lemma 3.1, let ψ(x) =

η(x− xk), where η is as stated in (3.5), xk satisfies dist(xk, ∂Rn
+) ≥ 2 and B1(xk) ⊂ Rn

+. Then
there exists a sequence εk → 0 such that

Uτ0(xk) + εkψ(xk) > 0.

Since for x ∈ Rn
+ \ B1(xk), noting that Uτ0(x) ≤ 0 and ψ(x) = 0, we have

Uτ0(xk) + εkψ(xk) > Uτ0(x) + εkψ(x), for any x ∈ Rn \ B1(xk).

Then there exists x̄k ∈ B1(xk) such that

Uτ0(x̄k) + εkψ(x̄k) = max
Rn

(Uτ0(x) + εkψ(x)) > 0. (3.26)
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It can be seen from
Uτ0(x̄k) + εkψ(x̄k) ≥ Uτ0(xk) + εkψ(xk),

and ψ(x̄k) ≤ ψ(xk) that

0 > Uτ0(x̄k) ≥ Uτ0(xk) + εkψ(xk)− εkψ(x̄k) ≥ Uτ0(xk)→ 0, as k→ ∞.

Hence
Uτ0(x̄k)→ 0, as k→ ∞.

Since f is continuous, we have

f (u(x̄k),∇u(x̄k))− f (uτ0(x̄k),∇uτ0(x̄k))→ 0, as k→ ∞. (3.27)

On one hand, we have

(−∆)s(Uτ0 + εkψ)(x̄k) = (−∆)sUτ0(x̄k) + (−∆)s(εkψ)(x̄k)

= f (u(x̄k),∇u(x̄k))− f (uτ0(x̄k),∇uτ0(x̄k)) + εk(−∆)sψ(x̄k).
(3.28)

On the other hand,

(−∆)s(Uτ0 + εkψ)(x̄k) = Cn,sP.V.
∫

Rn

Uτ0(x̄k) + εkψ(x̄k)−Uτ0(y)− εkψ(y)
|x̄k − y|n+2s dy

≥ C
∫

Bc
2(xk)

|Uτ0(y)|
|xk − y|n+2s dy

= C
∫

Bc
2(0)

|Uτ0(z + xk)|
|z|n+2s dz.

(3.29)

Denote
uk(x) = u(x + xk) and Uτ0

k (x) = Uτ0(x + xk).

Since f is bounded, one can derive (see [10]) that u(x) is at least uniformly Hölder contin-
uous, so u(x) is uniformly continuous, by the Arzelà–Ascoli theorem, up to extraction of a
subsequence, one has

uk(x)→ u∞(x), x ∈ Rn
+, as k→ ∞.

Combining (3.27), (3.28) and (3.29), letting k→ ∞, we obtain

Uτ0
k (x)→ 0, x ∈ Bc

2(0), uniformly, as k→ ∞.

Therefore,
Uτ0

k (x)→ u∞(x)− uτ0
∞(x) ≡ 0, x ∈ Bc

2(0). (3.30)

Recall that u > 0 in Rn
+ while u(x) ≡ 0, x ∈ Rn \Rn

+. Since xk ∈ Rn−1 × (0, M0], there
exists x0 such that u∞(x0) = 0, then by (3.30),

0 = u∞(x0) = uτ0
∞(x0) = u∞((x0)′, x0

n + τ0) = uτ0
∞((x0)′, x0

n + τ0)

= u∞((x0)′, x0
n + 2τ0) = · · · = u∞((x0)′, x0

n + kτ0).
(3.31)

We obtain from (1.6) that

lim
xn→+∞

u∞(x) = µ > 0, uniformly in x′ = (x1, . . . , xn−1),
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that is
u∞((x0)′, x0

n + kτ0)→ µ, as k→ ∞.

This is a contradiction with (3.31). Hence (3.23) is correct. Now (3.23) implies immediately
that (3.21) holds by the continuity of Uτ(x) with respect to τ.

Next we prove (3.22). Otherwise, there exists a constant A > 0 such that

sup
x∈Rn−1×(M0+1,+∞)

Uτ(x) = A > 0, ∀ τ ∈ (τ0 − ε, τ0].

Then for some τ2 ∈ (M0 + 1,+∞) there exists a sequence {xk} ⊂ Rn−1 × (M0 + 1,+∞) such
that

Uτ2(xk)→ A, as k→ ∞. (3.32)

Since u = 0 in Rn \Rn
+, it follows that

Uτ2(x) ≤ 0, for any x ∈ Rn \Rn
+.

Denote xk = (xk
1, . . . , xk

n). Since Uτ2(xk) = u(xk)− uτ2(xk) → 0 as xk
n → +∞, then there exists

M0 > 0 such that
|xk

n| ≤ M0.

Set ψk(x) = η(x − xk), where η is as stated in (3.5). From (3.32), there exists a sequence
{εk}, with εk → 0 such that

Uτ2(xk) + εkψk(xk) > A.

Since for any x ∈ Rn
+ \ B1(xk), Uτ2(x) ≤ A and ψk(x) = 0, hence

Uτ2(xk) + εkψk(xk) > Uτ2(x) + εkψk(x), for any x ∈ Rn
+ \ B1(xk).

It follows that there exists a point x̄k ∈ B1(xk) i.e. x̄k ∈ Rn−1 × (M0,+∞) such that

Uτ2(x̄k) + εkψk(x̄k) = max
Rn

(Uτ2(x) + εkψk(x)) > A. (3.33)

On one hand, by the monotonicity of f , we obtain

(−∆)s(Uτ2 + εkψk)(x̄k) = f (u(x̄k),∇u(x̄k))− f (uτ2(x̄k),∇uτ2(x̄k)) + εk(−∆)sψk(x̄k)

≤ f (u(x̄k),∇u(x̄k))− f (u(x̄k),∇uτ2(x̄k)) + εk(−∆)sψk(x̄k).
(3.34)

On the other hand,

(−∆)s(Uτ2 + εkψk)(x̄k) = Cn,sP.V.
∫

Rn

Uτ2(x̄k) + εkψk(x̄k)− (Uτ2(y) + εkψk(y))
|x̄k − y|n+2s dy

≥ C
∫

DM

A− A
2

|x̄k − y|n+2s dy

≥ CA
2

∫
DM

1
|x̄k − y|n+2s dy

≥ CA
1

[dist(x̄k, DM)]2s ,

(3.35)

where M > M0 and DM = {|xn| ≥ M}, in which Uτ(y) + εkψk(y) ≤ A
2 .
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Therefore we obtain

0 < c ≤ CA
1

[dist(x̄k, DM)]2s

≤ f (u(x̄k),∇u(x̄k))− f (u(x̄k),∇uτ2(x̄k)) + εk(−∆)sψk(x̄k),
(3.36)

from (3.33), so ∇(Uτ2(x̄k) + εkψk(x̄k)) = 0, i.e. ∇Uτ2(x̄k) → 0 as k → ∞. Let k → ∞, then the
right-hand side of (3.36) is less than or equal to 0, this is impossible. So (3.22) is true, which
contradicts to the definition of τ0. Therefore, τ0 = 0, we arrive at (3.20).

Secondly, we will show that u is strictly increasing with respect to xn and u(x) depends
on xn only. We already have

Uτ(x) ≤ 0, x ∈ Rn
+, ∀ τ > 0. (3.37)

Now we claim that
Uτ(x) < 0, x ∈ Rn

+, ∀ τ > 0. (3.38)

Otherwise, from (3.37) for some τ1 > 0 there exists x0 ∈ Rn
+ such that Uτ1(x0) = 0, then x0 is

the maximum point of Uτ1 in Rn
+. On one hand, since ∇Uτ1(x0) = 0 we have

(−∆)sUτ1(x0) = f (u(x0),∇u(x0))− f (uτ1(x0),∇uτ1(x0)) ≤ 0.

On the other hand,

(−∆)sUτ1(x0) = Cn,sP.V.
∫

Rn

−Uτ1(y)
|x0 − y|n+2s dy > 0,

where the last inequality holds due to Uτ1(y) 6≡ 0 in Rn.
This is a contradiction. Hence (3.38) must be true.

Step 3. We will claim that u(x) depends on xn only and uniqueness. In fact, it can be seen
from the above process that the argument still holds if we replace uτ(x) by u(x + τν), where
ν = (ν1, . . . , νn) with νn > 0 being an arbitrary vector pointing upward. Applying the similar
arguments as in Steps 1 and 2, we can derive that, for each of such ν,

u(x + τν) > u(x), ∀ τ > 0, x ∈ Rn
+.

Letting νn → 0, from the continuity of u, we deduce that for arbitrary ν with νn = 0,

u(x + τν) ≥ u(x).

By replacing ν by −ν, we obtain that

u(x + τν) = u(x)

for arbitrary ν with ν = 0. It implies that u is independent of x′, hence u(x) = u(xn).
Finally we prove the uniqueness. Assume that u and v are two bounded solutions of (1.5).

For τ ≥ 0, denote
Ũτ(x) = v(x)− uτ(x).

We first show that for τ sufficiently large,

Ũτ(x) ≤ 0, x ∈ Rn
+. (3.39)
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The proof of (3.39) is completely similar to the proof of (3.10), so we omit the details. Note
that (3.39) provides a starting point from which we can decrease τ continuously as long as
(3.39) holds.

We show that
Ũτ(x) ≤ 0, ∀ τ ≥ 0, ∀ x ∈ Rn

+. (3.40)

Define
τ0 := inf{τ > 0 | Ũτ(x) ≤ 0, ∀ x ∈ Rn

+, 0 < τ < M0}.

Let us prove that
τ0 = 0. (3.41)

Suppose on the contrary τ0 > 0. Similarly to the argument of monotonicity in Step 2, one can
deduce that

v∞(x) ≡ uτ0
∞(x), ∀ x ∈ Rn \ B2(0), (3.42)

and
uτ0(z) ≥ Cτ0 > 0, ∀ z ∈ ∂Rn

+. (3.43)

Obviously, this property is preserved under translation. Let

Rn
+k = {x | x + xk ∈ Rn

+} and Rn
+∞ = lim

k→∞
Rn

+k.

Taking a point x0 ∈ ∂Rn
+∞, we deduce from (3.43) that

uτ0
∞(x0) > 0, but v∞(x0) = 0.

This contradicts (3.42). Hence we have τ0 = 0. This verifies that (3.40) is correct, and implies
that v(x) ≤ u(x). Interchanging u and v, we obtain u(x) ≤ v(x). Therefore, we have u ≡ v.
This yields the uniqueness.

The proof of Theorem 1.6 is completed.
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