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Abstract. This paper is dedicated to studying the following semilinear Schrödinger
system 

−∆u + V1(x)u = Fu(x, u, v) in RN ,
−∆v + V2(x)v = Fv(x, u, v) in RN ,
u, v ∈ H1(RN),

where the potential Vi are periodic in x, i = 1, 2, the nonlinearity F is assumed to be
super-quadratic at some x ∈ RN and asymptotically quadratic otherwise. Under a local
super-quadratic condition of F, an approximation argument and variational method are
used to prove the existence of Nehari–Pankov type ground state solutions and the least
energy solutions.
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1 Introduction

We consider the following system of semilinear Schrödinger equations:
−∆u + V1(x)u = Fu(x, u, v) in RN ,

−∆v + V2(x)v = Fv(x, u, v) in RN ,

u, v ∈ H1(RN),

(1.1)

where V1, V2 ∈ C(RN , R), F : RN ×R2 → R satisfy the following assumptions:

(V) V1, V2 ∈ C(RN , R) are 1-periodic in xj, j = 1, 2, . . . , N, and

sup[σ(−∆ + Vi) ∩ (−∞, 0)] =: Λi < 0 < Λi := inf[σ(−∆ + Vi) ∩ (0, ∞)];
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(F1) F ∈ C1(RN ×R2, [0, ∞)) and there exist constants p ∈ (2, 2∗), C1 > 0 such that

|Fz(x, z)| ≤ C1(1 + |z|p−1), ∀(x, z) ∈ RN ×R2,

where Fz := (Fu, Fv) = ∇F, 2∗ := 2N/(N − 2) if N ≥ 3 and 2∗ := +∞ if N = 1 or 2;

(F2) |Fz(x, z)| = o(|z|) as |z| → 0 uniformly in x ∈ RN .

From (V), (F1) and (F2), we can easily get that the critical points of functional Φ are the
solutions of (1.1), here Φ is defined as:

Φ(z) =
1
2

∫
RN

[
|∇u|2+V1(x)|u|2+ |∇v|2 + V2(x)|v|2

]
dx−

∫
RN

F(x, z)dx, z = (u, v) ∈ E, (1.2)

where E = H1 × H2 is defined in Section 2.
There is a scalar case of the Schrödinger system:{

−∆u + V(x)u = ∇F(x, u), x ∈ RN ,

u ∈ H1(RN),
(1.3)

we can easily obtain that case when V1 = V2 and u = v. That equation has been widely
studied in the literature, such as [2, 9, 15, 16, 30, 32].

Solution of (1.1) was related to the following system:{
−i ∂Ψ

∂t = ∆Ψ−V1(x)Ψ + F1(x, Ψ), x ∈ RN , t ≥ 0,

−i ∂Φ
∂t = ∆Φ−V2(x)Φ + F2(x, Φ), x ∈ RN , t ≥ 0,

where i denotes the imaginary unit, V1 and V2 are the relevant potentials, Φ and Ψ represent
the condensate wave functions. This type of Schrödinger systems arise in nonlinear optics,
and have extensively been applied in many areas, such as the investigation of pulse propaga-
tion, Bose–Einstein condensates, Hartree–Fock theory for a double condensate, gap solitons
in photonic crystals and so on, see as [6, 10, 13, 14, 22, 31]. In recent years, many researchers
were interested in such type of systems, we refer the readers to [1, 3–7, 17–20, 24, 25].

Manassés and João [29] investigated the existence of nontrivial solutions for the following
strongly coupled system in R2:{

−∆u + V(x)u = g(x, v), v > 0 in R2,

−∆v + V(x)v = f (x, u), u > 0 in R2,
(1.4)

where V : R2 → R may change sign and vanish, f , g are superlinear at infinity and satisfy
critical or subcritical growth of Trudinger–Moser type. By using the linking geometry and a
Trudinger–Moser type inequality, they obtained the boundedness of a Palais–Smale sequence,
and proved there exists a subsequence that converges to a weak solution of (1.4). Finally,
applying a Galerkin approximation procedure, they proved the existence of solutions in the
subcritical case and critical case respectively.

Qin and Tang [23] established a nontrivial solution for the following elliptic system:
−∆u + U1(x)u = Fu(x, u, v) in RN ,

−∆v + U2(x)v = Fv(x, u, v) in RN ,

u, v ∈ H1(RN),
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where Ui(x) ∈ C(RN , R), i = 1, 2, F ∈ C1(RN ×R2, R) and ∇F = (Fu, Fv). In that paper, the
authors distinguished two situations about Ui and F: periodic and asymptotically periodic
case. For the periodic case, by using the diagonal method [32], the authors found a minimizing
Cerami sequence outside the Nehari–Pankov manifold, then they proved the existence of the
least energy solution and the ground state solution. For the latter case, by using a generalized
linking theorem, they obtained a nontrivial solution. In that paper, F satisfies the following
super-quadratic assumption:

(SQ) lim|z|→∞
F(x,z)
|z|2 = ∞ uniformly in x.

By using (SQ), one can prove the linking geometry, mountain pass geometry and verify the
boundedness of Cerami or Palais–Smale sequence. Moreover, it is standard to show that
N− 6= ∅, where

N− := {z ∈ E \ E− : 〈Φ′(z), z〉 = 〈Φ′(z), ζ〉 = 0, ∀ζ ∈ E−}, (1.5)

here E− defined in (2.11). Introduced by Pankov [22], N− is a natural constraint and contains
all nontrivial critical points of the energy functional Φ, and every minimizer u of Φ on the
manifold N− is a solution which is called a ground state solution of Nehari–Pankov type.
Also, the set N− plays a crucial role in proving the existence of the ground state solution.

Later, Tang et al. [33] investigated the existence of the ground state solutions about (1.3)
under the assumptions (V), (F1), (F2) and the following assumptions:

(F3) There exists a domain G ⊂ RN such that lim|z|→∞
F(x,z)
|z|2 = ∞ a.e. x ∈ G.

(F4) z 7→ Fz(x,z)
|z| is non-decreasing on |z| 6= 0.

(F5) F (x, z) := 1
2 Fz(x, z) · z− F(x, z) ≥ 0, and there exist some constants C2 > 0, R0 > 0 and

σ ∈ (0, 1), such that (
|Fz(x, z)|
|z|σ

)κ

≤ C2F (x, z), ∀ |z| ≥ R0

holds with κ = 2N
2N−(1+σ)(N−2) if N ≥ 3, or with κ ∈

(
1, 2

1−σ

)
if N = 1, 2.

Since they relaxed condition (SQ) to the above local version (F3), it is difficult to demonstrate
N− 6= ∅ and prove the boundedness of Cerami or Palais–Smale sequences for the energy
functional Φ. They use some new techniques to conquer the above difficulties. For the first
one, by using linking geometry and verifying sup Φ(z) < ∞ for z ∈ E−⊕R+ ē+, they illustrate
that Φ is weakly upper semi-continuous, hence, they can prove that N− 6= ∅. For the second,
they consider an approximation argument to find a minimizing sequence satisfying the PS
condition for the corresponding functional. Finally, by using the uniqueness of the continuous
spectrum about the operator Ai = −∆ +Vi, they make a contradiction to get the boundedness
of the above sequence.

Recently, Qin et al. [26] proved the existence of nontrivial solutions for (1.1) by using
generalized linking theorem and variational methods. More precisely, they found a Cerami
sequence for the corresponding energy functional, and then proved the boundedness of the
Cerami sequence. By applying linking geometry, they proved there exists a ground state
solution of (1.1) with assumptions (V), (F1)–(F3). Besides, they used the following assumption
to prove the boundedness of Cerami sequences:
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(F6’) F (x, z) ≥ 0, and there exist some constants C̃1 > 0, δ0 ∈ (0, Λ0) and σ ∈ (0, 1), such that

|Fz(x, z)|
|z| ≥

√
2

2
τ =⇒

(
|Fz(x, z)|
|z|σ

)κ

≤ C̃1F (x, z), ∀ (x, z) ∈ RN ×R2

holds with κ = 2N
2N−(1+σ)(N−2) if N ≥ 3, or with κ ∈

(
1, 2

1−σ

)
if N = 1, 2, where

τ := Λ0 − δ0, Λ0 := min
{
−Λ1, Λ1, −Λ2, Λ2

}
. (1.6)

To the best of our knowledge, there is few result about the ground state solution of system
(1.1). Motivated by [26, 33], we aim to prove the existence of ground state solutions about
system (1.1) by using approximation argument and variational method. We try to obtain the
ground state solutions of Nehari–Pankov type and least energy solutions under assumptions
(V), (F1)–(F5) and the following conditions:

(F6) F(x, z) ≥ 0,F (x, z) ≥ 0, and there exist constants C3 > 0, δ0 ∈ (0, Λ0) and σ ∈ (0, 1),
such that

|Fz(x, z)|
|z| ≥ τ =⇒

(
|Fz(x, z)|
|z|σ

)κ

≤ C3F (x, z), ∀ (x, z) ∈ RN ×R2

holds with κ = 2N
2N−(1+σ)(N−2) if N ≥ 3, or with κ ∈

(
1, 2

1−σ

)
if N = 1, 2, note that τ is the

same with (1.6).

Now, we state our results of this paper.

Theorem 1.1. Let (V), (F1)–(F5) be satisfied. Then (1.1) has a Nehari–Pankov type ground state
solution.

Theorem 1.2. Let (V), (F1)–(F3) and (F6) be satisfied. Then (1.1) has a least energy solution z̄ in K,
where K := {z ∈ E \ {0} : Φ′(z) = 0}.

There is an example to illustrate that the assumptions (F3)–(F6) can be satisfied.
Let N ≥ 3 and F(x, z) = cos2(2πx1)|z|2 ln(1 + |z|2), it is easy to verify that

Fz(x, z) = 2z cos2(2πx1)

[
ln(1 + |z|2) + |z|2

1 + |z|2

]
and

F (x, z) =
cos(2πx1)|z|4

1 + |z|2 ≥ 0.

It is clear that F satisfies (F1)–(F6) with G = (− 1
8 , 1

8 )×RN−1, but does not satisfy (SQ).

Remark 1.3. Assume that (F1), (F2), (F4) and (F5) hold. Then (F6) holds also. See as [33,
Lemma 3.8]. Moreover, (F6’) implies (F6).

To prove the existence of ground state solutions about (1.1), at first, we show that N− 6= ∅.
Inspired by Tang [33], we consider an approximation argument about the auxiliary function-
als Iε(z) = Φ(z)− ε

∫
RN |z|pdx, which makes the corresponding problem superlinear in RN .

Moreover, by demonstrating a key inequality (3.3) and using N− 6= ∅, we prove that Iεn(zεn)

is bounded and I′εn
(zεn) = 0, here εn → 0 as n → ∞. Finally, by using Sobolev embed-

ding theorem and Lion’s concentration compactness principle, we prove the sequence {zεn} is
bounded, then we can get that {zεn} is convergent to a solution of (1.1).

The reminder of this paper is organized as follows. In Section 2, some preliminaries are
presented. In Section 3, we give the proof of Theorem 1.1 and Theorem 1.2. For convenience,
let C0, C̃0, C1, C̃1, . . . denote different constants in different places.
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2 Preliminaries

Let Ai = −∆ + Vi, here and in what follows i = 1, 2. Then Ai are self-adjoint in L2(RN) with
domain D(Ai) = H2(RN) (see [12, Theorem 4.26]). Let {Ei(λ) : −∞ ≤ λ ≤ +∞} and |Ai| be
the spectral family and the absolute value of Ai, respectively, and |Ai|1/2 be the square root of
|Ai|. Set Ui = id− Ei(0)− Ei(0−). Then Ui commutes with Ai, |Ai| and |Ai|1/2. Furthermore,
Ai = Ui|Ai| is the polar decomposition of Ai (see [11, Theorem IV 3.3]). Let

Hi = D(|Ai|1/2), H−i = Ei(0−)Hi, H+
i = [id− Ei(0)]Hi.

For any ui ∈ Hi, fixing i = 1 or i = 2, it is easy to see that ui = ui
− + ui

+ with

u−i := Ei(0−)ui ∈ H−i , u+
i := [id− Ei(0)]ui ∈ H+

i (2.1)

and
Aiu−i = −|Ai|u−i , Aiu+

i = |Ai|u+
i , ∀ ui = ui

− + ui
+ ∈ Hi ∩D(Ai). (2.2)

For fixed i taking 1 or 2, we define an inner product

(u, v)Hi =
(
|Ai|1/2u, |Ai|1/2v

)
L2

, u, v ∈ Hi (2.3)

and the corresponding norm

‖u‖Hi =
∥∥∥|Ai|1/2u

∥∥∥
L2

, u ∈ Hi,

where (·, ·)L2 denotes the inner product of L2(RN), ‖ · ‖Ls stands for the usual Ls(RN) norm,
1 ≤ s < ∞. There are induced decompositions Hi = H−i ⊕ H+

i which are orthogonal with
respect to both (·, ·)L2 and (·, ·)Hi . Then∫

RN

(
|∇ui|2 + Vi(x)|ui|2

)
dx = ‖u+

i ‖
2
Hi
− ‖u−i ‖

2
Hi

, ∀ ui = u−i + u+
i ∈ Hi, i = 1, 2.

Under condition (V), H−i ⊕H+
i = Hi = H1(RN) with equivalent norms. Therefore, Hi embeds

continuously in Ls(RN) for all 2 ≤ s < 2∗. Then, there exists a constant γs > 0 such that

‖z‖s ≤ γs‖z‖, ∀z ∈ E, s ∈ [2, 2∗], (2.4)

where ‖ · ‖s stands for the usual Ls(RN , R2) norm.

Let
E = H1 × H2 (2.5)

equipped with the inner product

〈z, ξ〉 = (u, χ)H1 + (v, ψ)H2 , z = (u, v), ξ = (χ, ψ) ∈ E = H1 × H2 (2.6)

and the corresponding norm

‖z‖ =
[
‖u‖2

H1
+ ‖v‖2

H2

]1/2
, z = (u, v) ∈ E. (2.7)

For any ε > 0, (F1) and (F2) yield the existence of Cε > 0 such that

|Fz(x, z)| ≤ ε|z|+ Cε|z|p−1, ∀ (x, z) ∈ RN ×R2. (2.8)



6 J. Chen and Y. Q. Li

Under (V), a standard argument (see [8, 36]) shows that the solutions of problem (1.1) are
critical points of the functional

Φ(z) =
1
2

∫
RN

[
|∇u|2+V1(x)|u|2+ |∇v|2 + V2(x)|v|2

]
dx−

∫
RN

F(x, z)dx, z = (u, v) ∈ E, (2.9)

Φ is of class C1(E, R), and

〈Φ′(z), ξ〉 =
∫

RN
(∇u∇χ + V1(x)uχ)dx +

∫
RN

(∇v∇ψ + V2(x)vψ)dx

−
∫

RN
(Fu(x, z)χ + Fv(x, z)ψ)dx, ∀ z = (u, v), ξ = (χ, ψ) ∈ E. (2.10)

Let
E+ = H+

1 × H+
2 , E− = H−1 × H−2 , (2.11)

then for any z = (u, v) ∈ E, (2.1) yields z = z+ + z− with the corresponding summands

z+ = (u+, v+) ∈ E+, z− = (u−, v−) ∈ E−. (2.12)

Moreover, E+ and E− are orthogonal with respect to the inner products 〈·, ·〉 and (·, ·)2, where
(·, ·)2 is chosen by ((u, v), (χ, ψ))2 = (u, χ)L2 + (v, ψ)L2 for any (u, v), (χ, ψ) ∈ L2(RN , R2).
Hence

E = E+ ⊕ E−.

It follows from (2.2), (2.3), (2.6) and (2.12) that∫
RN

[∇u∇χ + V1(x)uχ +∇v∇ψ + V2(x)vψ]dx

= (A1u, χ)L2 + (A2v, ψ)L2

= (u+
1 , χ+

1 )H1 + (v+2 , ψ+
2 )H2 − (u−1 , χ−1 )H1 − (v−2 , ψ−2 )H2

=
〈
z+, ξ+

〉
−
〈
z−, ξ−

〉
, ∀ z = (u, v), ξ = (χ, ψ) ∈ E. (2.13)

and∫
RN

[
|∇u|2 + V1(x)|u|2 + |∇v|2 + V2(x)|v|2

]
dx = ‖z+‖2 − ‖z−‖2, ∀ z = (u, v) ∈ E. (2.14)

Lemma 2.1. Assume that (V), (F1), (F2) and (F4) hold. Then there exists ρ > 0 such that

inf{Φ(z) : z ∈ E+, ‖z‖ = ρ} > 0. (2.15)

We omit the proof here since it is standard.

Suppose that G ∈ RN is a bounded domain. We can choose ē := (ēu, ēv) ∈ C∞
0 (RN , R+) ∩

C∞
0 (G, R+) satisfying

‖ē+‖2 − ‖ē−‖2 =
∫

RN

[
|∇ēu|2 + V1(x)|ēu|2 + |∇ēv|2 + V2(x)|ēv|2

]
dx

=
∫

G

[
|∇ēu|2 + V1(x)|ēu|2 + |∇ēv|2 + V2(x)|ēv|2

]
dx ≥ 1,

then ē+ = (ē+u , ē+v ) 6= (0, 0).
Owing to prove N− 6= ∅, we also need the following lemma.
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Lemma 2.2. Assume that (V), (F1), (F2) and (F5) hold. Then sup Φ(E− ⊕R+ ē+) < ∞ and there is
Rē > 0 such that

Φ(z) ≤ 0, for z ∈ E− ⊕R+ ē+ with ‖z‖ ≥ Rē. (2.16)

Proof. As the ideal of [34, Lemma 3.2 and Corollary 3.3], we can prove Lemma 2.2 by veri-
fying that there is r > ρ such that sup Φ(∂Q) ≤ 0, where Q = {w + se+ : w ∈ E−, s ≥ 0,
‖w + se+‖ ≤ r}.

Lemma 2.3. Assume that (V), (F1), (F2) and (F5) hold. Then N− 6= ∅.

Proof. From Lemma 2.1, Φ(tē+) > 0 for small t > 0. Moreover, by Lemma 2.2, there exists
Rē > 0 such that Φ(z) ≤ 0 for z ∈ (E−⊕R+ ē+) \ BRē(0). Since that, 0 < sup Φ(E−⊕R+ ē+) <
∞. Hence, we can easily get that Φ is weakly upper semi-continuous on E− ⊕R+ ē+. Then,
there exists z0 ∈ E− ⊕R+ ē+ such that Φ(z0) = sup Φ(E− ⊕R+ ē+). It is obvious that z0 is
a critical point of Φ, that is 〈Φ′(z0), z0〉 = 〈Φ′(z0), ζ〉 = 0 for all ζ ∈ E− ⊕R+ ē+. Therefore,
z0 ∈ N− ∩ (E− ⊕R+ ē+).

3 The existence of ground state solutions

To prove Theorem 1.1 and Theorem 1.2, we define Iε(z) for any ε ≥ 0 as follows:

Iε(z) = Φ(z)− ε
∫

RN
|z|pdx. (3.1)

Let
N−ε = {z ∈ E \ E− : 〈I′ε(z), z〉 = 〈I′ε(z), ζ〉 = 0, ∀ζ ∈ E−}. (3.2)

Similar to Lemma 2.3, for ε ≥ 0, we have N−ε 6= ∅. Then we define mε := infN−ε Iε.

Lemma 3.1. Assume that (V), (F1), (F2) and (F4) hold. Then

Iε(z) ≥ Iε(tz + ζ) +
1
2
‖ζ‖2 +

1− t2

2
〈I′ε(z), z〉 − t〈I′ε(z), ζ〉, ∀t ≥ 0, z ∈ E, ζ ∈ E−. (3.3)

Proof. From (2.9), (2.10) and (3.1), we have

Iε(z)− Iε(tz + ζ)

=
1
2
‖z+‖2 − 1

2
‖z−‖2 −

∫
RN

F(x, z)dx− ε
∫

RN
|z|pdx

− t2

2
‖z+‖2 +

1
2
〈tz− + ζ, tz− + ζ〉+

∫
RN

F(x, tz + ζ)dx− ε
∫

RN
|tz + ζ|pdx

=
1
2
‖ζ‖2 +

1− t2

2
〈I′ε(z), z〉 − t〈I′ε(z), ζ〉

+
1− t2

2

∫
RN

Fz(x, z) · zdx− t
∫

RN
Fz(x, z) · ζdx +

∫
RN

F(x, tz + ζ)dx−
∫

RN
F(x, z)dx

+
1− t2

2
pε
∫

RN
|z|pdx− ε

∫
RN
|z|pdx + ε

∫
RN
|tz + ζ|pdx− tpε

∫
RN
|z|p−2z · ζdx. (3.4)

From [35, Lemma 4.3], one has

1− t2

2
Fz(x, z)z− tFz(x, z)ζ + F(x, tz + ζ)− F(x, z) ≥ 0, ∀z ∈ E, ζ ∈ E−, t ≥ 0. (3.5)
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As in [28, Remark 6], we can get that

1− t2

2
p|z|p − |z|p + |tz + ζ|p − tp|z|p−2z · ζ ≥ 0, ∀z ∈ E, ζ ∈ E−, t ≥ 0. (3.6)

Then, from (3.4), (3.5) and (3.6), we have

Iε(z)− Iε(tz + ζ) ≥ 1
2
‖ζ‖2 +

1− t2

2
〈I′ε(z), z〉 − t〈I′ε(z), ζ〉.

The proof is completed.

From the above lemma, we can get the following two corollaries.

Corollary 3.2. Assume that (V), (F1), (F2) and (F4) hold. Then for z ∈ N−ε ,

Iε(z) ≥ Iε(tz + ζ), ∀t ≥ 0, ζ ∈ E−. (3.7)

Corollary 3.3. Assume that (V), (F1), (F2) and (F4) hold. Then

Iε(z) ≥
t2

2
‖z‖2−

∫
RN

[
F(x, tz+) + ε|tz+|p

]
dx+

1− t2

2
〈I′ε(z), z〉+ t2〈I′ε(z), z−〉, ∀t ≥ 0, z ∈ E.

(3.8)

Lemma 3.4. Assume that (V), (F1), (F2) and (F4) hold. Then, for ε ∈ [0, 1],

(i) there exists κ̂ > 0 which does not depend on ε ∈ [0, 1] such that

Iε(z) ≥ mε ≥ κ̂, ∀z ∈ N−ε ; (3.9)

(ii) ‖z+‖ ≥ max{‖z−‖,
√

2mε} for all z ∈ N−ε .

Proof. (i) By (F1) and (F2), there exists a constant C4 > 0 such that

F(x, z) + ε|z|p ≤ 1
4γ2

2
|z|2 + C4|z|p, ∀x ∈ RN , z ∈ R2, ε ∈ [0, 1]. (3.10)

In virtue of (2.4), (3.1), (3.7) and (3.10), one has

Iε(z) ≥ Iε(tz+) =
t2

2
‖z+‖2 −

∫
RN

[
F(x, tz+) + ε|tz+|p

]
dx

≥ t2

4
‖z+‖2 − tpC4‖z+‖

p
p

≥ t2

4
‖z+‖2 − tpC4γ

p
p‖z+‖p, ∀z ∈ N−ε , ε ∈ [0, 1], t ≥ 0. (3.11)

Choose t = tz := 1

[2C4γ
p
p p]

1
p−2 ‖z+‖

, then it follows from above inequality that

Iε(z) ≥
t2
z
4
‖z+‖2 − tp

z C4γ
p
p‖z+‖p

=
p− 2

4p
[
2C4γ

p
p p
] 2

p−2
=: κ̂ > 0, ∀ε ∈ [0, 1], z ∈ N−ε . (3.12)

Hence, (3.9) holds.

(ii) (F4) shows that F(x, z) ≥ 0. Then, it follows from (3.1), (3.2) and (3.9) that (ii) holds.
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Lemma 3.5. Assume that (V), (F1), (F2) and (F4) hold. Then for any ε ∈ (0, 1], there exists zε ∈ N−ε
such that

Iε(zε) = mε, I′ε(zε) = 0. (3.13)

Proof. By virtue of [26, Lemma 4.2 and Lemma 4.3], we can get that there exists a bounded
sequence {zεn} ∈ E such that

Iε(zεn)→ c, ‖I′ε(zεn)‖(1 + ‖zεn‖)→ 0, n→ ∞, (3.14)

where c ∈ [κ̂, mε]. Hence, there exists a constant C̃2 > 0 such that ‖zεn‖2 ≤ C̃2. If

δ := lim sup
n→∞

sup
y∈RN

∫
B1(y)
|zεn |2dx = 0,

applying Lion’s concentration compactness principle [36, Lemma 1.21], zεn → 0 in Ls(RN) for
2 < s < 2∗. By (F1) and (F2), for ε = c

4C̃2
2
> 0, there exists C̃ε > 0 such that

|Fz(x, z)| ≤ ε|z|+ C̃ε|z|p−1,

|F(x, z)| ≤ ε|z|2 + C̃ε|z|p, ∀(x, z) ∈ RN ×R2.

Thus,

lim sup
n→∞

∫
RN

[
F (x, zεn) +

p− 2
2

εn|zεn |p
]

dx ≤ 3
2

εC̃2
2 +

(
3
2

C̃ε + C̃3

)
lim
n→∞
‖zεn‖

p
p =

3
8

c. (3.15)

From (3.1), (3.14) and (3.15), one has

c = Iεn(zεn)−
1
2
〈I′εn

(zεn), zεn〉+ o(1)

=
∫

RN

[
F (x, zεn) +

p− 2
2

εn|zεn |p
]

dx + o(1)

≤ 3
8

c + o(1).

That is a contradiction, so we have δ > 0.
Going if necessary to a subsequence, we may assume there exists kn ∈ ZN such that∫

B1+
√

N(kn)
|zn|2dx >

δ

2
.

Define wn(x) := zn(x + kn) such that∫
B1+

√
N(0)
|wn|2dx >

δ

2
. (3.16)

In view of Vi(x) and Fz(x, z) are periodic on x, i = 1, 2, we have ‖wn‖ = ‖zn‖ and

Iεn(wn)→ c, ‖I′εn
(wn)‖(1 + ‖wn‖)→ 0. (3.17)

Going if necessary to a subsequence, we have wn ⇀ w̄ in E, wn → w̄ in Ls
loc(R

N), 2 < s < 2∗

and wn → w̄ a.e. on RN . Obviously, (3.16) implies that w̄ 6= 0. By a standard argument, we
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have I′εn
(w̄) = 0. Then w̄ ∈ N− and Iεn(wn) ≥ mε. Moreover, from (3.17), (F4) and Fatou’s

Lemma, one has

mε ≥ c = lim
n→∞

[
Iεn(wn)−

1
2
〈I′εn

(wn), wn〉
]

= lim
n→∞

∫
RN

[
F (x, wn) +

p− 2
2

εn|wn|p
]

dx

≥
∫

RN
lim
n→∞

[
F (x, wn) +

p− 2
2

εn|wn|p
]

dx

=
∫

RN

[
F (x, w̄) +

p− 2
2

εn|w̄|p
]

dx

= Iεn(w̄)− 1
2
〈I′εn

(w̄), w̄〉 = Iεn(w̄).

This shows that Iεn(w̄) ≤ mε and then Iεn(w̄) = mε.

Lemma 3.6. Assume that (V), (F1), (F2) and (F4) hold. Then for any ε ∈ (0, 1] and z ∈ E \ E−, there
exist tε(z) > 0 and ζε(z) ∈ E− such that tε(z)z + ζε(z) ∈ N−ε .

We can easily prove this lemma in a similar way as Lemma 2.3, so we omit it.

Proof of Theorem 1.1. Consider the case N ≥ 3. By Lemma 3.5, there exists zε ∈ N−ε such that
(3.13) holds, where ε ∈ (0, 1].

By Lemma 2.3, N− 6= ∅. Then, for z0 ∈ N− and ζ ∈ E−, Φ(z0) := c̄ ≥ 0 and 〈Φ′(z0), z0〉 =
〈Φ′(z0), ζ〉 = 0 hold. In virtue of Lemma 3.6, there exist tε > 0 and ζε ∈ E− such that
tεz0 + ζε ∈ N−ε . By Corollary 3.2 and Lemma 3.4, one has

c̄ = Φ(z0) = I0(z0) ≥ I0(tεz0 + ζε)

≥ Iε(tεz0 + ζε) ≥ mε ≥ κ̂, ∀ε ∈ (0, 1). (3.18)

Choose a sequence {εn} ⊂ (0, 1] satisfy εn → 0 as n→ ∞, and

zεn ∈ N−εn
, Iεn(zεn) = mεn → m̄ ∈ [κ̂, c̄], I′εn

(zεn) = 0. (3.19)

There are three steps to prove Theorem 1.1.

Step 1: We prove that {zεn} is bounded in E.
Arguing by contradiction, suppose that ‖zεn‖ → ∞. Set wn = zεn

‖zεn‖
, then ‖wn‖ = 1. By the

Sobolev embedding theorem, going if necessary to a subsequence, we have
wn ⇀ w, in E;

wn → w, in Ls
loc(R

N), ∀s ∈ [2, 2∗);

wn → w, a.e. on RN .

From (3.19), we have

c̄ ≥ Iεn(zεn)−
1
2
〈I′εn

(zεn), zεn〉 =
∫

RN

[
F (x, zεn) +

p− 2
2

εn|zεn |p
]

dx. (3.20)

In view of Sobolev embedding theorem, there exists a constant C̃4 > 0 such that ‖wn‖2 ≤ C̃4.
If

δ := lim sup
n→∞

sup
y∈RN

∫
B1(y)
|w+

n |2dx = 0, (3.21)
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by Lion’s concentration compactness principle, w+
n → 0 in Ls(RN) for 2 < s < 2∗. Let

R > [2(1 + c̄)]
1
2 . From (F1) and (F2), choose ε = 1

4(RC̃4)2 > 0, there exists C̃5 > 0 such that

lim sup
n→∞

∫
RN

[
F(x, Rw+

n ) + εn|Rw+
n |p
]

dx ≤ lim sup
n→∞

[
εR2‖w+

n ‖2
2 + C̃5Rp‖w+

n ‖
p
p
]

≤ ε(RC̃4)
2 =

1
4

. (3.22)

Let tn = R
‖zεn‖

. From (3.19), (3.22) and Corollary 3.3, one has

c̄ ≥ mεn = Iεn(zεn)

≥ t2
n
2
‖zεn‖2 −

∫
RN

[
F(x, tnz+εn

) + εn|tnz+εn
|p
]

dx

=
R2

2
−
∫

RN

[
F(x, Rw+

n ) + εn|Rw+
n |p
]

dx

≥ R2

2
− 1

4
+ o(1)

> c̄ +
3
4
+ o(1),

which is a contradiction, then δ > 0.
Passing to a subsequence, we may assume there exists kn ∈ ZN such that∫

B1+
√

n(kn)
|w+

n |2dx >
δ

2
.

Let w̃n = wn(x + kn). Since V1(x) and V2(x) are 1-periodic in each of x1, x2, . . . , xN , then
Ai = −∆ + Vi, E+ and E− are ZN-translation invariance. Thereby, ‖w̃n‖ = ‖wn‖ = 1, and∫

B1+
√

n(0)
|w̃+

n |2dx >
δ

2
. (3.23)

Going if necessary to a subsequence , we have
w̃n ⇀ w̃, in E;

w̃n → w̃, in Ls
loc(R

N), ∀s ∈ [2, 2∗);

w̃n → w̃, a.e. on RN .

Then (3.23) shows that w̃ 6= 0.
Define z̃n = (ũn, ṽn) = zεn(x + kn), note that zεn = (uεn , vεn). Hence, z̃n

‖zεn‖
= w̃n → w̃ a.e.

on RN and w̃ 6= 0, here w̃n = (η̃n, θ̃n). For any ϕ = (µ, ν) ∈ C∞
0 (RN), let φn = (µn, νn) =

ϕ(x− kn). From (3.1) and (3.19), we have

0 = 〈I′εn
(zεn), ‖zεn‖φn〉

= ‖zεn‖
∫

RN
(∇uεn · ∇µn + V1(x)uεn · µn +∇vεn · ∇νn + V2(x)vεn · νn)dx

− ‖zεn‖
∫

RN

[
Fz(x, zεn) + pεn|zεn |p−2zεn

]
ϕndx

= ‖zεn‖
∫

RN
(∇ũn · ∇µ + V1(x)ũn · µ +∇ṽn · ∇ν + V2(x)ṽn · ν)dx

− ‖zεn‖
∫

RN

[
Fz(x, z̃n) + pεn|z̃n|p−2z̃n

]
ϕdx
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= ‖zεn‖2
∫

RN

(
∇η̃n · ∇µ + V1(x)η̃n · µ +∇θ̃n · ∇ν + V2(x)θ̃n · ν

)
dx

− ‖zεn‖
∫

RN

[
Fz(x, z̃n) + pεn|z̃n|p−2z̃n

]
ϕdx, (3.24)

which implies ∫
RN

(
∇η̃n · ∇µ + V1(x)η̃n · µ +∇θ̃n · ∇ν + V2(x)θ̃n · ν

)
dx

=
1
‖zεn‖

∫
RN

[
Fz(x, z̃n) + pεn|z̃n|p−2z̃n

]
ϕdx. (3.25)

By virtue of (F1), (F2), (F6), (3.20) and the Hölder inequality, one can get that

1
‖zεn‖

∫
RN

∣∣[Fz(x, z̃n) + pεn|z̃n|p−2z̃n
]

ϕ
∣∣dx

≤ 1
‖zεn‖1−σ

∫
z̃n 6=0

(
|Fz(x, z̃n)|
|z̃n|σ

+ pεn|z̃n|p−1−σ

)
|w̃n|σ|ϕ|dx

=
1

‖zεn‖1−σ

[∫
0<|z̃n|<R0

(
|Fz(x, z̃n)|
|z̃n|σ

+ pεn|z̃n|p−1−σ

)
|w̃n|σ|ϕ|dx

+
1

‖zεn‖1−σ

∫
|z̃n|≥R0

(
|Fz(x, z̃n)|
|z̃n|σ

+ pεn|z̃n|p−1−σ

)
|w̃n|σ|ϕ|dx

]

≤ ‖w̃n‖σ
2∗‖ϕ‖2∗

‖zεn‖1−σ

∫
|z̃n|≥R0

(
|Fz(x, z̃n)|
|z̃n|σ

+ pεn|z̃n|p−1−σ

) 2∗
2∗−1−σ

dx

 2∗−1−σ
2∗

+
C5‖w̃n‖σ

2‖ϕ‖ 2
2−σ

‖zεn‖1−σ

≤ C6

‖zεn‖1−σ

‖ϕ‖ 2
2−σ

+ ‖ϕ‖2∗

[∫
|z̃n|≥R0

(F (x, z̃n) +
p− 2

2
εn|z̃n|p)dx

] 2∗−1−σ
2∗


≤ C6

‖zεn‖1−σ

‖ϕ‖ 2
2−σ

+ ‖ϕ‖2∗

[∫
RN

(
F (x, z̃n) +

p− 2
2

εn|z̃n|p
)

dx
] 2∗−1−σ

2∗


≤ C̃6

‖zεn‖1−σ

[
‖ϕ‖ 2

2−σ
+ ‖ϕ‖2∗

]
= o(1). (3.26)

It follows from (3.25) and (3.26) that∫
RN

(
∇η̃n · ∇µ + V1(x)η̃n · µ +∇θ̃n · ∇ν + V2(x)θ̃n · ν

)
dx = o(1), ∀ (µ, ν) ∈ C∞

0 (RN). (3.27)

In view of w̃n ⇀ w̃, one has∫
RN

(
∇η̃ · ∇µ + V1(x)η̃ · µ +∇θ̃ · ∇ν + V2(x)θ̃ · ν

)
dx = 0, ∀ (µ, ν) ∈ C∞

0 (RN). (3.28)

This implies that Aiw̃ = −∆w̃ + Vi(x)w̃ = 0. Then w̃ is an eigenfunction of the operator Ai,
where i = 1, 2. Note that Ai has only a continuous spectrum. That is a contradiction. Hence,
{‖zεn‖} is bounded.

Step 2: We prove that there exists z̄ ∈ E such that Φ′(z̄) = 0 and Φ(z̄) ≥ m0 := infN−0 I0 =

infN− Φ.
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Applying Lion’s concentration principle like in Step 1, we can deduce that there exist a
constant δ1 > 0, a sequence yn ∈ ZN and a subsequence of {zεn}, which is still denoted by
{zεn}, such that ∫

B1(yn)
|zεn |2dx > δ1. (3.29)

Define ẑn = zεn(x + yn). By E+ and E− are ZN-translation invariance, we have ‖ẑn‖ = ‖zεn‖
and

ẑn ∈ N−εn
, Iεn(ẑn) = mεn → m̄ ∈ [κ̂, c̄] , I′εn

(ẑn) = 0. (3.30)

Hence, there exists z̄ ∈ H1(RN) \ {0} such that, going if necessary to a subsequence ,
ẑn ⇀ z̄, in H1(RN);

ẑn → z̄, in Ls
loc(R

N), ∀s ∈ [1, 2∗);

ẑn → z̄, a.e. on RN .

(3.31)

Noting that ẑn = (ûn, v̂n), ϕ = (µ, ν). By virtue of (2.10), (3.1) and (3.31), we have

〈Φ′(z̄), ϕ〉 =
∫

RN
(∇ûn∇µ + V1(x)ûnµ +∇v̂n∇ν + V2(x)v̂nν)dx−

∫
RN

Fz(x, z̄)ϕdx

= lim
n→∞

{∫
RN

(∇ûn∇µ + V1(x)ûnµ +∇v̂n∇ν + V2(x)v̂nν)dx

−
∫

RN

[
Fz(x, ẑn) + εn p|ẑn|p−2ẑn

]
ϕdx

}
= lim

n→∞
〈I′εn

(ẑn), ϕ〉 = 0, ∀ϕ ∈ C∞
0 (Ω).

This implies that Φ′(z̄) = 0. Then, z̄ ∈ N−, Φ(z̄) ≥ m0.

Step 3: We prove that Φ(z̄) = m0.
In view of (2.9), (2.10), (3.1), (3.30), (3.31) and Fatou’s Lemma, we have

m̄ = lim
n→∞

mεn

= lim
n→∞

[
Iεn(ẑn)−

1
2
〈I′εn

(ẑn), ẑn〉
]

= lim
n→∞

∫
RN

[
F (x, ẑn) +

p− 2
2

εn|ẑn|p
]

dx

≥
∫

RN
F (x, z̄)dx = Φ(z̄)− 1

2
〈Φ′(z̄), z̄〉 ≥ m0. (3.32)

Let ε > 0. Then there exists wε ∈ N− such that Φ(wε) < m0 + ε. By Lemma 3.6, there exist
tn > 0 and ζn ∈ E− such that tnwε + ζn ∈ N−εn

. From (3.1) and Corollary 3.2, one has

m0 + ε > Φ(wε) = I0(wε) ≤ I0(tnwε + ζn) ≥ Iεn(tnwε + ζn) ≥ mεn . (3.33)

Thus,
m̄ = lim

n→∞
mεn ≤ m0 + ε. (3.34)

Since ε can be any positive number, we have m̄ ≤ m0. In view of (3.32), we can get that
m̄ = m0 = Φ(z̄).

Since the case N = 1, 2 can be dealt with similarly, we omit it. The proof is completed.
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Lemma 3.7. Assume that (V), (F1)–(F3) and (F6) hold. Then

(i) ϑ := inf {‖z‖ : z ∈ K} > 0;

(ii) $ := inf {Φ(z) : z ∈ K} > 0.

Proof. We only consider the case where N ≥ 3, since N = 1, 2 can be dealt with similarity.
(i) Similar to [26, Theorem 1.1], we have K 6= ∅. Let {zn} ⊂ K such that ‖zn‖ → ϑ. From

(2.10), we have

‖zn‖2 =
∫

RN
Fz(x, zn)(z+n − z−n )dx. (3.35)

In view of F(x, z) ≥ 0 and F (x, z) ≥ 0, then Fz(x, z)z ≥ 0. From (F1), (F2), (2.4) and (3.35), one
has

‖zn‖2 =
∫

zn 6=0

Fz(x, zn)

zn

(
|z+n |2 − |z−n |2

)
dx

≤ 1
2γ2

2
‖z+n ‖2

2 + C7‖zn‖p−2
p ‖z+n ‖2

p

≤ 1
2
‖zn‖2

2 + C8‖zn‖p,

then,
ϑ + o(1) = ‖zn‖ ≥ (2C8)

− 1
p−2 > 0. (3.36)

This implies that (i) holds.
(ii) Let {zn} ⊂ K such that Φ(zn)→ $. Then 〈Φ′(zn), z̄〉 = 0 for any z̄ ∈ E. From (2.9) and

(2.10), we have

$ + o(1) = Φ(zn)−
1
2
〈Φ′(zn), zn〉 =

∫
RN
F (x, zn)dx. (3.37)

Let wn = zn
‖zn‖ . Then ‖zn‖2 = 1. Set

Ωn :=
{

x ∈ RN :
|Fz(x, zn)|
|z| ≤ τ

}
. (3.38)

Since Λ0‖w+
n ‖2

2 ≤ ‖w+
n ‖2, we have∫

Ωn

Fz(x, zn)

zn
|wn|

(
|w+

n |+ |w−n |
)

dx

≤ τ‖wn‖2

[∫
RN

(|w+
n |+ |w−n |)2dx

] 1
2

≤ τ‖wn‖2
(
‖w+

n ‖2
2 + ‖w−n ‖2

2
) 1

2 ≤ 1− δ0

Λ0
. (3.39)

From (F6), (3.36), (3.37) and the Hölder inequality, we have

1
‖zn‖1−δ

∫
RN\Ωn

|Fz(x, zn)|
|zn|σ

|wn|σ|w+
n − w−n |dx

≤ 1
‖zn‖1−δ

∫
RN\Ωn

(
|Fz(x, zn)|
|zn|σ

) 2∗
2∗−1−σ

dx

 2∗−1−σ
2∗

‖wn‖σ
2∗‖w+

n − w−n ‖2∗
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≤ C9

‖wn‖1−σ

[∫
RN\Ωn

F (x, zn)dx
] 2∗−1−σ

2∗

≤ C10[$ + o(1)]
2∗−1−σ

2∗ . (3.40)

By virtue of (3.39), (3.40) and (2.10), one has

1 =
‖zn‖2 − 〈Φ′(zn), z+n − z−n 〉

‖zn‖2

=
1
‖zn‖

∫
RN

Fz(x, zn)(z+n − z−n )dx

=
∫

Ωn

Fz(x, zn)

zn

[
(w+

n )
2 − (w−n )

2]dx +
1

‖zn‖1−σ

∫
RN\Ωn

Fz(x, zn)

|zn|σ
|wn|σ

(
w+

n − w−n
)

dx

≤
∫

Ωn

Fz(x, zn)

zn
(w+

n )
2dx +

1
‖zn‖1−σ

∫
RN\Ωn

Fz(x, zn)

|zn|σ
|wn|σ(w+

n − w−n )dx

≤ 1− δ0

Λ0
+ C10[$ + o(1)]

2∗−1−σ
2∗ .

Then we can get that $ > 0.

Proof of Theorem 1.2. Let zn ∈ K such that Φ(zn)→ $. As [26, Lemma 4.3], we can easily prove
the boundedness of {zn} in E, so we omit it. Then, similar to the proof of Theorem 1.1, we
can get that there exists z̄ ∈ E \ {0} such that Φ′(z̄) = 0 and Φ(z̄) = $ > 0.
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