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Abstract. In this paper, we focus on the global dynamics of a neoclassical growth sys-
tem incorporating patch structure and multiple pairs of time-varying delays. Firstly,
we prove the global existence, positiveness and boundedness of solutions for the ad-
dressed system. Secondly, by employing some novel differential inequality analyses and
the fluctuation lemma, both delay-independent and delay-dependent criteria are estab-
lished to ensure that all solutions are convergent to the unique positive equilibrium
point, which supplement and improve some existing results. Finally, some numerical
examples are afforded to illustrate the effectiveness and feasibility of the theoretical
findings.
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1 Introduction

Under the assumptions that labor and capital are fully allocated and the output market is
adjusted immediately, Day proposed a discrete-time neoclassical growth model in literature
[5], which has unimodal feedback production function. As we all know, there is an inevitable
time lag between the acquisition of information and the implementation of decisions, but the
model proposed by Day ignores the influence of delays and cannot fully explain the actual
economic situation. To revise this drawback and better characterize the long-term behavior
of economics, Matsumoto and Szidarovszky [25] introduced the delayed neoclassical growth
equation

x'(t) = —6x(t) + Px" (t — T)e ¥, (1.1)

where x(t) labels the capital per labor at time ¢, J is the sum of labor growth rate and capital
depreciation rate multiplied by average saving rate, T designates the delay in the production
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function, ¢y denotes a proxy for measuring returns to scale of the production function, ¢ is
regarded as a strength of a ‘negative influence” produced by adding concentration of capital
and is settled via a damaging degree of energy resources or natural environment. If y =1,
the model (1.1) is the famous Nicholson’s blowflies model, whose dynamic behavior has been
extensively studied in recent years [1,3,13,15-20,22,23,27,31,32,37]. However, for the case
of v # 1, there are relatively few studies devoted to model (1.1) and its extended models
[4,7,24,26,33,34].

Recently, regarding that the identical production function usually contains different delays,
L. Berezansky and E. Braverman put forward a dynamic model of the form in [2],

m

X () =Y Fi(t,x(t—7(t),..., x(t —7(t)) — G(tx(t)), t > to, (1.2)
j=1

where [ and m are positive integers, G describes the instantaneous mortality rate, and each
Fi(j € I:={1,2,---,m}) is the feedback control relying on the values of the stable variable
with distinctive delays 11(t), T2(t),..., 7(¢). Manifestly, (1.2) contains the modified delayed
differential neoclassical growth model

x'(t) = B(t) | —dx(t) + inx"V(t —g]-(t))e_”(t_hf(t)) , v€ (0, 1), (1.3)
i=1

which in the case I = gi agrees with the traditional model [33].

In general, when each nonlinear function of the model contains only a small enough time
delay, it will inherit some features of non time delay systems. For example, all the non-
oscillatory solutions with respect to the unique positive equilibrium point are convergent.
Moreover, as long as the time delay is small enough, the global attractivity for the positive
equilibrium point has been shown in [2,30]. And the existence, oscillation, persistence, peri-
odicity and stability of positive solutions have been widely explored for the single time-delay
system (1.3) and similar models with g]-(t) = hj(t) [4,7,24,26,33,34]. However, when the same
nonlinear function of the model incorporates two or more time delays, chaotic oscillation of
the system will occur, which will increase the difficulty in the study of the dynamics of such
systems. Therefore, this issue has attracted the attention of many scholars. More recently,
Huang et al. [21] studied the attractivity for the scalar equation (1.3). Meanwhile, since the
financial environment of some capitals is fragmented, and the natural separation of the space
area is separate, the above scalar neoclassical growth model can be naturally generalized to
the patch structure system [8,36], the scalar equation (1.3) can be normally extended to the
following system incorporating patch structure and multiple pairs of time-varying delays:

xi(t) = B(t) | —dixi(t) + Z aijxj(t)—|—ZPijx?(t—gij(t))e"’if"i(t*hfj(t)) , v€(0,1), (1.4)
j=Lj#i j=1

where i € Q := {1,2,...,n}, x; stands for the amount of the capital per labor in the patch
i, a;j designates the dispersal coefficient of the capital from patch j to patch i, m accounts
for the number of population reproductive types, P;x; (t — gij(t))e™ %™ (=hij(1)) describes the
time-dependent reproduction function which is related to the incubation delay /;j(t) and the
maturation delay g;;(t), and x]e” %" acquires the maximum reproduce rate at x;(t) = Ull] For
more detailed biological significance, one can directly refer to [8,21,36] and their references
quoted therein.
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Hereafter, by changing the variables
51' =0, —a; witha; <0,

(1.4) can be rewritten as

xi(t) = B(t) | —dixi(t +Zaz]x] +Z — gij(1)e O] e (0,1), i € Q.

(1.5)
It should be pointed out that, the dynamic characteristics of neoclassical growth model in-
corporating patch structure and multiple pairs of time-varying delays have not been fully
studied. To the best of our knowledge, we have only found that the author of [36] established
the attractivity results of the system (1.5) when g;;(t) = hyj(t) (i € Q, j € I). However, there
is no research on the dynamic behavior of the model (1.5) with g;;(t) # h;i(t) (i € Q, j € I).

According to the above discussions, our goal is to establish the global attractivity condi-
tions of the unique positive equilibrium point for the system (1.5) under g;;(t) # h;j(t)(i €
Q, j € I). Briefly speaking, the contributions of this article can be summarized as below. 1)
The boundedness and persistence on the solutions of system (1.5) are established by exploit-
ing some novel differential inequality analyses; 2) Under certain assumptions, with the aid
of the fluctuation lemma, some sufficient criteria ensuring the global attractivity of system
(1.5) are obtained for the first time, which improve and generalize all recent works reported
in [21,36]; 3) Numerical simulations involving comparison discussions are afforded to reveal
the obtained theoretical results.

The remaining of this work is arranged as follows. In Section 2, some necessary lemmas
and assumptions are listed. In Section 3, the global attractivity of the unique positive equi-
librium point for the addressed system is demonstrated. To evidence our theoretical results,
some numerical experiments are carried out in Section 4. Conclusions are given in Section 5.

2 Preliminary results

Throughout this manuscript, INT labels the set of all positive integers and R" (R! = R)
designates the n-dimensional real vectors set. For a bounded real function u, let u™ =
sUpyeg U(9), u~ = infger u(9).

With the biological applications in mind, we assume that §; > 0, P;; >0, 0;; >0, B~ >0
and

r; = max { max sup g;i(t), max suph;(t) ¢, r = max{r;}.
1<j<m teR 1<j<m teR l<izn

Likewise, gjj, hi]-, B:R — (0,+0c0) (i € Q, j € I) are bounded and continuous functions,
A = (ajj), , is an irreducible and cooperative matrix with a;; > 0 (i # j), and

n
Y. aj=—ay forallieQ. (2.1)
j=Lj#i
In addition, suppose that there exists a positive constant N* such that

m
—§(N")"7 + Y PN =0, forallie Q, (22)
j=1
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which implies that (N*, N*,..., N*) is a positive equilibrium point of system (1.5).

Denote C = [TiL; C(|—7;,0], R) be a Banach space involving the supremum norm || - ||, and
Ci =TT, C([—7i,0],[0, +00)). Also, we set x¢(to, ¢)(x(t;to, ¢)) for an admissible solution of
(1.5) obeying the initial conditions:

X, = @, peCy and ¢;(0) >0, ieqQ, (2.3)

and [to, 7(¢)) be the maximal right-interval of existence.
Now, we present two lemmas to reveal the positiveness and boundedness of (1.5).

Lemma 2.1. x(t) = x(¢; to, ¢) has positiveness and boundedness on [ty, +o0).

Proof. By Theorem 5.2.1 in [28], we have that x;(tp, ¢) € C; forall t € [t,77(¢)). This, together
with (1.5) and (2.3), follows that

t t £
xi(t) = (Pi(o)e—ﬁo((si—aii)ﬁ(s)ds_|_e—fto(5i—aii)l3(5)d5/ B(s)

to

" [/;#aijxl +2Pz]x — 8ij(s))e B ] f‘O(S PO g
=1,j#i

>0 forallte [to,n((p)) and i € Q. (2.4)

For t > to, letip € Q and T}, € [to — 1y, t] such that

xi,(T;y) = max  xj(s) = max{ max x,-(s)}.

bo—rjy <5<t icQ |to—ri<s<t
When Tj, € [to —ri,, fo], it is easily seen that
|\ xs(to, @)l < xi,(T;) = ||@|| foralls € [y, t]. (2.5)
If Tj, € (to, ], (1.5), (2.1) and (2.4) lead to
0 < x;,(Tiy)

:'B<Ti0)[ Oi xlU Zalojxj io +Zploszo i glo]( 10)) —igj%ig (Tig —higj (Tiy ))]
j= j=1

< B(T; )[ Sioxio (T +Zawxlo o qLZ:PlO]xZO TZO)e%jxfO(TiOhioj(Tio))]
j= j=1

m
< IB(TiO)xZ)(TiO) [_&ox}()_’y(Tio) + ZPin] ’
j=1
which yields

1

Y P\
l|lxs (to, @)|| < xiy(Ti,) < max <]5> for all s € (to, t]. (2.6)
1

From (2.5) and (2.6), we obtain that x(¢) has boundedness on [ty, #(¢)), and

1

Y P\ "

r|xt<to,¢>||Sxio<T><r{;an< =5 ]> gl = X? forall tet, n(p)).  (27)
1

This, together with Theorem 2.3.1 in [9], follows #(¢) = +oo, and finishes the evidence of
Lemma 2.1. ]
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Lemma 2.2. liminf; , o x;(f) > 0 forall i € Q.

Proof. To obtain a contradiction, we suppose that | = l’len l}m +inf x;(t) = 0. Let
1€ — 10

m(t) = max {(;‘ <t ‘ there is i € Q satisfying x;(¢) = min{ min xi(s)}} .

ieQ | to<s<t
Then, lim;, o m(t) = +oo. Likewise, for a strictly monotone increasing infinite sequence

{tp}p>1, there are 1 € Q and a subsequence {f,, }x>1 C {tp}p>1 agreeing with

x;(m(ty,)) = min xf(s):min{ min xi(s)} and  lim x;(m(t,,)) =0. (2.8)

to<s<t, ' icQ | to<s<tp, k—+o0
Owing to (1.5), (2.1), (2.7) and (2.8), we derive

0 > xi(m(ty,))

> p(m(ty,)) [—(%xf(m(fpk)) +x;(m(tp,)) iafj

=1

) Py (m(ty,) — 8zf(m(tpk>)>e“’f/"f<m<fpk>—ha<m<tpk>>>]
j=1

> B(m(ty,)) [—5;x;(m(tpk)) + ZP;jxl:’(m(tpk))e“ffX(p] for all m(tp,) > to,
1

and
11 1 —0. X9
5 > E Pp——e i, for allm(tpk) > tp. (2.9)

By taking limits, (2.8) and (2.9) give us J; > +oo, which yields a contradiction and finishes the
proof.

Lemma 2.3. Lemma 2.2 indicates that (0,0, ...,0) is unstable.

3 Global attractivity analysis

First, we present a delay-independent criterion to assure the attractivity for nonoscillatory
solutions of system (1.5).

Proposition 3.1. If

minliminfx;(t) > N* (or max limsup x;(t) < N*),
minliminf (1) 2 N (or max limsup (1) < N')

then limsup,_, .  x;(t) = N* (or liminf; . x;(t) = N*) forall i € Q.
Proof. We just need to deal with the case that

min liminfx;(t) > N*,
icQ t—too

since the situation is entirely analogous for the case that max;cq limsup,_, . x;(t) < N*.
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Set y;(t) = x;(t) — N*(i € Q), it is evident that

limsupy;(t) >0 forallie Q. (3.1)

t—+oc0

Let i* € Q be such an index as limsup,_, , ., yi-(t) = maxjeqlimsup, ,  vyi(t). We state
that
limsup y;+(t) = 0.
t—4-o00
Otherwise, limsup,_, , . yi+(t) > 0. Owing to the fluctuation lemma [29, Lemma A.1.], it is an
easy matter to find a sequence {t; }r>1 obeying

lim t =400, lim y;(#) =limsupy;(t), lim yi. () =0. (3.2)
k—+4o0 k—+00

k—=+c0 t—+oc0

Due to (1.5) and (2.1), we gain

vl (t) = Bt | —doxie (1) + f;ai*]-yjak) T
= ]

m
Pyejal (e — givj(t) Je i (b | (3.3)
j =1

Because B(t), x;-(t — gi+j(t)) and x;<(t — hjj(t)) are bounded on [t, +oc0), we can select a
subsequence of {f;} (for convenience of exposition, we still label by {#;}) satisfying that
limy, oo B(tk), My oo yi(tx), im0 Xix (e — givj(t)) and limy_, oo xi- (t — hyjj(r)) exist
forall I € Q\{i*} and j € I. Moreover, 0 < B~ < limy_, 1 B(t), and

I\l>l< < 1. 1% t _h'*' t 1. 1% t - 7% 1 t <I\F‘< 1. 1% t . .4
< dm x; (tk — hi=j(tr)), (% (ke — girj(tr)) < + lim y; (k). (34)

With the help of (3.4), we regard two cases as follow.
Case 1. If limy_, | o X+ (ty — hj+j(tx)) = N* for all j € I, by taking limits, (2.1), (2.2), (3.2), and
(3.3) reveal that

0= lim vy} (t)

k— 400

< lim B(t) [—51'* (limsupyi*(t) —|—N*> + limsupy; (t) ) ajj
j=1

k=00 t—+oo t—+o0

Y
m
+ Z Pz*] (hm sup yi« (t) + N*> efai*jN*

j=1 t—+o0

IN

[ =y
lim B(t) (lim supy; () + N*) —bjr (hm supy;(t) + N*) +) Pi*]-g_gi*fN*
j=1

k=00 t—-+oo t—-+oo

I

Tr m
< lim B(t) (limsup yi(t) + N*) —6p (NH)177 4 ZPi*]-e_”i*fN*]
=1

k—r+-o0 t——+oo j

=0,

which leads to a contradiction, and suggests that limsup,_, , ., y;-(t) = 0.
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Case 2. If for some j € I, N* < limg_, ;o Xj (£ — hi=j(tx)), it follows from (2.1), (2.2), (3.2) and
(3.3) that

0= lim y.(f)

k—+o00

n
< kgrfooﬁ(tk) [—(51'* kgl;lr’loo xi*(tk) +]2 Ajxj kETooyj(tk)

+ 3 Py (Jim (1 g (5)) ) e N]

i=1 k—+o0

v m
< lim PB(t) (limsupy,-*(t) + N*) [—&*(N*)l“Y + Zpi*]-e—‘ff*jN*

k= o0 k——+o0 =1

-0,

which is also a contradiction and proves the above statement. This finishes the proof of
Proposition 3.1. O

Corollary 3.2. If for any i € Q, x;(t) is eventually nonoscillatory about N*, i.e., there is T* obeying
that

xi(t) > N*(or x;(t) < N*) forallt > T* and i € Q.
Then lim;_; 1o x;(t) = N* forall i € Q.

Remark 3.3. Corollary 3.2 shows that a delay-independent criterion has been established to
guarantee that all non-oscillatory solutions of the system (1.5) are convergent to its unique
positive equilibrium point.

Remark 3.4. It is obvious that all conclusions in Theorem 3.1, Theorem 3.2 of [21] and the
results of Theorem 3.1 in [36] are special ones of Proposition 3.1.

Theorem 3.5. Let 0 = max;eg max;e 0jj, Suppose that, for all i € Q,

S;oN* (6(51'*’11'1')/3” —1)
<1, 3.5
O — aij B (32)
and
1 — e~ r(0i—ai) "
0 < oN*5; <1 (3.6)

5i[1—e(1— e_r(‘si_“ii)ﬁ+)] — qjeTGimai)pT — ’
hold. Then lim;_, 1o x;(t) = N* forall i € Q.

Proof. Let
zi(t) = o(x(t) =N%),  i€Q,

we have from (1.5) that

DY e (A8 1) ] e
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and

t ! n m (t — o.. v
<Zi(t)effo(éi—aﬁ)ﬁ(v)dv) _ [/ 2 ﬂij,B(t)Zj(t) + oB(t) Zpif (Zl(tgl](t)) +N*>
i i=1
e~ e —aiN' _ U,B(t)él-N*} el @By S ie 6 (3.8)

To finish the verification, we shall reveal that

min liminfz;(#) = max limsup z;(t) = 0.
i€Q t—too i(t) ico HJFOOP i(t)

In view of Corollary 3.2, we only need to treat the case that for each T* > ty, there are
t*, % € (T*, +o0) such that

minz;(t*) <0 and maxz;(t") > 0. (3.9)
i€Q i€Q

Set

=1i . (t) = max li (1), A =liminfz; (t) = minliminfz;(t).  (3.10
Z ltrgigopzll() max lgilolopzz() iminfz;,(t) = minliminfz (). (3.10)

Owing to (3.9), we gain
A<0<

Now, it suffices to evidence that A = y = 0. Contrarily, either 4 > 0 or A < 0 is valid.

We only deal with the case that u > 0 occurs. (A < 0 can be treated similarly.)

If A =0, ie, A = minjegliminf; ,,z;(t) = 0. By Proposition 3.1, one can see that
p =limsup, , . z;,(t) =0.

When ¢ > 0 and A < 0, on account of the fluctuation lemma [29, Lemma A.1.], one can
take two strictly monotone increasing infinite sequences {l;},>1, {s;}4>1 satisfying that

!/

ziy(lg) >0, lg = 400, z;(lg) =, z,(l5) >0 asqg— +oo, (3.11)

and
ziy(s4) <0, 55 = +oo, zj,(s) = A, zi(s5) =0 asq— oo, (3.12)

Note that a bounded sequence has a convergent subsequence, we can presume that for all j €
I,

lim B(l;) =pB*, lim z; (I, —gil]-(lq)) = z{:l, lim z;(l;) = zf (ieQ\{i1}), (3.13)

g—++o0 q—>+00 q——+0o0

and

lim B(sq) =B, lHm z;(sq— g, j(sq)) = z{z, lim z(s;) =z (i€ Q\{ia}). (3.14)

g—+oo g—+oo q—+o0

To obtain a contradiction, we divide our proof into three steps.
First, we assert that there exists H; > 0 obeying that, for any g > Hj, there is L; €
Iy —1i,,1;) agreeing with

zi(Lg) =0, and z;(t) >0, forallte (Lyl,). (3.15)
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If not, there exists a subsequence of {I;} (do not relabel) such that

zi(t) >0, forallte[l;—ry,l;), q=12,... (3.16)
Subsequently,
0< qEToozll( —8ij(lg)) <pu foralljel, (3.17)
and
LG [z (1 ) 17 ez (g () .
Z Zan]z] ‘f‘U,B Zpil] Zl( (Tng]( )) + N* ef%*‘fiﬂN
]: L =

—051'1‘5( IN* = 6;, B(lg)zi, (1)

m EAC ! 17 \
Zau]zl )+ 0B, ZPiU il gll]( ) + N*| e N
=1 L ]

—0'(51'1[3( q) 511:5( )le W)‘ (318)

~.

By taking limit, (3.11), (3.13), (3.17) and (3.18) lead to

n
0 <ay,p° qufr‘m zi(lg) + 87 ) auj lim zi(ly)

=t T
m q1—1>r-|r-1<>ozll lq _gilj(lq)) i RIS
+U,B*2Pi17 o +N*| e T — 06 BN — 6 B hm 211(17)
=1
lim z; (I, — gi,i(1y)) 7
m n\*q BYANY
* g+ * ; H
<o ];Pilj { - + N e N — gB*s; < +E>
T |y Gy jN P\

copr (v + 1) S me o s, (v )

which is a contradiction and validates the above assertion.
Similarly, from (3.12) and (3.14), one can find Hf > 0 such that for any q > Hj, there is
Sy € [sq — iy, 84) such that

z;,(S4) =0, and z;,(t) <0, forallte (S;sg). (3.19)

Secondly, we show
e —1<A<0<u<e™ 1 (3.20)

Forany 0 < ¢ < o(N* +2) = oliminf;, o x;,(t), (3.10) suggests that one can select a
positive integer g* > H; + Hj satisfying

A—e<z(t) <pu+e forallt>min{l;,sp} —2r and i€ Q. (3.21)
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With the aid of (2.1), (2.2), (3.8), (3.19), (3.21) and (3.23), we obtain

Zj, (Sq)eft;q(51‘2*&21212)‘3(1;)‘1@
eff;‘? (81 —aiyiy) B(v)dv eftzq(éiz*“izfz)ﬁ(v)dv
= - 0'51'2N*
5i2 - aiziz
n s b m . et ,
+ ) aizj/ qzj(t)ﬁ(t)effo(JQ alzlz)ﬁ(v)dvdtJrUZPizj/ g {N* N 2i,(t — 8y (1))
J=LjF Sq 5 5, -

% e*(Tisz* ]2] le(t h12]( ))ﬁ(t)efr:)(‘5[27ai2i2).5(v)dvdt
ol =) )0 _ [ (5 —aiyy)Bl0)d0

51'2 - aiziz
S 8y —aiyi)B(@)do _ [0 (6, aiyiy)B(0)d0
+(A—e) o Y
Oiz Az [y
+o i )2 ‘/sq(N*)'y N* + % ! efaisz*f@(;lJrs)’B(t)eff; (5i2*“i2i2)5(v)dvdt
j=1 ? S N*
(5 N e.ff;q((siZ_aizlz) ];0 ip alzlz ’B('U)d'(]
> —0d;,N*
2 51'2 Aipi,
ftsq (51' — iy jt 1 — i, ﬁ(v)dv n
elto \°2 22 o \Vip T Higiy
+ ()\ — 8) 5 — Z 611'2]'
o ™ figiy =L
m S, _ Oii
+ UZPizj /S q(N*)'y—l (N* + )\0. 8) e—ai2jN*—72’(y+e)‘B(t)eft;(51‘2—ﬂiziz)ﬁ(v)dvdt
j=1 q
Sl 81y =i ) B(@)d0 [ (61,10, )B(0)d0
> (réizN*e ° e [e—(y+8) —1]
(Siz - aiziz
+(A—e) (ej;m-za,-z,z — el G- “(”)d”> ;9> q

and
Zj, (Sq) + ()\ — g) (e*(fsizfaiziz)ﬁ*r . 1)
> ziy(sq) + (A —€) <e Jsi 0y =aiyi)B(0)do _ 1)

> oN* <1 —e f;:(5i2—ﬂi2i2)ﬁ(v)dv> 5i2 _ |:ef(l/‘+€) — 1}

5i2 - aiziz

5
> * (1 _ o= Gp=apni)BpTr) T2 | ,—(pte) _q 3 by
> 0N ( e\ T fipip )(51'2—!11'21'2 [e }, q>q (3.22)

Letting g — oo and € — 0, (3.5) and (3.22) give us

A > oN* ( e(0 00 )BT _ 1) &%(M 1) > (eF—1) > 1. (3.23)

i — iyiy

In view of (2.1), (2.2), (3.8), (3.15) and (3.21), we acquire
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eftg(‘szl ullll ftO 11 —Aiyi )B(v)dv
= — O'(SilN*
5i1 - ai1i1
n 1 b
+ ) 4 / "2i(8)B(t)eln Pa T P gy
j=Lj#i Ly

m 1 zZ; : Y
—I—O'Zpil]'/q [N*+ 1( fl]( ))

*U'il]'N**yZ,'l(t*hilj(t))‘B( ) ﬂto(‘sil_ailil)ﬁ(v)dvdt

X e
N/
ejtg(5i1 ”1111 ffo iy —iqiq )B(v)do
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ft iy ’11111) ]} 11 —Aiyig )B(v)dv
= 06, N* - [e*M*g) -1
51'1 — i
1
(o) o T ( Jid Gy =aii B _ i (0 =i B )”’”), q>q°,
5i1 - ailil
and
S 8 —aiyi, ) B(0)do
1 — ¢’'lq "1 A
. -5, —(A-¢) _1
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+ _|_€1111<1_qu i~y )
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11 1

Letting g — oo and € — 0, (3.6) and (3.24) entail that

1 — "0 —aii )BT
o [1—e(1— e —111111)/3+)] — ailile_y(‘sil —aiyi )BT

u < oN*;, (e =1)< (et =1), (3.25)

which, together with (3.23), involves that (3.20) holds.
Finally, from the proof in Theorem 4.1 of [30], (3.20) implies that A = p = 0, which yields
a clear contradiction of the fact that u > 0. This finishes the proof. O

Remark 3.6. Apparently, lim, o+ e(%~%)F'" = 1, then the conditions (3.5) and (3.6) naturally
hold, which means that sufficiently small pairs of timing-varying delays have little influence
on the global attractivity of the positive equilibrium point for system (1.5). On the other hand,
limy_, 00 e3P = L o0, then the assumptions (3.5) and (3.6) do not hold, which indicates
that large enough pairs of time-varying delays will lead to chaotic oscillation of the system
(1.5). We will verify this through some numerical simulations in the next section.

4 Numerical example

Example 4.1. Regard the following patch structure neoclassical growth model incorporating
multiple pairs of time-varying delays:

(X} (t) = (3 +sin?(t)) [(—%xl(t) + Lxy(6) — i (1)
- 1101065"1 (t — gu1 (t))e3¥a(t=hm(®)
+ 301 (1 = grap))e I,

(1) = (3-+sin?(1)[(~gyxa(t) + g (1) — gha(t)

+ eS¢ = gar(B)e It )

(4.1)
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which possesses a unique positive equilibrium point (N*, N*) = (8, 8).
Now, one can easily check that

1 L. 1, . ,. . ..
gij(t) = %| cos(i+j)t|, hij(t) = @| sin(i + j)t|, i, j=1,2. (4.2)

satisfy (3.5) and (3.6). By Theorem 3.5, we obtain that the positive equilibrium point (8,8) is
a global attractor of (4.1) incorporating delays (4.2). The numeric simulations in Figure 4.1
support this theoretical assertions.

Figure 4.1: Numerical solutions of example (4.1) obeying (4.2) and the initial
values: (3,1),(10,7), (17,13).

Moreover, if we choose
gij(t) =40/,  hi(t)=60j,  1,j=12 (4.3)

it is an elementary computation to show that (3.5) and (3.6) do not hold for system (4.1) with
delays (4.3). It can be seen from Figure 4.2 that (8,8) maybe not the global attractor of (4.1)
with delays (4.3). This confirms the conclusions reached in Remark 3.6.

1,2

a(t),i

Figure 4.2: Numerical solutions of example (4.1) satisfying (4.3) and the initial
value (35,19).
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Remark 4.2. From the above simulations, we can make the following observations. First, small
delays will make the positive equilibrium point be attractive. Second, big delays maybe yield
complex dynamic behavior. In addition, the latest literature [8,21,36] and [6,10-12,14,35] have
not touched the global attractivity of the positive equilibrium point for the patch structure
neoclassical growth system with multiple pairs of time-varying delays. It can be found that
all the conclusions in the above mentioned literature and the references cited therein cannot
be used to reveal the global attractivity of (4.1). It should be pointed out that, in equations
(20) and (21) on page 3861 of [36],

lim y; (l;) >0 and

lim v (s;) <0
g—+oo q4>+ooy12( 9) <

maybe not hold. For a counterexample, consider y;, (f) = 1+ # and y;,(f) = =1 — 1%2 In
the proof of Theorem 3.5, we have successfully corrected these errors by adopting new proof
strategies and ideas. This implies that our results generalize and improve all the ones in the

above-mentioned references.

5 Conclusions

By introducing two time-varying delays in the same time-dependent reproduction function,
this paper proposed a neoclassical growth system incorporating patch structure and multiple
pairs of time-varying delays. Via some novel differential inequality analyses and the fluctua-
tion lemma, the persistence on the positive solutions, as well as the global attractivity on the
positive equilibrium point have firstly been established for the addressed model. The obtained
results reveal that, by controlling labor growth rate, capital depreciation rate and the related
parameters in the reproduction function, the attractivity of the positive equilibrium point can
be guaranteed if the time-varying delays are sufficiently small in the development process.
The adopted strategies could be taken into consideration in the area of dynamics problems on
other patch structure population systems incorporating two or more distinctive delays in the
same time-dependent reproduction function.
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