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Abstract. We investigate existence of solutions for a fractional Klein–Gordon coupled
with Maxwell’s equation. On the basis of overcoming the lack of compactness, we
obtain that there is a radially symmetric solution for the critical system by means of
variational methods.
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1 Introduction and preliminaries

Recently, a great attention has been focused on the study of non-linear problems involving the
fractional Laplacian, in view of concrete real-world applications. For instance, this type of op-
erators arises in the thin obstacle problem, optimization, finance, phase transitions, stratified
materials, crystal dislocation, soft thin films, semipermeable membranes, flame propagation,
materials science and water waves, see [13]. Moreover fractional Laplace equations can be
applied to many subjects, such as anomalous diffusion, elliptic problems with measure data,
gradient potential theory, minimal surfaces, non-uniformly elliptic problems, optimization,
phase transitions, quasigeostrophic flows, singular set of minima of variational functionals
and water waves (see [2, 5–7, 13, 16–21] and the references therein). In present paper, we con-
sider the following fractional system (−∆)s u +

[
m2 − (ω + ϕ)2

]
u = µ|u|q−2u + |u|2∗s −2u, x ∈ R3

(∆)s ϕ = (ω + ϕ) u2, x ∈ R3
(1.1)

where 3
4 < s < 1, µ > 0 and 4 ≤ q < 2∗s = 2n

n−2s = 6
3−2s , m and ω are real constants,

u ∈ Hs(R3), ϕ ∈ Ds,2(R3), (−∆)s stands for the fractional Laplacian, 2∗s is the fractional
Sobolev critical exponent.

The Klein–Gordon–Maxwell equations have been introduced in [3] as a model describing
solitary waves for the non-linear stationary Klein–Gordon equation coupled with Maxwell

BEmail: Zhang_Xinbb@163.com

https://doi.org/10.14232/ejqtde.2021.1.94
https://www.math.u-szeged.hu/ejqtde/


2 X. Zhang

equation in the three dimensional space interacting with the eletrostatic field. In recent years,
some existence and nonexistence results for the Klein–Gordon–Maxwell equations have been
proved. In [3,4,12], the authors investigated the existence of infinitely many radially symmet-
ric solutions (u, ϕ) in H1(R3)× D1,2(R3). In [1] the existence of a ground state solution (u, ϕ)

in H1(R3)× D1,2(R3) was established; In [11], the nonexistence results for system related to
Klein–Gordon–Maxwell system were obtained.

Cassani in [8] investigated the following system when n = 3 and s = 1− ∆u +
[
m2

0 − (ω + ϕ)2
]

u = µ|u|q−2u + |u|2∗−2u, x ∈ R3

∆ϕ = (ω + ϕ) u2, x ∈ R3

where µ > 0 and 4 ≤ q < 6 = 2∗. Cassani proved that the system has at least a radially
symmetric (nontrivial) solution.

In [20], Servadei and Valdinoci showed the non-local fractional counterpart of the Laplace
equation involving critical non-linearities studied in the famous paper of Brezis and Nirenberg
(1983) by the following system{

(−∆)su − λu = |u|2∗s −2u in Ω,

u = 0 in Rn \ Ω,
(1.2)

and the authors firstly studyed the problem in a general framework{
LKu + λu + |u|2∗s −2 + f (x, u) = 0 in Ω,

u = 0 in Rn \ Ω,
(1.3)

where LK is a general non-local integrodifferential operator of order s, f is a lower order per-
turbation of the critical power |u|2∗s −2. In this setting they proved an existence result through
variational techniques. Then, as a concrete example, they derived a Brezis–Nirenberg type
result for the problem.

The authors in [15] explored the problem{
(−∆)su + V(x)u − (2ω + ϕ) ϕu = K(x) f (u), in R3,

(∆)sϕ = (ω + ϕ) u2, in R3,

where K : R3 → R is a function satisfying some decay condition, V : R3 → R is a positive
continuous function, ϕ, u : R3 → R are functions. Furthermore, they showed the existence
and positivity of the ground state solution with zero mass potential for the problem, that is,
when the potential V(x) → 0, as |x| → ∞ and they also studied the case when V is bounded
and considered carefully the weight K(x). In addition, they treated the problem using the
fractional Laplace operator instead of classical Laplace operator.

Next there are two ways to define fractional Sobolev space. One is via Gagliardo seminorm

Hs(R3) :=

{
u ∈ L2(R3) :

|u(x)− u(y)|
|x − y| 3

2+s
∈ L2 (R3 × R3)} ,

the other is via Fourier transformation

Ĥs(R3) :=
{

u ∈ L2(R3) :
∫

R3

(
1 + |ξ|2s) |Fu(ξ)|2dξ < +∞

}
,
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and Hs(R3) = Ĥs(R3). In the present paper, as the norm of fractional Sobolev space, we
define

∥u∥2
Hs :=

∫
R3

(
m2 − ω2) u2dx +

C3,s

2

∫∫
R3×R3

|u(x)− u(y)|2
|x − y|3+2s dxdy.

The fractional Laplacian is defined by

(−∆)su(x) = C3,sP.V.
∫

R3

u(x)− u(y)
|x − y|3+2s dy

= C3,s lim
ε→0+

∫
Bc

ε (x)

u(x)− u(y)
|x − y|3+2s dy

= −1
2

C3,s

∫
R3

u(x + y) + u(x − y)− 2u(x)
|y|3+2s dy

= F−1 (|ξ|2sFu(ξ)
)

,

where

C3,s =

(∫
R3

1 − cos(ζ1)

|ζ|3+2s dζ

)−1

,

and P.V. is the principle value defined by the latter formula.
Consider the Sobolev space

Ds,2(R3) :=

{
u ∈ L2∗s (R3) :

|u(x)− u(y)|
|x − y| 3

2+s
∈ L2 (R3 × R3)} ,

which is the completion of C∞
0 (R3) under the norm

∥u∥2
Ds,2 :=

C3,s

2

∫∫
R3×R3

|u(x)− u(y)|2
|x − y|3+2s dxdy.

Theorem 1.1. If |m| > |ω| and 4 < q < 2∗s , then the problem (1.1) has a radially symmetric solution
(u, ϕ) ∈ Hs(R3)× Ds,2(R3) for each µ > 0.

Theorem 1.2. If |m| > |ω| and q = 4, system (1.1) still possesses a radially symmetric solution
provided that µ is sufficiently large.

According to system (1.1), one obtains the functional

F(u, ϕ) =
1
2
∥u∥2

Hs −
1
2
∥ϕ∥2

Ds,2 −
1
2

∫
R3

(
2ωϕ + ϕ2) u2dx − µ

q

∫
R3

|u|qdx − 1
2∗s

∫
R3

|u|2∗s dx. (1.4)

It’s easy to know that F(u, ϕ) exhibits a strong indefiniteness, namely it is unbounded from
below and from above on infinite dimensional subspaces. This indefiniteness can be removed
by using the reduction methods. For u and ϕ defined above, we have the following lemmas.

Lemma 1.3. Let u ∈ Hs(R3), then there exists a unique solution Φ(u) of the second equation for
problem (1.1) such that ϕ = Φ(u) ∈ Ds,2(R3).

Proof. The proof is similar to the proof of in Reference [15, Lemma 2.1], so we omit its proof.

Remark 1.4. Define the map Φ : Hs(R3) → Ds,2(R3). We can get that for each u ∈ Hs(R3),
the map Φ gives the unique solution Φ(u) = ϕ, i.e., Φ(u) =

(
(∆)s − u2)−1

ωu2.
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Next we state some properties of problem (1.1) as follows.

Lemma 1.5. For any u ∈ Hs(R3), it results in Φ(u) ≤ 0. Moreover, Φ(u)(x) ≥ −ω if u(x) ̸= 0
and ω > 0.

Proof. Multiplying the second equation of problem (1.1) by Φ+(u) = max{Φ(u), 0}, we get

−∥Φ+(u)∥2
Ds,2 = ω

∫
R3

Φ+(u)u2dx +
∫

R3
u2 (Φ+(u)

)2 dx ≥ 0,

so that Φ+(u) ≡ 0.
If we multiply the second equation of problem (1.1) by (ω + Φ(u))− , one has

∫
{x:Φ(u)<−ω}

∣∣∣∣ (−∆)
s
2 Φ(u)

∣∣∣∣2dx = −
∫
{x:Φ(u)<−ω}

(ω + Φ(u))2 u2dx,

so that (ω + Φ(u))− = 0 where u(x) ̸= 0.

Lemma 1.6. The map Φ is C1 and

Gϕ =
{
(u, ϕ) ∈ Hs(R3)× Ds,2(R3)

∣∣ F′
ϕ(u, ϕ) = 0

}
.

Proof. Noticing that Φ(u) is a solution of the second equation in problem (1.1), we have

− ∥Φ(u)∥2
Ds,2 =

∫
R3

(ω + Φ(u))Φ(u)u2dx =
∫

R3
ωΦ(u)u2dx +

∫
R3

Φ2(u)u2dx. (1.5)

In addition,

F(u, Φ(u)) =
1
2
∥u∥2

Hs −
1
2
∥Φ(u)∥2

Ds,2 −
1
2

∫
R3

(
2ωΦ(u) + Φ2(u)

)
u2dx

− µ

q

∫
R3

|u|qdx − 1
2∗s

∫
R3

|u|2∗s dx

and
F′

ϕ(u, Φ(u)) = −∥Φ(u)∥2
Ds,2 −

∫
R3

ωΦ(u)u2dx −
∫

R3
Φ2(u)u2dx,

according to (1.5), one gets that F′
ϕ(u, Φ(u)) = 0 for any (u, ϕ) ∈ Hs(R3)× Ds,2(R3). Thus

F′ (u, Φ(u)) = F′
u(u, Φ(u)) + F′

ϕ(u, Φ(u))Φ′(u) = F′
u(u, Φ(u)).

Define I(u) := F(u, Φ(u)) and if u, v ∈ Hs(R3), one gets that

I′(u)v = ⟨u, v⟩Hs +
∫

R3

[(
m2 − (ω + Φ(u))2

)
uv − µ|u|q−2uv − |u|2∗s −2uv

]
dx. (1.6)

Lemma 1.7. The following statements are equivalent:

(i) (u, ϕ) ∈ Hs(R3)× Ds,2(R3) is a solution of problem (1.1).

(ii) u is a critical point of I and ϕ = Φ(u).
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Proof. (ii) =⇒ (i) Obviously.

(i) =⇒ (ii) Let F′
u(u, ϕ) and F′

ϕ(u, ϕ) denote the partial derivatives of F at (u, ϕ) ∈ Hs(R3)×
Ds,2(R3). Then for every v ∈ Hs(R3) and ψ ∈ Ds,2(R3), one obtains that

F′
u(u, ϕ)[v] = ⟨u, v⟩Hs +

∫
R3

[(
m2 − (ω + ϕ)2

)
uv − µ|u|q−2uv − |u|2∗s −2uv

]
dx, (1.7)

F′
ϕ(u, ϕ)[ψ] = −⟨ϕ, ψ⟩Ds,2 −

∫
R3

(
ωψu2 + ϕψu2)dx. (1.8)

By standard computations, we can prove that F′
u(u, ϕ) and F′

ϕ(u, ϕ) are continuous. From (1.7)
and (1.8), it is easy to obtain that its critical points are solutions of problem (1.1), moreover, by
Lemma 1.3, one has ϕ = Φ(u).

2 Proof of Theorem 1.1

Lemma 2.1. For u ∈ Hs
r (R

3), if |m| > |ω|, then there exist some constants ρ, α > 0 such that
I(u)

∣∣
∥u∥Hs=ρ

≥ α > 0.

Proof. From (1.4) and (1.5), I(u) can be written in the following form

I(u) =
1
2
∥u∥2

Hs −
1
2
∥ϕ∥2

Ds,2 −
1
2

∫
R3

(
2ωϕ + ϕ2) u2dx − µ

q

∫
R3

|u|qdx − 1
2∗s

∫
R3

|u|2∗s dx

=
1
2
∥u∥2

Hs +
1
2
∥ϕ∥2

Ds,2 +
1
2

∫
R3

ϕ2u2dx − µ

q

∫
R3

|u|qdx − 1
2∗s

∫
R3

|u|2∗s dx.
(2.1)

Then by the Sobolev inequality, we have

I(u) ≥ 1
2
∥u∥2

Hs − C1∥u∥q
Hs − C2∥u∥2∗s

Hs ≥ α > 0, f or u ∈ Hs(R3), ∥u∥Hs = ρ.

Thus
I(u)

∣∣
∥u∥Hs=ρ

≥ α > 0

and the proof is completed.

Lemma 2.2. Under the assumptions of Theorem 1.1, there exists a function e ∈ Hs(R3) with ∥e∥Hs >

ρ such that I(e) < 0.

Proof. For any u ∈ Hs(R3) \ {0}, in view of (1.4), it is easy to obtain that

lim
t→+∞

I(tu) =
t2

2
∥u∥2

Hs −
1
2
∥Φ(tu)∥2

Ds,2 −
t2

2

∫
R3

(
2ωΦ(tu) + Φ2(tu)

)
u2dx

− tqµ

q

∫
R3

|u|qdx − t2∗s

2∗s

∫
R3

|u|2∗s dx

≤ t2

2

(
∥u∥2

Hs +
∫

R3
2ω2u2dx

)
− tqµ

q

∫
R3

|u|qdx − t2∗s

2∗s

∫
R3

|u|2∗s dx

→ − ∞,

which implies that I(u) → −∞, as ∥u∥Hs → ∞.
The lemma is proved by taking e = tu with t > 0 large enough and u ̸= 0. Therefore we

know that there exists e ∈ Hs(R3), ∥e∥Hs > ρ such that I(e) < 0.
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Define
c = inf

γ∈Γ
max
0≤t≤1

I(γ(t)), (2.2)

where Γ = {γ ∈ C
(
[0, 1], Hs(R3)

) ∣∣γ(0) = 0, γ(1) = e} is the MP level. Obviously, c ≥ α > 0.
There exists a (PS)c sequence {uk} ⊂ E such that

I(uk) → c,

I′(uk) → 0, k → ∞.
(2.3)

Lemma 2.3. The (PS)c sequence {uk} ⊂ E given in (2.3) is bounded.

Proof. There is a positive constant M such that

M + o(1)∥uk∥ ≥ I(uk)−
1
q
(I′(uk), uk)

=

(
1
2
− 1

q

)
∥uk∥2

Hs +
1
2
∥Φ(uk)∥2

Ds,2 +

(
1
2
+

1
q

) ∫
R3

Φ2(uk)u2
kdx

+
2
q

∫
R3

ωΦ(uk)u2
kdx +

(
1
q
− 1

2∗s

) ∫
R3

|uk|2
∗
s dx.

(2.4)

Substituting (1.5) into (2.4), we get that

M + o(1)∥uk∥ ≥ I(uk)−
1
q
(I′(uk), uk)

=

(
1
2
− 1

q

)
∥uk∥2

Hs +

(
1
2
− 2

q

)
∥Φ(uk)∥2

Ds,2

+

(
1
2
− 1

q

) ∫
R3

Φ2(uk)u2
kdx +

(
1
q
− 1

2∗s

) ∫
R3

|uk|2
∗
s dx

≥ C4∥uk∥2
Hs .

Since 4 < q < 2∗s , as a consequence of the above inequality, {uk} is bounded in Hs(R3).

Furthermore, according to (1.5), one gets that

∥Φ(u)∥2
Ds,2 = −

∫
R3

(ω + Φ(u))Φ(u)u2dx = −
∫

R3
ωΦ(u)u2dx −

∫
R3

Φ2(u)u2dx. (2.5)

Then by Hölder inequality and Sobolev inequality, one obtains that

∥Φ(uk)∥2
Ds,2 ≤ −

∫
R3

ωΦ(uk)u2
kdx

≤ |ω|
(∫

R3
|Φ(uk)|2

∗
s dx

) 1
2∗s
(∫

R3
|uk|

2·2∗s
2∗s −1 dx

) 2∗s −1
2∗s

= |ω|
(∫

R3
|Φ(uk)|

6
3−2s dx

) 3−2s
6

(∫
R3

|uk|
12

3+2s dx
) 3+2s

6

≤ C5∥Φ(uk)∥Ds,2∥uk∥2
Hs .

Thus {Φ(uk)} is bounded (even uniformly).
Due to the presence of the unbounded domain, the embedding Hs(R3) ↪→ Lq(R3)(

2 ≤ q ≤ 2n
n−2s =

6
3−2s

)
is not compact. In order to overcome this kind, we restrict I to radial
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functions, namely, Hs
r (R

3) = {u ∈ Hs(R3)
∣∣u(x) = u(|x|)} is compactly embedded in Lq

r (R
3)

for 2 < q < 2n
n−2s = 6

3−2s (see [9] and [14]). By the standard arguments we know that a critical
point u ∈ Hs

r (R
3) for the functional I

∣∣
Hs

r (R
3)

is also a critical point for I.

Up to a subsequence, we may assume that there exist u ∈ Hs
r (R

3) and φ ∈ Ds,2
r such that

uk ⇀ u in Hs
r (R

3), (2.6)

uk → u in Lq
r (R

3) for 2 < q < 2∗s , (2.7)

Φ(uk) ⇀ φ in Ds,2
r (R3). (2.8)

Lemma 2.4. φ = Φ(u) and Φ(uk) → Φ(u) in Ds,2
r (R3).

Proof. First we prove the uniqueness. For every fixed u ∈ Hs
r (R

3), we consider the following
minimizing problem

inf
ϕ∈Ds,2

r

Eu(ϕ),

where Eu : Ds,2
r → R defined as energy functional of the second equation in system (1.1).

Eu(ϕ) =
1
2
∥ϕ∥2

Ds,2
r
+

∫
R3

ωϕu2dx +
1
2

∫
R3

ϕ2u2dx.

In fact, by the proof of [22, Lemma 2.1], we know that

Φ(uk) → φ, locally uniformly in R3,

so we obtain that∫
R3

Φ(uk)u2
kdx →

∫
R3

φu2dx,
∫

R3
Φ2(uk)u2

kdx →
∫

R3
φ2u2dx.

From the weak lower semicontinuity of the norm in Ds,2
r (R3) and the convergence above, one

has
Eu(φ) ≤ lim inf

k→∞
Euk(Φ(uk)) ≤ lim inf

k→∞
Euk(Φ(u)) = Eu(Φ(u)),

then by Lemma 1.3, φ = Φ(u).
Next we prove that {Φ(uk)} converges strongly in Ds,2

r (R3). Since Φ(uk) and Φ(u) satisfy
the second equation in problem (1.1).

⟨Φ(uk), ψ⟩Ds,2
r
= −

∫
R3

[
ωu2

kψ + Φ(uk)u2
kψ

]
dx,

⟨Φ(u), ψ⟩Ds,2
r
= −

∫
R3

[
ωu2ψ + Φ(u)u2ψ

]
dx,

then we take the difference for Φ, one obtains that

⟨Φ(uk)−Φ(u), ψ⟩Ds,2
r
=−

∫
R3

[
ω
(
u2

k −u2)ψ+
(
Φ(uk)u2

k −Φ(u)u2)ψ
]
dx, ψ∈Ds,2

r (R3). (2.9)

Thus

⟨Φ(uk)− Φ(u), ψ⟩Ds,2
r
+

∫
R3

[
u2

k (Φ(uk)− Φ(u))ψ
]

dx +
∫

R3

(
u2

k − u2) Φ(u)ψdx

= −ω
∫

R3

(
u2

k − u2) ψdx, ψ ∈ Ds,2
r (R3).

(2.10)
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By the Hölder inequality and the Sobolev inequality, testing with ψ = (Φ(uk)− Φ(u)), the
following holds:

∥Φ(uk)− Φ(u)∥2
Ds,2

r

= −ω
∫

R3

(
u2

k − u2) (Φ(uk)− Φ(u))dx

−
∫

R3
u2

k (Φ(uk)− Φ(u))2 dx −
∫

R3

(
u2

k − u2) Φ(u) (Φ(uk)− Φ(u))dx

≤ |ω|
∫

R3
|u2

k − u2||Φ(uk)− Φ(u)|dx +
∫

R3
|u2

k − u2||Φ(u)||Φ(uk)− Φ(u)|dx

≤ |ω||Φ(uk)− Φ(u)| 6
3−2s

|u2
k − u2| 6

3+2s
+ |u2

k − u2| 3
2s
|Φ(u)| 6

3−2s
|Φ(uk)− Φ(u)| 6

3−2s

≤ C6|uk − u| 12
3+2s

+ C7|uk − u| 3
s
.

Since uk ⇀ u in Hs
r (R

3), uk → u in Lq
r (R

3)(2 < q < 2∗s ), one has Φ(uk) → Φ(u) strongly in
Ds,2

r (R3).

Lemma 2.5. The weak limit (u, Φ(u)) solves problem (1.1).

Proof. From (1.6), we know that

(I′(uk), v) = ⟨uk, v⟩Hs +
∫

R3

[(
m2 − (ω + Φ(uk))

2
)

ukv
]

dx

−
∫

R3

[
µ|uk|q−2ukv + |uk|2

∗
s −2ukv

]
dx, v ∈ Hs

r (R
3).

(2.11)

All convergences in the sequel must be understood passing to a subsequence if necessary.
Since {uk} is bounded in L2∗s

r (R3),

|uk|2
∗
s −2uk ⇀ |u|2∗s −2u, in (L2∗s

r (R3))∗.

Moreover by Lemma 2.4, for any v ∈ Hs
r (R

3), one gets that∫
R3

ukΦ2(uk)vdx + 2ω
∫

R3
Φ(uk)ukvdx →

∫
R3

uΦ2(u)vdx + 2ω
∫

R3
Φ(u)uvdx.

In fact one obtains that∫
R3

|Φ(u)u − Φ(uk)uk| |v|dx

≤ |Φ(u)− Φ(uk)| 6
3−2s

|u| 3
2s
|v| 6

3−2s
+ |Φ(uk)| 6

3−2s
|v| 6

3−2s
|uk − u| 3

2s

(2.12)

and∫
R3

|ukΦ2(uk)− uΦ2(u)||v|dx

≤ |uk − u| 3
2s
|Φ(uk)|2 12

3−2s
|v| 6

3−2s
+ |Φ(uk)− Φ(u)| 6

3−2s
|Φ(uk) + Φ(u)| 6

3−2s
|u| 3

s
|v| 3

s
.

(2.13)

The compactness of the embedding Hs
r (R

3) ↪→ Lq
r (R

3) the lemma follows.

In the following we will prove u ̸= 0, so we assume that c denotes the MP level.
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Claim 2.6. c < s
3 S

3
2s
s , where Ss corresponds to the best constant for the fractional Sobolev embedding

Ds,2(R3) ↪→ L2∗s (R3), precisely,

Ss := inf
u∈Ds,2(R3)\{0}

∥u∥2
Ds,2

|u|22∗s
. (2.14)

Proof. By [10], Ss is attained by

ũ(x) = κ
(
ε2 + |x − x0|

)− 3−2s
2 ,

i.e., Ss =
∥ũ∥2

Ds,2

|ũ|22∗s
, normalizing ũ by |ũ|2∗s , one obtains that u = ũ

|ũ|2∗s
. Thus

Ss = inf
u∈Ds,2(R3),|u|2∗s =1

∥u∥2
Ds,2 = ∥u∥2

Ds,2 .

Moreover u1 = S
1

2∗s −2
s u is a positive ground state solution of (−∆)s = |u|2∗s −2 in R3 and

∥u1∥2
Ds,2 = |u1|2

∗
s

2∗s
= S

3
2s
s .

Now according to Reference [20], given ε > 0, we consider the function

Uε(x) = ε−
3−2s

2 u1(
x
ε
), Uε ∈ Ds,2(R3). (2.15)

Let φ ∈ C∞
0 (R3) such that 0 ≤ φ ≤ 1 in R3, φ ≡ 1 in Bδ(δ > 0) and φ ≡ 0 in CB2δ, where

Bδ = B(0, δ) and CBδ = R3 \ Bδ. For every ε > 0 we denote uε by the following function:
uε = φ(x)Uε(x), x ∈ R3 and

vε(x) =
uε(x)

|uε(x)|2∗s
.

Let e > 0 and µ > 0, if x ∈ CBe, then

|∇uε(x)| ≤ Cε
3−2s

2 for any ε > 0

and for some positive constant C, possibly depending on µ, e and s. Suppose s ∈ ( 3
4 , 1). Then

according to [20], the following estimate holds true:

Xε :=
C3,s

2

∫∫
R3×R3

|vε(x)− vε(y)|2
|x − y|3+2s dxdy ≤ S

3
2s
s + O

(
ε3−2s) , as ε → 0. (2.16)

Since as t → +∞, I(tvε) → −∞, we may assume that

sup
t≥0

I(tvε) = I(tεvε)

and without loss of generality that tε ≥ C0 > 0, for all ε > 0. Otherwise, there exists a
sequence εn such that

lim
n→∞

tεn = 0

and then
0 < c ≤ lim

n→∞
I(tεn vεn) = 0.
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Next we will prove the above bound of tε, that is, for any ε > 0 small enough

tε ≤
(

Xε +
∫

R3
m2v2

ε dx
) 1

2∗s −2

= T. (2.17)

Set f (t) = I(tvε) and compute

f ′(t) =
(

I′(tvε), vε

)
= tT2∗s −2 − t2∗s −1 − t

∫
R3

(ω + Φ(tvε))
2 v2

ε dx − µtq−1
∫

R3
|vε|qdx ≤ 0, t ≥ T.

Hence, f ′(t) ≤ 0 if t ≥ T and (2.17) holds.
Since the function t 7→ 1

2 t2T2∗s −2 − 1
2∗s

t2∗s is increasing in the internal [0, T), by (2.16), one
obtains that

I(tεvε) =
t2
ε

2

(
C3,s

2

∫∫
R3×R3

|vε(x)− vε(y)|2
|x − y|3+2s dxdy +

∫
R3

m2v2
ε dx

)
− t2

ε

2

∫
R3

(ω + Φ(tεvε))
2 v2

ε dx

− 1
2
∥Φ(tεvε)∥2

Ds,2
r
− µtq

ε

q

∫
R3

|vε|qdx −
∫

R3

t2∗s
ε

2∗s
|vε|2

∗
s dx

≤ s
3

(
S

3
2s
s + O

(
ε3−2s)+ ∫

R3
m2v2

ε dx
) 3

2s

+
∫

R3

t2
ε

2
ω2v2

ε dx − µtq
ε

q

∫
R3

|vε|qdx.

Then using the inequality (a + b)σ ≤ aσ + σ (a + b)σ−1 b, for all σ ≥ 1, a, b ≥ 0, we get that

I (tεvε) ≤
s
3

S
9

4s2
s + O

(
ε3−2s)+ C1 (ε)

∫
R3

v2
ε dx − C2(ε)

∫
R3

|vε|qdx,

with constants Ci(ε) > 0 (i = 1, 2). On the other hand, we may get the conclusion that

lim
ε→0

1
ε2s

∫
R3

(
v2

ε − µ|vε|q
)

dx = −∞ for ε small enough. (2.18)

In fact, by the definition of uε, since for ε → 0, as in [20],∫
R3

|uε|2
∗
s dx = S

3
2s
s + O

(
ε3) , (2.19)

it suffices to evaluate (2.18) with uε in place of vε. For p ≥ 1, one has∫
R3

|uε(x)|pdx =
∫

Bδ

|Uε(x)|pdx +
∫

B2δ\Bδ

|φ(x)Uε(x)|pdx

= C8ε−
p(3−2s)

2

∫
Bδ

|u1(
x
ε
)|pdx

= C8ε
6−3p+2ps

2

∫ δ
ε

R
|u1(r)|pr2dr

= C8ε
6−3p+2ps

2

∫ δ
ε

R
r−3p+2ps+2dr

(2.20)

for any 0 < R < δ
ε and therefore, one has for 4 < q < 2∗s , as ε → 0,∫

R3
u2

ε dx − µ
∫

R3
uq

ε dx ≤ C9ε2s − C10µε
6−3q+2qs

2 , (2.21)

where Ci > 0 (i = 9, 10) are independent from ε. According to (2.19) and (2.21), we complete
the proof of (2.18).
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Claim 2.7. The solution u is nontrivial.

Proof. By contradiction, suppose that u ≡ 0. It follows that Φ(u) = 0 and as k → ∞,

(
I′(uk), uk

)
=

C3,s

2

∫∫
R3×R3

|uk(x)− uk(y)|2
|x − y|3+2s dxdy +

∫
R3

(
m2 − ω2) u2

kdx

−
∫

R3

(
2ωΦ(uk) + Φ2(uk)

)
u2

kdx − µ
∫

R3
|uk|qdx −

∫
R3

|uk|2
∗
s dx

→ 0

and
uk → 0 in Lq

r (R
3).

Thus one obtains that ∫
R3

|uk|qdx → 0

and ∫
R3

(
2ωΦ(uk) + Φ2(uk)

)
u2

kdx → 0.

Hence, up to a subsequence, if necessary, we can assume that

C3,s

2

∫∫
R3×R3

|uk(x)− uk(y)|2
|x − y|3+2s dxdy +

∫
R3

(
m2 − ω2) u2

kdx → L, (2.22)

and ∫
R3

|uk(x)|2∗s dx → L, L ≥ 0. (2.23)

Furthermore, I(uk) → c, it follows that

c =
(

1
2
− 1

2∗s

)
L =

s
3

L. (2.24)

Since c ≥ α > 0, it is easily seen that L > 0. In addition,

C3,s

2

∫∫
R3×R3

|uk(x)− uk(y)|2
|x − y|3+2s dxdy ≥ Ss|uk|22∗s ,

so that taking into account (2.22) and (2.23), we get L ≥ SsL
2

2∗s , which combined with (2.24)
gives

c ≥ s
3

S
2∗s

2∗s −2
s =

s
3

S
3
2s
s ,

this contradicts Claim 2.6. Hence u is nontrivial.

3 Proof of Theorem 1.2

We can observe if q = 4, in (2.21) one can stress the parameter choosing µ = ε−σ, σ > 0, then
to get (2.18), the rest proof of Theorem 1.2 is similar to proof of Theorem 1.1.
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